
A Third-Order Bounded Arithmetic Theory for
PSPACE

Alan Skelley?

Department of Computer Science, University of Toronto
10 King’s College Road,

Toronto, ON M5S 3G4 Canada
skelley@acm.org

Abstract. We present a novel third-order theory W 1
1 of bounded arith-

metic suitable for reasoning about PSPACE functions. This theory has
the advantages of avoiding the smash function symbol and is otherwise
much simpler than previous PSPACE theories. As an example we out-
line a proof in W 1

1 that from any configuration in the game of Hex,
at least one player has a winning strategy. We then exhibit a transla-
tion of theorems of W 1

1 into families of propositional tautologies with
polynomial-size proofs in BPLK (a recent propositional proof system for
PSPACE and an alternative to G). This translation is clearer and more
natural in several respects than the analogous ones for previous PSPACE
theories.
Keywords: Bounded arithmetic, propositional proof complexity, PSPACE,
quantified propositional calculus

1 Introduction

Theories of bounded arithmetic such as Si2 and T i2 of Buss [1] are interesting
for their close ties to computational complexity. For example, the S2 hierarchy
collapses if and only if S2 proves that the polynomial-time hierarchy collapses
[3, 25, 16]. An important property of a theory is the computational complexity
of functions that can be defined in it, and theories are known that correspond
in this way to many natural complexity classes; see for example [7], [2], [13], [6].

Another important feature of theories of bounded arithmetic is that theorems
can often be translated into families of tautologies with polynomial-sized proofs
in a related propositional proof system. For example, propositional translations
of theorems of Cook’s equational theory of polynomial-time functions, PV, have
polynomial-sized extended Frege proofs [12].

1.1 Our Results and Related Work

In his thesis [1], Buss introduced the first-order S2 hierarchy but he also gave
second-order theories U1

2 and V 1
2 whose ΣB

1 -definable functions are exactly the
? Research supported by Canadian Natural Sciences and Engineering Research Council

grant PGSB-208264-2000

2

classes PSPACE and EXPTIME, respectively. The ability to reason about the
exponentially-large second-order objects gives the theory greatly increased power;
for example, V 1

2 is otherwise identical to T2, whose Σb
1-definable functions are

from the polynomial hierarchy.
Now, Razborov [19] and Takeuti [24] independently showed a general method

(the RSUV isomorphism) by which a first-order theory could be shown equivalent
to a second-order theory: for example, the Σb

1-definable number functions of S1
2

are the same as the ΣB
1 -definable string functions of V 1

1 . Zambella [25] then
gave a very elegant presentation of a second-order hierarchy {V i} equivalent to
{Si2}. This second-order “viewpoint” has been adopted by other authors [8, 9]
and has the advantages of greatly reducing the number of axioms required due
to the absence of ’#’ (the smash function symbol) from the language and also
simplifying the bootstrapping of the theories.

In this paper we introduce a new third-order theory called W 1
1 designed to

exploit both the above uses of a higher order in bounded arithmetic: Firstly to
simplify the language, presentation and bootstrapping and secondly to reason
about exponentially large objects. We show that the ΣB1 -definable string func-
tions of this theory are exactly those computable in polynomial space (PSPACE).
Our witnessing theorem is much simpler than the analogous one for U1

2 since it
completely eliminates the complicated witnessing formulas of [1] and also uses a
simpler comprehension scheme that does not necessitate adding comprehension
rules to the sequent calculus.

We also discuss a recent propositional proof system, BPLK [22], correspond-
ing to PSPACE and give a translation of theorems of W 1

1 into families of propo-
sitional tautologies with polynomial-size proofs in this new system. This trans-
lation is very much simpler than the analogous one for U1

2 and G, the quantified
propositional calculus that is the only previously studied propositional proof sys-
tem for PSPACE. This latter translation is from [17] and lacks many technical
details that we suspect would be very tricky if written out in full.

2 A Third-Order Language

We consider a three-sorted (“third-order”) predicate calculus with free and
bound variables of the first sort named a, b, c, ... and x, y, z, ..., respectively, and
free and bound variables of the second sort named A,B,C, ... and X,Y, Z, ..., and
likewise of the third sort named A,B, C, ... and X ,Y,Z, The first sort is in-
tended to represent natural numbers; the second, finite sets of natural numbers;
and the third, finite sets of finite sets. The language L3

Aconsists of the following
set of non-logical symbols: L3

A = {0, 1,+, ·, | · |2,∈2,∈3,≤,=}, the same as the
set L2

Afor V 1 but with the addition of the third-order membership predicate
A ∈3 B. Note in particular the absence of the smash function symbol. The ex-
pression |X|2 is intended to represent the largest element of the set X. Such sets
are interchangeable with finite binary strings under the following mapping, as
in [9]: The set X represents the string with length |X|2 − 1 whose ith bit is 1
exactly when i ∈2 X. This map is a bijection with the exception that the string

3

corresponding to the empty set would be undefined, so we define it to be the
empty string. Third-order objects can then be thought of as sets of strings.

Number terms are defined identically as in V 1, in particular not including
any reference to third-order variables. Formulas additionally may have third-
order variables and quantifiers. The hierarchy ΣBi of classes of formulas in this
language is analogous to ΣB

i and Σb
i for second- and first-order formulas: ΣBi

consists of those formulas with arbitrarily many bounded first- and second-order
quantifiers, and exactly i alternations of third-order quantifiers, the outer-most
being restricted, i.e. equivalent to an existential quantifier. We shall be con-
cerned only with i ∈ {0, 1}. Now, strict ΣB1 -formulas are those consisting of a
single existential third-order quantifier followed by a formula with no third-order
quantifiers; we shall be mainly concerned with a slightly more inclusive class
of formulas called ∀2ΣB1 , consisting of a single bounded universal second-order
quantifier followed by a strict ΣB1 -formula. Restricting several schemes in our
theory to this class will be justified in section 4 by the fact that an appropriate
replacement scheme will be provable in our theory.

Note that third-order quantifiers are not bounded, and in fact there does
not seem to be any way to bound them since terms cannot reference third-order
variables. Fortunately, in the appropriate fragment of the theory we shall be
concerned with, these variables will always be implicitly bounded.

3 The Theory W 1
1

W 1
1 is a theory over the above-defined third-order language. The axioms of W 1

1

are B1-B12 and L1,L2 of [8] (open axioms defining the function and predicate
symbols in the language), (strict) ∀2ΣB1 -IND, and the following two comprehen-
sion schemes ΣB0 -2COMP:

(∃Y ≤ t(x,X))(∀z ≤ s(x,X))[φ(x,X,X , z)↔ Y (z)]

and ΣB0 -3COMP:

(∃Y)(∀Z ≤ s(x,X))[φ(x,X,X , Z)↔ Y(Z)],

where in each case φ ∈ ΣB0 subject to the restriction that neither Y nor Y, as
appropriate, occurs free in φ. Y(Z) abbreviates X ∈3 Y, and similarly for Y (z).

4 ΣB1 -Replacement Schemes

In this section we shall show that W 1
1 proves various replacement schemes, allow-

ing third-order existential quantifiers to be moved past lower-order quantifiers.
First, though, it is convenient to note that adding to W 1

1 function symbols for
its number- and string-valued ΣB1 -definable functions results in a conservative
extension. The proof of the present claim is analogous to that for first-order
bounded arithmetic theories in section 2.3 of [1]. In that proof, a given Σb

1-
formula in the augmented language is shown to be equivalent to a constructed

4

Σb
1-formula in the original language, and preserves strictness of the quantifier

syntax.
W 1

1 ⊃ V (=
⋃
V i) since all the axioms of the latter theory are in the former.

W 1
1 can therefore ΣB

∞-define all number- and string-valued functions of number
and string arguments from the polynomial-time hierarchy. By the remarks in the
previous paragraph, we can add symbols for these functions to W 1

1 and obtain a
conservative extension. In particular, pairing functions such as 〈x, y〉, 〈X,Y 〉 and
〈X, y〉 may be added. For a third-order variable X define X [x](X) ≡ X (〈x,X〉)
and X [X](Y) ≡ X (〈X,Y 〉), which make X into an array, with rows indexed by
number or strings respectively, each row of which is a third-order object. Let
’_’ represent string concatenation and −· represent limited subtraction. With
this in mind, we can state the ΣB1 replacement schemes:

Definition 1 (ΣB1 Replacement Schemes). ΣB1 -1REPL is:

∀x ≤ y∃Xφ(x, y,X)↔ ∃X∀x ≤ yφ(x, y,X [x])

and ΣB1 -2REPL is:

∀X ≤ y∃Xφ(X, y,X)↔ ∃X∀X ≤ yφ(X, y,X [X]),

where in each case φ is a (general) ΣB1 -formula that may have other free variables
than those indicated.

Theorem 2. The ΣB1 replacement schemes are theorems of W 1
1 .

Proof (Proof Sketch). Although the ΣB1 -1REPL scheme has a simpler proof, it
can also be proved in the same way as the ΣB1 -2REPL scheme, so we sketch only
a proof of the latter.
←: This direction of the equivalence, namely that for φ(X, y,X) ∈ ΣB1

W 1
1 ` ∃X∀X ≤ yφ(X, y,X [X]) ⊃ ∀X ≤ y∃Xφ(X, y,X)

is immediate.
→: The existence of a proof in W 1

1 of this direction of the equivalence is itself
proved by structural induction on φ. The base case of the induction is when φ
is ΣB0 . let ψ be ∀X ≤ y∃Xφ(X, y,X). Let θ(c) be the formula

∀X ≤ (y−· c)∃X∀Y ≤ cφ(X _ Y, y,X [Y]).

θ(0) is a simple logical consequence of ψ, and W 1
1 ` ψ∧ θ(c) ⊃ θ(c+ 1) by use of

ΣB0 -3COMP to combine two third-order objects (coding the two arrays of third-
order objects for all strings of length smaller than y starting with X _ 0 and
X _ 1 respectively) into one third-order object coding the array for all strings of
length smaller than y starting with X. Thus W 1

1 ` ψ ⊃ θ(y) by ∀2ΣB1 -IND, and
clearly W 1

1 ` θ(y) ⊃ ∃X∀X ≤ yφ(X, y,X [X]). This induction, incidentally, is the
only place where ∀2ΣB1 -IND, rather than strict ΣB1 -IND, seems to be necessary.

The induction step (φ 6∈ ΣB0) is proved by putting the formula in prenex
form and then applying the induction hypothesis several times to manipulate
the quantifiers. We omit the details. ut

5

The following is an immediate, useful corollary:

Corollary 3. Let φ ∈ ΣB1 . Then there exists ψ ∈ strict ΣB1 such that W 1
1 `

φ↔ ψ.

5 Definability in W 1
1

We know that W 1
1 can ΣB0 -define all functions (of string variables) from the

polynomial-time hierarchy. In fact, W 1
1 can ΣB1 -define all string functions com-

putable in polynomial space:

Theorem 4. Let f ∈ PSPACE be of polynomial growth rate. Then there is a
strict ΣB1 -formula φ such that

1. W 1
1 ` ∀X∃Y φ(X,Y)

2. W 1
1 ` ∀X∀Y ∀Z(φ(X,Y) ∧ φ(X,Z) ⊃ Y =2 Z (Y =2 Z may be defined as

(|Y |2 = |Z|2 ∧ ∀x ≤ |Y |2(Y (x)↔ Z(x)))))
3. For all strings X, φ(X, f(X)) is true.

Proof (Proof Sketch). The proof is by induction on the logarithm of the length
(number of steps) of the PSPACE computation that for any initial configuration
there is a unique ending configuration. In the induction step two computations
of length 2i are pieced together using ΣB0 -3COMP. ut

5.1 Strategies in Hex

As an example, consider the game of Hex, which has recently achieved some
notoriety in the form of propositional tautologies due to Buss [5], Urquhart and
others. These tautologies state that a finished game of Hex has a winner and
are generally provable in Frege, resolution or weaker systems, depending on the
formulation. The winner can be found in logarithmic space by solving a related
graph reachability problem. A related problem is to determine which player has
the winning strategy from a given configuration, which is PSPACE complete [20].
A Hex configuration is easily coded as a string, compared to which a strategy is
an exponential-sized object coding a map from partially filled boards to moves.
Thus there is a ΣB1 formula Strategy1(X) stating that there exists a strategy
such that for any (game sized) sequence of moves by player 2, when player 1
responds according to his strategy then he is the winner. There is similarly a
ΣB1 -formula Strategy2(X), and as expected,

Theorem 5.
W 1

1 ` ∀X[Strategy1(X) ∨ Strategy2(X)].

Proof (Proof Sketch). Given a configuration X, we can define continuations
of X as those configurations reachable from X by play. This is a simple matter
of counting the numbers of added pieces of each colour, and checking that no
existing pieces have been changed or removed. Then it is proved by induction

6

on the number of remaining moves in the game that from any continuation of
X, some player has a winning strategy. The base case is a reformulation of the
above tautologies and is thus easily provable in W 1

1 . In the induction step, from
a given position Y the induction hypothesis gives a winning strategy for some
player from each possible next position. If the current player can reach a winning
position with a move then the strategy for the current position is amended to
apply to the configuration Y by adding that move. Otherwise, a strategy for the
other player is the merger of his strategies for all possible next positions. ut

5.2 A Witnessing Theorem for W 1
1

To prove the converse of Theorem 4, namely that functions provably total in W 1
1

are in PSPACE, we shall use a Buss-style witnessing argument, which requires
that we define an equivalent sequent calculus formulation LK3 − W 1

1 of W 1
1 .

We omit this for brevity, but it is essentially LK with the addition of second-
and third-order quantifier introduction rules (replacing only free variables by
quantifiers) plus the following ∀2ΣB1 -IND rule:

Γ, φ(b) −→ φ(b+ 1),∆
Γ, φ(0) −→ φ(t),∆

,

where b appears only as indicated and φ ∈ ∀2ΣB1 . As initial sequents we allow
all substitution instances of the axioms (other than induction) of W 1

1 . Note that
all rules of LK3 −W 1

1 are valid in W 1
1 , and furthermore, LK3 −W 1

1 proves the
induction and comprehension schemes of W 1

1 . Formally, LK3 −W 1
1 also adopts

the usual conventions concerning free and bound variables, as in [4].
The standard definition of an anchored cut in LK3 is extended for LK3−W 1

1

by allowing cuts on the descendents of principal formulas of the ∀2ΣB1 -IND
rule, in addition to cuts on descendents of formulas in non-logical axioms. The
anchored completeness theorem for LK3 can then be extended to LK3 −W 1

1 in
the usual way to cope with the induction rules, as detailed in [23].

With this in mind, we can now state the witnessing theorem we wish to prove,
followed by several definitions:

Theorem 6. Suppose W 1
1 ` ∃Y φ(X,Y), for φ(X,Y) ∈ ΣB1 with all free vari-

ables displayed. Then there exists a function f ∈ PSPACE of polynomial growth
rate such that for every string X, φ(X, f(X)) is true.

Definition 7. Let ψ ≡ ∀X ≤ t∃Xφ(X,X) ∈ ∀2ΣB1 , with other free variables
not shown. Consider an assignment to the free variables of ψ. Then the string
relation A(A,B) satisfies ψ (with respect to the assignment to the free variables
of ψ) iff for every string A of no more than t bits, φ(A, {B}(A(A,B))) is true
in the standard model, where {B}(A(A,B)) denotes the unary string predicate
(with argument B) obtained by fixing the first argument of relation A to A.

Definition 8. Let S be the sequent Γ −→ ∆ such that Γ
⋃
∆ ⊂ ∀2ΣB1 , i.e.

Γ = {∀Ai ≤ si∃Aiγi(Ai,Ai,B, B, b)} and

∆ = {∀Ci ≤ ti∃Ciδi(Ci, Ci,B, B, b)},

7

with {γi}
⋃
{δi} ⊂ ΣB0 . (Leading quantifiers are written for simplicity but may

be absent.)
Then PSPACE Oracle Witnessing Operators (POWOs) for S are

operators, or type-2 predicates. For each formula from ∆

∀Ci ≤ ti∃Ciδi(Ci, Ci,B, B, b)

that is not ΣB0 (and may or may not have the leading string quantifier as pic-
tured), the POWO fi is a predicate with arguments {B, B, b} (for the free vari-
ables of the sequent), {Aj(Aj , X)} (for the string relations satisfying the formu-
las in the antecedent) and finally {Ci, X}, making fi into a two-place string
relation when the other arguments are fixed. The fi must have the property
that for any assignment to the free variables B, B, b of S and string relations
{Aj(Aj , X)}, if each formula γj on the left is satisfied by the corresponding Aj,
then some δi on the right is satisfied by the string relation {Ci, X}fi, obtained
by fixing all but the last two arguments to the operator fi.

Furthermore, each fi is computable by an oracle Turing machine in space
(including on the query tapes) polynomial in the lengths of its string and number
inputs.

Now the theorem will follow from the following lemma:

Lemma 9. Suppose LK3 −W 1
1 ` Γ −→ ∆, where Γ

⋃
∆ ⊂ ∀2ΣB1 . Then there

exist PSPACE Oracle Witnessing Operators for Γ −→ ∆.

Proof (Proof of Theorem 6 from Lemma 9). Suppose W 1
1 ` ∃Y φ(X,Y), for

φ(X,Y) ∈ ΣB1 with all free variables displayed. By Parikh’s theorem, W 1
1 `

∃Y ≤ t(|X|2)φ(X,Y), for some term t. By Corollary 3, W 1
1 ` φ(X,Y) ↔

∃Yψ(X,Y,Y), for some ψ ∈ ΣB0 . Also, W 1
1 ` ∃Y ≤ t(|X|2)∃Yψ(X,Y,Y) ↔

∃Y∃Y ≤ t(|X|q)ψ(X,Y,Y). Applying the lemma to the sequent −→ ∃Y∃Y ≤
t(|X|2)ψ(X,Y,Y), we obtain a PSPACE (in |X|) predicate for Y satisfying that
sequent, and so for particular X the string Y can be obtained in PSPACE by
evaluating ψ, with access to the predicate Y, on each string of length ≤ t(|X|2)
in turn. It is easy to see that the computed string Y satisfies φ(X,Y) (for the
same fixed X). ut

All that remains is to prove the lemma:

Proof (Proof of Lemma 9). Suppose LK3 − W 1
1 ` Γ −→ ∆, where Γ

⋃
∆ ⊂

∀2ΣB1 , and consider an anchored proof π of this sequent. Since both the endse-
quent of π and every non-logical axiom of LK3 −W 1

1 is ∀2ΣB1 , and since the
induction rule is limited to this same class of formulas, every formula in π is
∀2ΣB1 .

We now show by induction on the number of sequents in π that POWOs
exist for Γ −→ ∆.

Base Case: The base case is that Γ −→ ∆ is either an initial sequent of
LK3 or an instance of an axiom. The only such sequents requiring POWOs are
those with a third-order quantifier in the succedent, namely an instance

−→ (∃Y)(∀Z ≤ s(B, b))[φ(B, B, b, Z)↔ Y(Z)]

8

of ΣB0 -3COMP, where φ ∈ ΣB0 , subject to the restriction that Y does not occur
free in φ. The only POWO required for this sequent is computed by the predicate

f(B, B, b,A, Z)↔ |Z|2 ≤ s(B, b) ∧ φ(B, B, b, Z),

which is in some level of the polynomial-time hierarchy, and thus certainly in
PSPACE.

Induction Step: The induction step has several cases depending on which
rule has been used to derive Γ −→ ∆.

1.-8. Weakening; Contraction; Exchange, introduction of ¬, ∨ on the right and ∧
on the left; Introduction of ∨ on the left and ∧ on the right; First- or second-
order ∀ : left and ∃ : right; First- or second-order ∀ : right and ∃ : left;
Third-order ∃ : left; and Third-order ∃ : right: These cases are all easy and
are omitted for brevity.

9. The cut rule:
The inference is

Γ −→ φ,∆ Γ, φ −→ ∆

Γ −→ ∆
.

A POWO for the conclusion proceeds in two phases: First, it evaluates its
formula using the POWO from the left hypothesis, and if that POWO sat-
isfies the formula, it emulates it. Otherwise, it emulates the POWO from
the right hypothesis, and uses the POWO for φ from the left hypothesis to
supply a value for the oracle argument. The whole procedure uses at most
the sum of the space requirements of the two POWOs from the hypotheses.
If any free variables are eliminated, then as before a dummy argument of
the correct type is supplied to the POWOs.

10. ∀2ΣB1 -IND:
The inference is:

Γ, φ(b) −→ φ(b+ 1),∆
Γ, φ(0) −→ φ(t),∆

.

The POWOs for the conclusion will iterate the construction from the previ-
ous case, as the current instance of the induction rule could be simulated by
t instances of the cut rule, along with some weakenings.
More precisely, let fφ be the POWO for the instance of φ in the succedent
of the hypothesis. Let ψ be any formula in the succedent of the hypothesis
(including φ) and fψ its POWO. We construct a POWO f ′ψ for ψ in the
conclusion in stages:
f0
ψ(X,Y)↔ fψ(X,Y).
fkψ(X,Y)↔ (ψ(fk−1

ψ) ∧ fk−1
ψ (X,Y)) ∨ (¬ψ(fk−1

ψ) ∧ fk−1
ψ (fφ, X, Y)).

f1
ψ checks if fψ satisfies ψ and if so, simulates fψ. If not, f1

ψ computes fψ(fφ),
that is to say, uses fφ to answer queries to the oracle argument corresponding
to φ.
fkψ checks if fk−1

ψ satisfies ψ and if so, simulates fk−1
ψ . If not, fkψ computes

fk−1
ψ (fφ).

9

f ′ψ, then, evaluates t and computes f tψ. Computing f tψ requires t times the
space required to compute fφ plus the space requirements of fψ, and so only
increases the space usage of POWOs by a polynomial factor.

ut

6 The propositional system BPLK

In this section we review the sequent system BPLK [22], which is basically PK
(i.e., the propositional fragment of LK) enhanced with the reasoning power of
Boolean programs, defined below. These (Boolean programs) were introduced in
[10] and are a way of specifying Boolean functions. They are something like a
generalization of the technique of using new atoms to replace part of a Boolean
formula, which idea is the basis of extended Frege systems. The following defi-
nition is from that paper:

Definition 10 (Cook-Soltys). A Boolean Program P is specified by a finite
sequence {f1, ..., fm} of function symbols, where each symbol fi has an associated
arity ki, and an associated defining equation

fi(pi) := Ai

where pi is a list p1, ..., pki of variables and Ai is a formula all of whose vari-
ables are among pi and all of whose function symbols are among f1, ..., fi−1. In
this context the definition of a formula is expanded to allow the use of function
symbols as connectives.

The semantics are as for propositional formulas, except that when evaluating
an application fi(φ) of a function symbol, the value is defined, using the defining
equation, to be Ai(φ). There is no free/bound distinction between variables in
the language of Boolean programs.

An interesting property of Boolean programs from [10] that demonstrates
their comparability to quantified Boolean formulas is that evaluating them is
PSPACE-complete.

Definition 11 (BPLK). The system BPLK is like the propositional system
PK, but with the following changes:

1. In addition to sequents, a proof also includes a Boolean program that defines
functions. Whenever we refer to a BPLK-proof, we shall always explicitly
write it as the pair 〈π, P 〉 of the proof (sequents) and the Boolean program
defining the function symbols occurring in the sequents.

2. Formulas in sequents are formulas in the context of Boolean programs, as
defined earlier.

3. If the Boolean program contains a definition of the form f(p) := A(p), the
new LK rules

f : left
A(φ), Γ −→ ∆

f(φ), Γ −→ ∆
and f : right

Γ −→ ∆,A(φ)
Γ −→ ∆, f(φ)

may be used, where φ are precisely as many formulas as p are variables.

10

4. (Substitution Rule) The new inference rule subst

∆(q, p) −→ Γ (q, p)
∆(φ, p) −→ Γ (φ, p)

may be used, where all occurrences of q have been substituted for.

Simultaneous substitutions can be simulated with several applications of
subst. The following is the main result of [22]:

Theorem 12. BPLK and G are polynomially equivalent for proofs of proposi-
tional tautologies.

7 Translation into BPLK

In this section we define a translation || · || of ΣB
∞ formulas in the language L3

A of
W 1

1 (i.e. with no third-order quantifiers) into families of propositional sequents
in the language of Boolean programs. Our main result is

Theorem 13. If φ(A) ∈ ΣB
∞ and if W 1

1 ` φ(A) then BPLK has polynomial-
sized proofs of the translations ||φ||; furthermore, these proofs are definable in
S1

2 and V 1 (or any theory defining polytime functions).

This will follow directly from lemma 17 below. The definability of the proofs
follows from the fact that they can actually be constructed in polynomial time.

First, we can extend the definitions of a Boolean Program and of a BPLK
proof as follows:

Definition 14. A Boolean semiprogram is like a Boolean program, except
we allow some function symbols used in the program to be undefined (“free”).

Definition 15. A BPLK-sequence is the same as a BPLK proof except that
the requirement that all function symbols occurring in the sequence be defined
by the accompanying Boolean program is dropped. Furthermore, the accompany-
ing Boolean program is instead a Boolean semiprogram. Any undefined function
symbol appearing in the sequence or the semiprogram is called “free”.

The following translation is defined for the larger class ΣB0 (including free
third-order variables) and is necessary for the main lemma in the proof:

Definition 16. Let φ(A1, ...,Aj , A1, ..., Ak) be ΣB0 in the language L3
A. For ev-

ery m1, ...,mk (lengths of the string objects) we construct a Boolean semiprogram
Pm1,...,mk
φ and a formula ||φ||m1,...,mk in the language of Boolean programs, with

the atoms p = (pi, i = 1, ..., k), where each pi = (pi,0, ..., pi,mk). By induction on
the structure of φ:

– If φ is an atomic formula s = t, t ≤ s or t ∈2 Ti then s and t are first-order
terms with no free first-order variables and refer only to the length of strings,
which is known. They can be evaluated and ||φ||m1,...,mk is a constant.

11

– The cases where φ is formed with a propositional connective are trivial and
we omit the details.

– If φ is the atomic formula Ai ∈3 Aj then ||φ||mi := gAj (pi,0, ..., pi,mi).
Pmiφ := ∅. The intention is that gAj be a free function symbol and we shall
be careful not to add a definition for any function symbol of this form to our
Boolean semiprograms. Furthermore, this is the only case in the construction
where a free function symbol is produced.

– If φ is ∃x ≤ tψ(x) then ||φ||m1,...,mk :=
∨
n≤t ||ψ(n)||m1,...,mk (φ(n) is

φ(x)[s/x] where s is a constant term of value n, say

n︷ ︸︸ ︷
1 + ...+ 1). Pm1,...,mk

φ :=
Pm1,...,mk
ψ .

– If φ is ∀x ≤ tψ(x) then ||φ||m1,...,mk :=
∧
n≤t ||ψ(n)||m1,...,mk . Pm1,...,mk

φ :=
Pm1,...,mk
ψ .

– If φ is ∃X ≤ tψ(X) then ||φ||m1,...,mk := fφ(p) and Pm1,...,mk
φ is as follows:

f lφ,0(p, q0, ..., ql) := ||ψ||m1,...,mk,l

for each l ≤ t.

f lφ,i(p, qi, ..., ql) := f lφ,i−1(p, 0, qi, ..., ql) ∨ f lφ,i−1(p, 1, qi., , , .ql)

for each l ≤ t and i ≤ l + 1.

fφ(p) :=
∨
l≤t

f lφ,l+1(p).

– The case where φ is ∀X ≤ tψ(X) is symmetric to the previous one.

It is clear that for fixed φ, the size of ||φ||m1,...,mk is polynomial in m1., , , .mk.
Whenever we talk of BPLK proofs or BPLK-sequences involving translations of
this form, we shall insist that the associated Boolean (semi-)program extend the
(semi-)program resulting from the translation.

The following lemma is the main lemma of the proof. In the previous section,
since it is not possible to translate a general ΣB1 formula into the language of
BPLK, we defined POWOs and used them to witness a sequent containing third-
order quantifiers. Similarly, in the lemma below we shall translate sequents with
third-order quantifiers as if those third-order variables were free, and then show
that BPLK can prove the existence of a function symbol witnessing the sequent
in much the same way. This aspect of the statement of the lemma is greatly
simplified compared to the analogous lemma in [17], where to talk about an
arbitrary witness to the antecedent of the sequent, the authors stated the lemma
with arbitrary formulas of the appropriate class substituted for the third-order
variables.

Since formulas in the proof are not all guaranteed to be strict ΣB1 , due to the
slightly more complicated induction scheme in W 1

1 , the translations used in the
lemma are actually translations of the equivalent form given by the replacement
theorem (i.e. with the third-order quantifier moved to the front).

12

Lemma 17. Let LK3 −W 1
1 ` Γ −→ ∆ where Γ

⋃
∆ ⊂ ∀2ΣB1 , i.e.

Γ = {∀Ai ≤ si∃Aiγi(Ai,Ai,B, B, b)} and

∆ = {∀Ci ≤ ti∃Ciδi(Ci, Ci,B, B, b)},

with {γi}
⋃
{δi} ⊂ ΣB0 , and although we write for simplicity the initial string and

third-order quantifiers for each formula, in fact for some of the formulas either
the initial string quantifier or both initial quantifiers may be absent.

Then for each m1, ...,mk and n1, ..., nl there are function symbols hm,ni and
BPLK-sequences with endsequents

..., ||∀Aiγi(Ai,A[Ai]
i ,B, B, n)||m1,...,mk , ...

−→ ..., ||∀Ciδi(Ci, C[Ci]
i ,B, B, n)||m1,...,mk [hm,ni /gCi], ...

where hm,ni are called witnessing function symbols and are not free, but may
be defined in terms of free function symbols (in particular, gAi). Furthermore,
these sequences have size polynomial in m1, ...,mk and n1, ..., nl.

The notation ...[hm,ni /gCi] in the succedent means that one should first per-
form the translation, and then substitute function symbol hi for the free symbol
gCi in the result.

Proof. We show the existence of the desired BPLK-sequence by induction on the
number of sequents in the W 1

1 proof, in a manner very similar to the witnessing
theorem of the previous section. The witnessing function symbols of the present
lemma are analogous to POWOs.

Base Case: This is trivial for initial sequents and the witnessing function
symbol, if required, is defined to be the constant false predicate. For translations
of axioms B1-B12, L1, L2 and instances of ΣB0 -2COMP, it follows from the
analogous result for V 1

1 and Extended Frege. For translations of instances of
ΣB0 -3COMP, the witnessing function symbol has defining formula identical to
the comprehension formula, and then the translation of the instance is proved
using the introduction rule for this symbol followed by repeated substitutions
and ∧ : right inferences.

Induction Step: There are cases depending on the final inference of the W 1
1

proof:

1.-5. Weakening, Exchange, introduction of ¬, ∨ on the right and ∧ on the left;
Contraction, introduction of ∨ on the left and ∧ on the right; introduction
of first-, second- and third- order quantifiers:
These cases are all straightforward and are omitted.

6. Cut, Induction:
The cut rule is handled by defining new witnessing function symbols for
the conclusion by cases, using the witnessing function symbol for the cut
formula. For induction this procedure is iterated as many times as the value
of the induction bound.

13

For example, if the cut formula is ∀Ci ≤ ti∃Ciδi(Ci, Ci), then a new wit-
nessing function symbol hj for ∀Cj ≤ tj∃Cjδj(Cj , Cj) would be defined as
follows, where h′j is the witnessing function symbol for the hypothesis with
the cut formula on the right, and h′′j that for the hypothesis with the cut
formula on the left:

hj := (||δj(Cj , C
[Cj]
j)||[h′j/gCj] ∧ hj) ∨ h′′j (hi).

ut

7.1 Consistency and Polynomial Simulation

Now Cook [12] and later others [15], [17], [14], etc. showed that some bounded
arithmetic theories can prove the consistency of related propositional proof sys-
tems, and furthermore that any proof system whose consistency can be proved
in the theory can be polynomially simulated by the related proof system. For
completeness we mention the analogous results for W 1

1 and BPLK.
Let BPTAUT(X) be a formula stating that the string X codes a tautological

propositional formula in the language of Boolean programs, as follows: “for any
assignment to the free variables, there exists a transcript of the exponential-
length computation of the Boolean function symbol terms occurring in the for-
mula such that the resulting truth-values satisfy the formula”. Clearly a ΣB1
formula will suffice. Let PrfBPLK(X,Y) be a ΣB0 formula stating that X codes a
BPLK-proof of the formula coded by Y . Then

Theorem 18.

W 1
1 ` ∀X,Y [PrfBPLK(X,Y) ⊃ BPTAUT(Y)]

The formula in the theorem is called RFN(BPLK).

Proof (Proof Sketch). By induction on the length of the proof, similar to the
witnessing theorem, a transcript is constructed, for each assignment, of evaluat-
ing the formula at that assignment. ut

The next thing to show would be that if P is a proof system whose consistency
can be proved in W 1

1 , i.e. W 1
1 ` RFN(P), then BPLK polynomially simulates

P . For U1
2 , what is known is actually the weaker statement that if U1

2 proves
i−RFN(P), which is the consistency of P for Σq

i formulas, then G polynomially
simulates P for proofs of those formulas. An analogous statement is almost
certainly true of W 1

1 and BPLK simply because BPLK polynomially simulates G,
and because W 1

1 and U1
2 are most likely related by an RSUV-style isomorphism.

Of more interest is the statement for RFN(P), but this formula is likely not
ΣB0 for interesting proof systems (G or even BPLK, for instance), and so the
usual techniques do not seem to apply due to the expressibility of formulas in
the language of BPLK. A proof system with more expressive formulas, however,
would be a candidate for this kind of statement. See the open problems for
details.

14

8 Open problems

Several future directions are indicated. First of all, one motivation for the defi-
nition W 1

1 was to simplify the axioms as much as possible, yet we were unable
to limit induction to strict ΣB1 formulas. One problem, then, is to prove the re-
placement theorems of W 1

1 with this more restricted induction. There does not
seem to be any good reason why this should not be possible. On the other hand,
Cook and Thapen [11] have recently used KPT-like witnessing theorems to show
independence of certain replacement schemes from various theories of bounded
arithmetic, and their techniques may apply in this case.

Next, there are some unresolved technical issues regarding BPLK: The most
pressing is to eliminate the substitution rule (analogously to in G) but at least
the current proof of BPLK’s p-equivalence to G seems to rely on this rule in an
essential way. See [21] for details.

Another idea is to extend W 1
1 to obtain theories for higher complexity classes.

For example, by analogy to V 1
2 , extending the induction in W 1

1 to full induction
on the strings should yield a theory for EXPTIME, but this would be inelegant to
state (although a more natural formulation may exist). Nevertheless, it should
be possible to obtain theories for each level of the exponential-time hierarchy
in this way, and with more work, for the linear-exponential-time hierarchy and
others.

Finally, the idea of having free function symbols in a BPLK proof seems
quite general and suggests a direction for even stronger proof systems obtained
by allowing function symbol quantifiers in a new kind of BPLK proof. Indeed,
this would seem to be a modern version of the Protothetic of Stanis law Leśniewski
[18] and would hopefully match the stronger theories envisaged in the previous
paragraph.

9 Acknowledgment

Many thanks to Stephen Cook for countless helpful discussions on this topic.
Thanks also to the reviewers for several important comments.

References

[1] S. Buss. Bounded Arithmetic. Bibliopolis, Naples, 1986.
[2] Samuel Buss, Jan Kraj́ıček, and Gaisi Takeuti. On provably total functions in

bounded arithmetic theories Ri3, U i2 and V i2 . In Peter Clote and Jan Kraj́ıček,
editors, Arithmetic, proof theory and computational complexity, pages 116–61. Ox-
ford University Press, Oxford, 1993.

[3] Samuel R. Buss. Relating the bounded arithmetic and polynomial time hierar-
chies. Annals of Pure and Applied Logic, 75(1–2):67–77, 12 September 1995.

[4] Samuel R. Buss, editor. Handbook of Proof Theory. Elsevier Science B. V., Ams-
terdam, 1998.

[5] Samuel R. Buss. Polynomial-size frege and resolution proofs of st-connectivity
and hex tautologies. Typewritten manuscript, 2003.

15

[6] Mario Chiari and Jan Kraj́ıček. Witnessing functions in bounded arithmetic and
search problems. The Journal of Symbolic Logic, 63(3):1095–1115, September
1998.

[7] P. Clote and G. Takeuti. Bounded arithmetic for NC, ALogTIME, L and NL.
Annals of Pure and Applied Logic, 56(1–3):73–117, 29 April 1992.

[8] S. Cook and A. Kolokolova. A second-order system for polytime reasoning using
Grädel’s theorem. In 16th Annual IEEE Symposium on Logic in Computer Science
(LICS ’01), pages 177–186, Washington - Brussels - Tokyo, June 2001. IEEE.

[9] S. A. Cook. CSC 2429S: Proof Complexity and Bounded Arithmetic. Course
notes, URL: ”http://www.cs.toronto.edu/∼sacook/csc2429h”, Winter 2002.

[10] Stephen Cook and Michael Soltys. Boolean programs and quantified propositional
proof systems. Bulletin of the Section of Logic, 28(3), 1999.

[11] Stephen Cook and Neil Thapen. The strength of replacement in weak arithmetic.
In LICS04, 2004. To appear.

[12] Stephen A. Cook. Feasibly constructive proofs and the propositional calculus
(preliminary version). In Conference Record of Seventh Annual ACM Symposium
on Theory of Computing, pages 83–97, Albuquerque, New Mexico, 5–7 May 1975.

[13] Stephen A. Cook. Relating the provable collapse of P to NC1 and the power
of logical theories. DIMACS Series in Discrete Math. and Theoretical Computer
Science, 39, 1998.

[14] Jan Kraj́ıček. On Frege and Extended Frege proof systems. In P. Clote, J. Remmel
(eds.): Feasible Mathematics II, pages 284–319. Birkhäuser, Boston, 1995.

[15] Jan Kraj́ıček and Pavel Pudlák. Quantified propositional calculi and fragments
of bounded arithmetic. Zeitschr. f. Mathematikal Logik u. Grundlagen d. Mathe-
matik, 36:29–46, 1990.

[16] Jan Kraj́ıček, Pavel Pudlák, and Gaisi Takeuti. Bounded arithmetic and the
polynomial hierarchy. Annals of Pure and Applied Logic, 52(1–2):143–153, 1991.

[17] Jan Kraj́ıček and Gaisi Takeuti. On bounded Σ1
1 polynomial induction. In S. R.

Buss and P. J. Scott, editors, FEASMATH: Feasible Mathematics: A Mathematical
Sciences Institute Workshop, pages 259–80. Birkhauser, 1990.

[18] Stanis law Leśniewski. Grundzüge eines neunen Systems der Grundlagen der Math-
ematik. Fundamenta Mathematicae, 14:1–81, 1929.

[19] Alexander A. Razborov. An equivalence between second order bounded domain
bounded arithmetic and furst order bounded arithmetic. In Peter Clote and Jan
Kraj́ıček, editors, Arithmetic, proof theory and computational complexity, pages
247–77. Oxford University Press, Oxford, 1993.

[20] Stefan Reisch. Hex ist PSPACE-vollständig. Acta Informatica, 15:167–191, 1981.
[21] Alan Skelley. Relating the PSPACE reasoning power of Boolean programs and

quantified Boolean formulas. Master’s thesis, University of Toronto, 2000. Avail-
able from ECCC in the ’theses’ section.

[22] Alan Skelley. Propositional PSPACE reasoning with Boolean programs versus
quantified Boolean formulas. In ICALP, volume 3142 of Lecture Notes in Com-
puter Science, pages 1163–1175. Springer, 2004.

[23] Michael Soltys. A model-theoretic proof of the completeness of LK proofs.
Manuscript, available on author’s web page, 1999.

[24] Gaisi Takeuti. RSUV isomorphism. In Peter Clote and Jan Kraj́ıček, editors,
Arithmetic, proof theory and computational complexity, pages 364–86. Oxford Uni-
versity Press, Oxford, 1993.

[25] D. Zambella. Notes on polynomially bounded arithmetic. The Journal of Symbolic
Logic, 61(3):942–966, 1996.

16

A Appendix

A.1 Full proof of Theorem 2

Proof. ←: This direction of the equivalence, namely that for φ(X, y,X) ∈ ΣB1

W 1
1 ` ∃X∀X ≤ yφ(X, y,X [X]) ⊃ ∀X ≤ y∃Xφ(X, y,X)

is immediate.
→: The existence of a proof in W 1

1 of this direction of the equivalence is itself
proved by structural induction on φ. The base case of the induction is when φ
is ΣB0 . let ψ be ∀X ≤ y∃Xφ(X, y,X). Let θ(c) be the formula

∀X ≤ (y−· c)∃X∀Y ≤ cφ(X _ Y, y,X [Y]).

θ(0) is a simple logical consequence of ψ, and W 1
1 ` ψ∧ θ(c) ⊃ θ(c+ 1) by use of

ΣB0 -3COMP to combine two third-order objects (coding the two arrays of third-
order objects for all strings of length smaller than y starting with X _ 0 and
X _ 1 respectively) into one third-order object coding the array for all strings
of length smaller than y starting with X. Thus W 1

1 ` ψ ⊃ θ(y) by ∀2ΣB1 -IND,
and clearly W 1

1 ` θ(y) ⊃ ∃X∀X ≤ yφ(X, y,X [X]).
Now let k > 0 and assume the present theorem holds for every member of ΣB1

with fewer than k third-order quantifiers. Let φ ∈ ΣB1 have exactly k third-order
quantifiers and assume without loss of generality that φ is in prenex normal
form. (Every formula is provably in W 1

1 equivalent to one in prenex normal
form). Then every third-order quantifier in φ is existential, and φ(X, y,X) is of
the form Q1ã1...Qnãn∃Zψ(ã1, ..., ãn,Z, X, y,X) for some n and ψ with k − 1
existential third-order quantifiers. Each Qi is a bounded first- or second-order
quantifier and the corresponding ãi is a variable of the appropriate sort. By
several applications of the inductive hypothesis we prove

Q1ã1...Qnãn∃Zψ(ã1, ..., ãn,Z, X, y,X)

⊃ ∃ZQ1ã1...Qnãnψ(ã1, ..., ãn,Z [ã1]...[ãn], X, y,X). (1)

The inductive hypothesis is not needed for those Qi that are existential, nor in
that case need we add [ãi] to the formula on the right of the equivalence, yet it
is harmless and simplifies matters to do so.

Now with ΣB0 -3COMP we can prove

∃X∃ZQ1ã1...Qnãnψ(ã1, ..., ãn,Z [ã1]...[ãn], X, y,X)

⊃ ∃ZQ1ã1...Qnãnψ(ã1, ..., ãn,Z [1][ã1]...[ãn], X, y,Z [2]) (2)

and thus piecing together implications 1 and 2 we obtain

∀X ≤ y∃Xφ(X, y,X) ⊃ ∀X ≤ y∃ZQ1ã1...

Qnãnψ(ã1, ..., ãn,Z [1][ã1]...[ãn], X, y,Z [2]). (3)

17

We may now appeal to the inductive hypothesis once more and apply the current
theorem to the right-hand side of the previous implication, which results in

∀X ≤ y∃Xφ(X, y,X) ⊃ ∃Z∀X ≤ yQ1ã1...

Qnãnψ(ã1, ..., ãn,Z [X][1][ã1]...[ãn], X, y,Z [X][2]).

By applying ΣB0 -3COMP we can separate in two along the second “co-ordinate”
the object Z, quantified in the right-hand side:

∀X ≤ y∃Xφ(X, y,X) ⊃ ∃X∃Z∀X ≤ yQ1ã1...

Qnãnψ(ã1, ..., ãn,Z [X][ã1]...[ãn], X, y,X [X]).

The formula

∃X∀X ≤ yQ1ã1...Qnãn∃Zψ(ã1, ..., ãn,Z, X, y,X [X])

is a logical consequence of the right-hand side of the previous implication and
so we have proved

∀X ≤ y∃Xφ(X, y,X) ⊃ ∃X∀X ≤ yφ(X, y,X [X]),

as required. ut

A.2 Cases omitted from the proof of lemma 9

1. Weakening:
The POWOs from the hypothesis are modified to take any extra arguments
the new formula introduces (free variables or an existential third-order quan-
tifier in the antecedent) and to ignore them. If the formula is added to the
succedent and contains a third-order quantifier, a constant-false predicate
taking the appropriate arguments is added as the new POWO for the con-
clusion.

2. Contraction:
If the contraction occurs in the succedent on a formula φ with a third-order
quantifier, then one less POWO is required for the conclusion. Construct a
new POWO for φ that evaluates φ on each original POWO in turn (each
evaluation is computable in PSPACE) and then behaves like whichever sat-
isfies φ, if any. This computation requires only a constant number of bits
more than the maximum of the space used by the two original POWOs.
If the contraction occurs in the antecedent on a formula φ with a third-
order quantifier, then all original POWOs must be modified to accept one
less oracle argument. Each is modified to query the original POWO but now
passing the oracle argument from φ twice.

3. Exchange, introduction of ¬, ∨ on the right and ∧ on the left:
These rules can neither introduce nor eliminate free variables. No third-
order quantifiers are added or removed, and no formula with a third-order
quantifier is changed, so the POWOs from the hypothesis are used without
modification for the conclusion.

18

4. Introduction of ∨ on the left and ∧ on the right:
These inferences have two hypotheses, and the principal formula is ΣB0 and
so needs no POWO. Any side formula that is not ΣB0 will have a POWO for
each hypothesis. As in the case of contraction, the POWO for such a formula
in the conclusion evaluates the formula on each POWO from the hypotheses,
and then simulates whichever satisfies it, if any.

5. First- or second-order ∀ : left and ∃ : right:
The conclusion of such an inference may have less free variables than the
hypothesis. Taking for example an ∃ : right inference with principal formula
∃Xφ(X) with the corresponding formula in the hypothesis being φ(B) and
B not free in the conclusion, all POWOs for the hypothesis will have B as
an argument. If this argument is fixed to the empty string, the resulting
set of POWOs will suffice for the conclusion of the inference (unless φ 6∈
ΣB0 , addressed below). ∀ : left is similar and in the first-order cases one
analogously substitutes 0 for eliminated variables.
If φ 6∈ ΣB0 then the principal formula of the inference is ∀Ai ≤ si∃Aiγi(Ai,Ai,B, B, b)
and occurs in the antecedent. In addition to the procedure above (substi-
tuting the empty string for the eliminated free string variable), the POWOs
must be modified so that any query Ai(X) becomes Ai(λ,X), adding the
empty string as an additional argument, since in the conclusion this oracle
argument to the POWOs is two-place.

6. First- or second-order ∀ : right and ∃ : left:
As in the previous case free variables are eliminated by such inferences. How-
ever, it is not sufficient to substitute a dummy value for them as above since
such a value would not witness the new quantifier properly. For example, if
the new quantifier is universal on the right and the principal formula is false
under some assignment, the POWOs (from the hypothesis) for the remain-
ing formulas expect a value falsifying the principal formula. This value is
found by exhaustive search, evaluating the formula on each possible value of
the new quantifier (subject to the bound). The POWOs for the conclusion
perform this search before querying the POWOs from the hypothesis. The
extra search is clearly carried out in polynomial space.
If the principal formula is not ΣB0 , then it is ∀Ci ≤ ti∃Ciδi(Ci, Ci,B, B, b)
and is in the succedent. In this one special case the POWO for δi retains the
same number of arguments in the conclusion, due to the string quantifier
preceding the third-order quantifier. The POWO for δi alone is not modified
as above, but instead passes the new argument, Ci, to the POWO from the
hypothesis, in place of the eliminated free variable.

7. Third-order ∃ : left:
The principal formula is ∃Aiγi(Ai,Ai,B, B, b). All POWOs from the an-
tecedent are modified to accept oracle argument Ai instead of the free third-
order variable eliminated by the quantifier introduction.

8. Third-order ∃ : right:
If the eigenvariable B occurs in the lower sequent, then the POWO for the
principal formula is defined by

f(B, B, b,A, Z)↔ B(Z)

19

If not, analogously to the lower-order cases of this rule, the new quantifier
is witnessed by any value and thus the POWO for the new quantifier may
ignore its arguments and always return false. Furthermore, a constant-false
predicate is supplied in the place of the eliminated variable as an argument
to the other POWOs from the hypothesis.

A.3 Cases omitted from the proof of lemma 17

1. Weakening, Exchange, introduction of ¬, ∨ on the right and ∧ on the left:
These cases are all either structural rules or not applicable to formulas with
third-order quantifiers and thus the same rule is applied in the BPLK proof.
In the case of weakening, the conclusion may have more free variables than
hypothesis. In that case new witnessing function symbols are defined to
ignore the new arguments and compute the same value as the old ones, and
these must be substituted for the old ones (by induction on the structure
of the formula it can easily be seen that BPLK can prove each formula
equivalent to one with the new function symbols instead).

2. Contraction, introduction of ∨ on the left and ∧ on the right:
The only obstacle to using the identical propositional rule is that the prin-
cipal formula of a contraction inference and the side formulas of the two-
hypothesis inferences have two ancestors that will in general be witnessed
by different witnessing function symbols (if they occur in the succedent).
The solution is to define new witnessing function symbols by cases and then
for each affected formula prove that the translation witnessed by the new
function symbol implies the disjunction of the translations witnessed by the
two old symbols.
For example, a side formula ∀Ci ≤ ti∃Ciδi(Ci, Ci) with witnessing function
symbols h′i and h′′i would have new witnessing function symbol

hi := (||δi(Ci, C[Ci]
i)||[h′i/gCi] ∧ h

′
i) ∨ (||δi(Ci, C[Ci]

i)||[h′′i /gCi] ∧ h
′′
i)

in the conclusion.
3. Introduction of a first-order quantifier:

These cases are handled by the introduction of the appropriate propositional
connective (disjunction or conjunction). In the case of a universal quantifier
on the right or of an existential one on the left, proofs for each value of
the free variable are concatenated together. In the other cases the proof for
the hypothesis is first extended by weakening to add the other disjuncts
(conjuncts on the left).

4. Introduction of a second-order quantifier:
These cases are handled the same way as in the simulation of G by BPLK,
in that essentially a big disjunction or conjunction is constructed over all
values of a set of propositional variables.
Additionally, if the principal formula is ∀Ci ≤ ti∃Ciδi(Ci, Ci), then more work
is needed. First, a new witnessing function symbol is defined as follows:

h′i(p, q) := (p = r ∧ hi(q))

20

where r are the propositional variables associated with Ci, p are precisely as
numerous as r and q are the same variables as the arguments to the original
hi. Then, a derivation is inserted proving

||δi(Ci, Ci)||[hi/gCi] −→ ||δi(Ci, C
[Ci]
i)||[h′i/gCi].

The second-order quantifier introduction is then handled as usual.
5. Introduction of a third-order quantifier:

These cases are easy: On the left, this amounts to renaming the arguments to
the witnessing function symbols (from free variables to a free function sym-
bol) and on the right it means producing a new witnessing function symbol
defined equivalent to the existing free function symbol for that variable and
substituting it into the sequent.

