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Abstract: We present a new method for proving rank lower bounds for the cutting planes
procedures of Gomory and Chvátal (GC) and Lovász and Schrijver (LS), when viewed
as proof systems for unsatisfiability. We apply this method to obtain the following new
results: First, we prove near-optimal rank bounds for GC and LS proofs for several promi-
nent unsatisfiable CNF examples, including random kCNF formulas and the Tseitin graph
formulas. It follows from these lower bounds that a linear number of rounds of GC or LS
procedures when applied to the standard MAXSAT linear relaxation does not reduce the
integrality gap. Secondly, we give unsatisfiable examples that have constant rank GC and
LS proofs but that require linear rank Resolution proofs. Thirdly, we give examples where
the GC rank is O

�
logn � but the LS rank is linear. Finally, we address the question of size
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versus rank: we show that, for both proof systems, rank does not accurately reflect proof
size. Specifically, there are examples with polynomial-size GC/LS proofs, but requiring
linear rank.

1 Introduction

Integer linear programming is the problem of optimizing a linear objective function over the integral
points of a given (bounded or unbounded) polyhedron. In his seminal paper, Khachian [30] proposed
the ellipsoid method for (nonintegral) linear programming, showing that the optimization problem over
a polytope is polytime. The additional integrality constraints change the complexity of the problem
dramatically: it is well-known that general integer LP is NP-hard. In both the unrestricted and the
integral cases, one can also look at feasibility problems instead of at optimization problems. Here, the
question is whether a polytope given by a set of linear inequalities is empty. The feasibility problem
is closely related to the linear optimization problem, and here too the nonintegral version (checking
whether the polytope contains any points at all) is easy while the integral one is NP-complete.

Cutting planes methods for integer linear programming are instrumental in bridging the gap between
the true, computationally complex structures (the integral solutions to the problem, or, rather, their
convex hull) and their relaxed counterpart, which are generally simple polytopes that contain the convex
hull of the integral solutions but also contain other, extraneous nonintegral points. These are methods in
which the initial, relaxed polytope P is transformed through a sequence of ever-decreasing (contained)
polytopes to the integral hull of P, i.e. the smallest polytope containing the integral points of P. In
this sequence, a polytope is produced from its predecessor by using the integrality constraint locally.
A simple example of this kind of reasoning is that if one knows that a certain coordinate is at least β ,
then a stronger conclusion, that this coordinate is at least � β � , is valid for the integral hull of P. For
optimization problems this sequence of polytopes produces a sequence of optimal values that get closer
and closer to the desired optimal integral solution, and for feasibility problems, the sequence terminates
with the empty polytope if and only if the initial polytope contained no integral points. In either case,
then, it seems natural to view this sequence as a proof, either of optimality or of infeasibility.

From the complexity standpoint, there are three important desirable properties of the above se-
quence: (i) the local operations transforming a polytope to its successor are efficient (ii) the length of
the sequence is small, and (iii) there is an efficient algorithm producing the sequence. Properties (i) and
(ii) guarantee a small size proof, while (iii) guarantees that we can find the proof efficiently if it is small.

In this paper, we study several prominent cutting planes methods: Gomory-Chvátal cuts [9, 21],
and a collection of “matrix-cut” or “lift-and-project” operations defined by Lovász and Schrijver [32].
These methods are currently among the most important techniques for solving or approximating a range
of NP-hard 0/1 optimization problems. There are two standard complexity measures of interest for these
procedures: rank and size. The size is the total number of cut operations that must be applied and the
rank is the total number of rounds of cut operations that must be applied. Rank, therefore, measures the
amount of inherent sequentialism in the proof.

Superpolynomial lower bounds on size for a cutting planes method are important since they show
that any algorithm that produces a cutting planes proof will not be polynomial-time. Superpolynomial
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size lower bounds are known for the Gomory-Chvátal cutting planes method [33]. There are three
distinct types of matrix cuts defined by Lovász and Schrijver, LS0, LS and LS � . Exponential lower
bounds have been proven for LS0, the weakest of these [14, 15]. For LS and LS � , no nontrivial size
bounds are known.

Rank is also a natural complexity measure when it comes to proofs. In some proof systems for
unsatisfiability, there is a natural rank-based procedure for generating a proof which is practical in certain
cases. For example, a rank-based method for Resolution is the familiar Davis-Putnam procedure [16],
and a rank-based method for the Polynomial Calculus is a variation on the Gröbner basis algorithm [12].
In both of these cases, it is important that it can be determined if there is a d-round/rank derivation in
time at most nO � d � . It turns out that matrix cut systems have a somewhat similar property and therefore
rank is a particularly interesting measure in this case. In [32] it was shown that for any polytope P, there
is an algorithm for optimizing over P � r � in time nO � r � , where P � r � is the polytope obtained by applying
r rounds of any of the LS methods and n is the total description size of the polytope P. Using similar
arguments it can be shown that the same is true when considering the feasibility question rather than
optimization for LS and LS0. It follows that there is a deterministic algorithm that can ”search through”
all LS proofs of rank d in time nO � d � . While this holds for other proof systems such as Resolution, it
is less obvious here because the number of faces in the rank-r polytope is not easily bounded, even for
small r.

1.1 Our Results and Context

Prior to this work some limitations on the rank-based application of the LS procedure to the problem
of approximating vertex cover were shown [2]. In this paper, we study rank-based limitations of all the
above-mentioned cutting planes methods both in the case of feasibilty for polytopes defined by unsatis-
fiable CNF formulas and unsatisfiable sets of mod-2 linear equations and in the case of the optimization
problems MAXSAT and MAXLIN.

We present a new method for proving rank lower bounds that applies to both Gomory-Chvátal cutting
planes and matrix-cut proof systems. This method can be viewed as a game which produces a tree of
(nonintegral) points in the polytope, whose depth is a lower bound on the rank of the polytope in all of the
above proof systems. This game allows us to prove asymptotically tight rank bounds for many classes
of unsatisfiable boolean formulas, especially those which contain a certain measure of expansion, like
random kCNFs and the Tseitin principle on expander graphs. The idea of playing a game on expanding
CNFs to achieve proof-complexity lower bounds was largely pioneered by [6].

Result 1: The following holds for GC, LS0, LS and LS � :
(1) The Tseitin tautology on a graph H has rank at least

�
c � 2 � n � 2, where c is the edge-expansion of H;

(2) Let k � 5. There exists a constant c such that, for all ∆ � c, a random set of ∆n k-mod-2 equations
over n variables requires rank Ω

�
n � with high probability;

(3) Let k � 5. There exists a constant c such that, for all ∆ � c, a random set of ∆n k-clauses over n
variables requires rank Ω

�
n � with high probability.

Prior to our result, the only high-rank bounds for unsatisfiable boolean examples were for the clique-vs-
coloring ([33]) formulas in Gomory-Chvátal cutting planes, and for the PHP in LS ([22]). Concurrently
with this work, however, [5] examined GC-rank and, in particular, proved a tight lower bound for the
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PHP. Subsequent to our result, however, [1] improved the above result for the LS systems to require only
k � 3 in parts (2) and (3).

The integrality gap of a linear relaxation is the ratio of the optimal value of the relaxation to the
optimum over all integer points. If a linear relaxation of a boolean optimization problem has a small in-
tegrality gap, then it is feasible to approximate the optimum of the original problem by solving the linear
relaxation. We show that there are MAX-k-SAT and MAX-k-LIN examples where cutting planes proce-
dures are not helpful in the sense that after linearly-many rounds, the integrality gap of the relaxation of
the problem is still as big as possible.

Result 2: Let k � 5 and fix any ε � 0. Let F be a set of Θ
�
n � random k-mod-2 equations. The relaxation

that results from applying Ω
�
n � rounds of GC, LS0, LS or LS � to the standard MAX-k-LIN relaxation

of F has integrality gap at least 2 � ε with high probability. Similarly, let C be a set of Θ
�
n � random

k-clauses. The relaxation that results from applying Ω
�
n � rounds of GC, LS0, LS or LS � to the standard

MAX-k-SAT relaxation of C has integrality gap at least 2k

2k � 1 � ε with high probability.

To the best of our knowledge there were no results of this form (see also [2, 18]) that give hardness of
approximation for more than a logarithmic-number of rounds. Again, subsequently, [1, 37] has proven
linear rank lower bounds in the LS systems for various optimization problems, including MAX-3-SAT
and MAX-3-LIN. All of these results rule out a particular type of subexponential-time approximation
algorithm that works by applying a sublinear number of rounds of an LS system to the obvious LP
relaxation to generate an LP with small integrality gap. As noted by [1], many recent successes in
approximation algorithms can be viewed as applications of this algorithm. In particular, the SDP relax-
ations of the Goemans-Williamson maxcut approximation ([20]) and of the Arora-Rao-Vazirani sparsest
cut approximation ([4]) are implied by a constant number of rounds of LS � . While there are optimal
PCP results that rule out approximations of MAX-k-SAT and MAX-k-LIN by general algorithms [27],
these results rely on unproven complexity assumptions—the stronger the time lower bound desired, the
stronger the assumption must be. Our results are unconditional.

Finally, we give examples separating LS-, GC-, and Resolution-rank, and examples with polynomial-
size Resolution/GC/LS proofs, that require large rank.

Result 3: There are examples of unsatisfiable CNFs that have
(1) Constant LS and GC-rank, but linear Resolution-rank;
(2) Constant LS � -rank, Θ

�
log n � GC-rank, and linear LS-rank.

Result 4: There are examples of unsatisfiable CNFs that have
(1) Polynomial-size GC-proofs, but linear GC-rank;
(2) Polynomial-size LS-proofs, but linear LS-rank.

The rest of the paper is organized as follows. In Section 2 we define the Resolution/GC/LS proof
systems, and give some background. In Section 3 we provide a general scheme for proving rank lower
bounds. In Section 4 we prove rank lower bounds when the constraints are expanding. Section 5 deals
with integrality gaps that are based on our rank lower bounds. Section 6 gives various separation exam-
ples for LS-, GC-, and Resolution-rank. Section 7 gives an example where both the Resolution/GC/LS
proof size and rank are polynomial. In Section 8 we describe an algorithm for showing the unsatisfiabil-
ity of formulas of LS-rank d in time nO � d � based on the results of [32]. This section is largely expository
in that we suspect the results were known, but not written down in the generality we supply.
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2 Definitions and Background

Resolution: Resolution proofs work with clauses, viewed as sets of literals. If C and D are sets of literals,
then the clause

�
C
�

D � is derivable from the clauses
�
x
�

C � and
���

x
�

D � by the Resolution rule. A
resolution refutation of a CNF formula f is a sequence of clauses C1 ��������� Cq such that each clause is
either a clause of f , or follows from two previous clauses by the resolution rule, and the final clause,
Cq, is the empty clause. Let S be a resolution refutation of a CNF formula f , represented as a directed
acyclic graph (with nodes corresponding to clauses). The size of S is the number of clauses in S; the
depth or rank of S is the length of the longest path in the directed acyclic graph. The resolution size (or
depth) of f is the minimal size (depth) over all resolution refutations of f . S is tree-like if the directed
acyclic graph is a tree.

Proof systems based on linear programming: We describe several proof systems for systems of linear
inequalities where the values of the variables are restricted to be boolean. In these proof systems, we
begin with a polytope P defined by linear inequalities associated with the logical formulation of the
problem. In the more common case of CNF-formulas we convert clauses to inequalities in the usual
way, i.e.

τ
���

1
�
	�	�	�� �

k ����
 τ ���
1 ��� 	�	�	 � τ

���
k � � 1 � �

where each
�

i is a literal and τ
�
x ��� x and τ

���
x ��� 1 � x for each variable x. For example, τ

�
x
� �

y
�

z ���
x � �

1 � y ��� z � 1. Notice that the 0 � 1 solutions to these inequalities are exactly the satisfying boolean
assignments to the formula. Relaxing to 0 � xi � 1 makes the set of solutions a polytope whose integral
points are the solutions to the original problem. The following fact is immediate, but will be important
later:

Proposition 2.1. Let C be a clause with at least two variables. Then τ
�
C � is a linear inequality that is

satisfied if at least two of its underlying variables have value 1
2 .

We begin by describing Gomory-Chvátal (GC) cutting planes. This proof system is sometimes
referred to as simply Cutting Planes in the proof complexity literature. In what follows, let a i ��� n and
let x be a vector of n variables. By ��� , we mean the standard inner-product. Consider the following two
rules: (1) (Linear combinations) From linear inequalities � a1 � x � � b1 � 0 ��������� � ak � x � � bk � 0, derive
∑k

i � 1

� � λiai � x � � λibi � � 0, where λi are positive rational constants; (2) (Rounding) From � a � x � � λ � 0
derive � a � x � � � λ � � 0, provided that the coordinates of a are integers. Without loss of generality, we
can assume that a rounding operation is always applied after every application of rule (1), and thus we
can merge (1) and (2) into a single rule, called a GC cut.

Definition 2.2. A GC refutation for a set of linear inequalities f ��� f1 ��������� fm  is a sequence of linear
inequalities, g1 ��������� gq such that each gi is either an inequality from f , or an axiom (x � 0 or 1 � x � 0),
or follows from previous inequalities by a GC cut, and the final inequality gq is 0 � 1.

There are several cutting planes proof systems defined by Lovász and Schrijver, collectively referred
to as matrix cuts. These systems allow one to “lift” the linear inequalities to quadratic inequalities, and
then “project” back to linear inequalities using the fact that y2 � y for y � � 0 � 1  . Again, let ai �!� n and
let x be a vector of n variables. The basic intuition of the following systems is that, if � a i � x � � bi � 0 is
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y ��� 1 � 2 �

y � 1

z � 1 1 � z � 1

0 � 1

�
1 � y �	� � 1 � z �
� 1

�
1 � y ��� z � 1

2y � 1

y � � 1 � z ��� 11 � x � 1

y � z � 1

x � y � z � 1

Figure 1: A GC refutation

valid for the integral hull of P, then so are the inequalities
� � ai � x � � bi � x j � 0,

� � ai � x � � bi � x j � 0, and�
x2

j � x j ��� 0 for each j, since x j � � 0 � 1  . Of course, we can’t directly use these quadratic inequalities
because it is generally NP-hard to solve the optimization or feasibility problem over such constraints, but
it might be helpful, and is certainly valid, to add any linear inequality that is a positive linear combination
of them.

Definition 2.3. Given a polytope P 
 
 0 � 1 � n defined by � ai � x � � bi for i � 1 � 2 ��������� m:

(1) An inequality � c � x � � d � 0 is called an N-cut for P if

� c � x � � d � ∑
i � j

αi j

� � ai � x � � bi � x j

� ∑
i j

βi j

� � ai � x � � bi �
�
1 � x j �

� ∑
j

λ j

�
x2

j � x j � �

where αi j � βi j � 0 and λ j � � for i � 1 ��������� m, j � 1 ��������� n.

(2) A weakening of N-cuts, called N0-cuts can be obtained if, when simplifying to the linear term
� c � x � � d, we view xix j as distinct from x jxi.
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2

�
2y � 1 � � 1 � y �
� 0y2 � y � 0

y � 1

z � 1 1 � z � 1

0 � 1

�
1 � y �	� � 1 � z �
� 1

�
1 � y ��� z � 1

2y � 1

y � � 1 � z ��� 11 � x � 1

y � z � 1

x � y � z � 1

Figure 2: An LS refutation

(3) An inequality � c � x � � d is called an N � -cut if

� c � x � � d � ∑
i � j

αi j

� � ai � x � � bi � x j

� ∑
i j

βi j

� � ai � x � � bi �
�
1 � x j �

� ∑
j

λ j

�
x2

j � x j ��� ∑
k

� � hk � x ��� gk � 2 �
where again αi j � βi j � 0, λ j � � for i � 1 ��������� m, j � 1 ������� � n and gk � � hk � x � is a linear function
for k � 1 ��������� n � 1.

The operators N, N0 and N � are called the commutative, non-commutative and semidefinite opera-
tors, respectively. All three are collectively called matrix-cut operators.

Definition 2.4. A Lovász -Schrijver (LS) refutation for a set of linear inequalities f is a sequence of
inequalities g1 ������� � gq such that each gi is either an inequality from f or an N-cut for the polytope defined
by g1 ������� � gi � 1, and such that the final inequality is 0 � 1. Similarly, a LS0 refutation uses N0-cuts and
LS � uses N � -cuts.

Definition 2.5. Let � be one of the proof systems GC, LS, LS0 or LS � . Let f be an unsatisfiable set of
boolean inequalities and let S be a � -refutation of f , viewed as a directed acyclic graph. The inequalities
in S are represented with all coefficients in binary notation. Therefore, the size of such an inequality is
the sum of all the sizes of its coefficients. The size of S is the sum of the sizes of all inequalities in S; the

� -size of f is the minimal size over all � refutations of f .
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The complexity measure with which we are primarily concerned is rank. It is defined not only for
unsatisfiable sets of boolean inequalities, but for sets of linear inequalities in general.

Definition 2.6. For a set of linear inequalities L that define a polytope in � n , let PL � P � 0 �
L

be that

polytope. Given � � � GC � LS0 � LS � LS �  , let P � i �
L

denote the polytope defined by all inequalities that

can be derived in depth i from the initial inequalities in � . Clearly P � i � 1 �
L


 P � i �
L

. The rank of L (or PL)

is the minimal i such that P � i �
L

is the convex hull of the integral points in PL. The rank of a point x � � n

with respect to PL is the minimal i such that x �� P � i �
L

.

That the rank of any bounded polytope in any of these proof systems is finite is a well-known fact
([21, 9, 32]). Note that, if P contains no integral points, then the rank of the polytope is the maximum
rank of its points.

Note that in our definition of these cutting planes systems, we can derive a new inequality from
any number of previous inequalities in one step, whereas for Resolution, we are restricted to fanin-
two. However, Caratheodory’s theorem tells us that for any set of vectors V , any vector that is a positive
combination of vectors in V can be generated as a positive combination of dim

�
V � such vectors. Viewing

inequalities as vectors, we see that a GC cut is a positive combination of vectors in dimension n � 1
and an LS (respectively LS0, LS � ) cut is a positive combination of vectors in dimension n2 � n � 1.
Therefore, we can assume wlog that the fanin is at most n � 1 in GC and n2 � n � 1 in LS, and so the
rank and size would not increase significantly if instead our proof systems were defined to have fanin 2.

Definition 2.7. Let � 1 and � 2 be two refutation systems. We say that � 1 p-simulates � 2 if there is
a polynomial p such that, for every unsatisfiable formula f , size �

1

�
f � � p

�
size �

2

�
f � � , where size � �

f �
denotes the size of the minimum refutation of f in system � .

2.1 Alternative definitions

The above definitions of the cutting planes methods lead one to visualize the process syntactically, in a
way similar to most proof systems. It is often helpful, however, to look at the dual definitions, which
indicate which points remain after applying one round of each of the methods. In fact, this is the way
they are usually viewed in optimization.

In general, for a polytope P � 
 0 � 1 � n, we let P
�
be the points that remain after applying one round of

the cutting planes method in question.

Definition 2.8. Given a polytope P � 
 0 � 1 � n, the result of applying one round of GC cuts is

P
� � � x � P : � a � x � � � b � whenever a � � n � b ��� �

and � a � y � � b for all y � P  �
For the case of GC, it is not hard to see that for every polytope, P � 1 � � P

�
, and hence P � i � 1 � � �

P � i � � �
for every i � 0.

The dual definitions of the matrix-cut systems are most easily stated for the projective cone, P̄ �
� n � 1 , of a polytope P � 
 0 � 1 � n. That is,

P ��� �
a � a 	 w1 ������� � a 	 wn � : a � 0 and

�
w1 ������� � wn � � P � �
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If the coordinates of � n are x1 ������� � xn, we usually refer to this extra coordinate in P̄ as x0. Note that P
is exactly the intersection of P̄ with the hyperplane x0 � 1. Hence we will often refer to a point w ��
w0 � w1 ������� � wn � in P̄ � � 0̄  projected onto 
 x0 � 1 � . This simply means the point

�
w1 � w0 ������� � wn � w1 � � P.

Definition 2.9. (i) A point w �
� n � 1 is in P̄
�

for LS0 if there is an
�
n � 1 ��� �

n � 1 � matrix Y such that
Ye0 � �

eT
0 Y � T � diag

�
Y ��� w and, for all i, Yei � Ye0 � Yei � P̄.

(ii) A point w is in P̄
�
for LS if (i) holds with the extra constraint that Y is symmetric.

(iii) A point w is in P̄
�
for LS � if (ii) holds with the extra constraint that Y is positive semidefinite.

Definition 2.10. For any of LS, LS � , LS0, we define P
�
to be P̄

��� 
 x0 � 1 � .
To gain some intuition about definition 2.9, we prove the following useful fact:

Fact 2.11. Given a polytope P � 
 0 � 1 � n, after one round of LS0 we have

P
� �

n�
i � 1

conv
�
P
� 
 xi � 0 � � P � 
 xi � 1 ��� �

where conv
� � denotes the convex hull of its arguments.

Proof. Consider P̄ and some point w � P̄
�
. In the matrix Y , the point Yei (when projected to 
 x0 � 1 � ) is

a point in P
� 
 xi � 1 � because Yii � Y0i. Also, Ye0 � Yei is a point in P

� 
 xi � 0 � because Yi0 � Yii. The
fact that Ye0 � w forces w to be a convex combination of Yei and Ye0 � Yei, for all i.

For the other direction, consider a point w � �
n
i � 1conv

�
P
� 
 xi � 0 � � P � 
 xi � 1 ��� � Say w � �

1 �
λi � w0

i � λiw
1
i for each i, where w0

i � P
� 
 xi � 0 � , w1

i � P
� 
 xi � 1 � and 0 � λi � 1. It is easy to check that

the matrix with 0-th column � 1
w � and i-th column � λi

λiw
1
i
� fulfills the requirements of Definition 2.9.

To see that the dual definitions for the matrix cut systems are equivalent to the initial definitions (that
is, P
� � P � 1 � ) consult [14].

2.2 What’s known about complexity

By definition LS p-simulates LS0 and LS � p-simulates LS, and these simulations are rank preserving.
Moreover for unsatisfiable CNF formulas, GC, LS0, LS and LS � can all p-simulate Resolution and
this simulation is rank-preserving [13]. It has also been shown that GC can p-simulate small-weight
LS0 [28]. In terms of negative results for simulations, the propositional pigeonhole principle (PHP)
provides a family of unsatisfiable CNF examples requiring exponential-size Resolution proofs [25] but
with polynomial-size GC, LS0, LS and LS � proofs [13]. For GC and LS0, exponential size lower bounds
for one specific family of boolean examples are known [33, 15]. For LS and LS � , no superpolynomial
lower bounds are known.

Now let us review what is known with respect to rank. Every system of linear inequalities has a rank
n LS proof [32]. For GC, the rank of every polytope in the unit cube is at most O

�
n2 logn � [17], and

moreover there are examples requiring GC-rank more than n [17]. However for unsatisfiable examples,
the GC-rank is at most n [7]. For GC, linear rank bounds for unsatisfiable CNF examples were first
obtained in [10]; however, these examples have exponentially-many faces (inequalities) and thus the
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rank is still small in the input size. Linear rank bounds for GC (as a function of the input size) for
unsatisfiable CNF examples were first proven in [29], and also follow from the size bounds [33]. For
LS, a wealth of rank lower bounds are known for the non-empty or non-CNF case (see, for example,
[32, 19, 35]). Otherwise, [22] prove linear rank lower bounds for the PHP. In summary, the only known
high-rank, unsatisfiable CNF examples were the clique-vs-coloring formulas for GC and the PHP for
LS. In this paper, we prove rank bounds for all of these proof systems for many unsatisfiable CNFs
satisfying certain combinatorial conditions.

3 Proving Rank Lower Bounds

In what follows, we give methods for proving rank lower bounds for many natural, polysize sets L of
contradictory linear inequalities. These lower bounds follow by characterizing some of the points in
P � i �

L
that survive in P � i � 1 �

L
. We call these characterizations “protection lemmas,” because they argue that

certain points are protected from removal in the next round provided certain other points survived the
previous round. These sorts of lemmas have been used in the past to prove rank lower bounds for specific
polytopes in specific cutting planes procedures (see [10, 19], for example). We develop a common
protection lemma that works for many examples in any of the proof systems we define. Moreover, we
define a simple, two-player game that uses this common protection lemma to establish lower bounds.

3.1 Protection Lemmas

We begin with some notation. For x �
� n , e � � 1 ��������� n  , and a �
� , we denote by x � e � a � the point that
is the same as x except that the e-th coordinate has value a. For x �
� n , we denote by E

�
x � the set of

coordinates on which x is non-integral.

Lemma 3.1 (GC Lemma). The following holds for GC: Let P be a bounded polytope in � n . Let
x � 1

2

� n, and let E � E
�
x � be partitioned into sets E1 � E2 ������� Et . Suppose that for every j � � 1 � 2 ������� � t  

we can represent x as an average of vectors in P that are 0-1 on E j and agree with x elsewhere. Then
x � P

�
.

Proof. Assume for contradiction that x �� P
�
. Then there is a vector a � � n and a non integral scalar

b, such that � a � y � � b for all y � P and � a � x ��� � b � . Clearly x � P, being an average of points in that
polytope. So � a � x � � b and it follows that � a � x � must be in 1

2 � � . Thus ∑e � E � x � ae must be odd, and
since ∑e � E � x � ae � ∑i ∑e � Ei

ae, there is a j such that ∑e � E j
ae is odd. Consider the set of vectors V � P

that average to x and that differ from x exactly on E j where they take 0 � 1 values. Since ∑e � E j
ae is odd

we can see that � a � v � is integral for all v � V . But then � a � v � � � b � . Since x is an average of the v � V ,
we also get � a � x � � � b � . Contradiction.

The following lemma is immediate from Fact 2.11:

Lemma 3.2 (LS0 Lemma). The following holds for LS0: Let P � 
 0 � 1 � n be a polytope, and x be a point
in P. Then, if for every i � E

�
x � there is a set of points Si � P with i-th coordinate in � 0 � 1  such that

x � conv
�
Si � , then x � P

�
.
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Lemma 3.3 (LS/LS � Lemma ([19], Theorem 4.1)). The following holds for LS and LS � : Let P �

 0 � 1 � n be a polytope, and x be a point in P. If, for every i � E

�
x � , x � i � 0 � � x � i � 1 � � P, then x � P

�
.

Proof. Let x̄ be the vector
�
1 � x1 ������� � xn � T and let A � x̄ x̄T . A is certainly symmetric and positive semidef-

inite, but it has x̄2 instead of x̄ on the diagonal ( x̄2 is the vector whose ith coordinate is x̄2i ). Let B be
the diagonal matrix with x̄ � x̄2 on the diagonal. Because x � 
 0 � 1 � n, B is positive semidefinite. Finally,
let Y � A � B; it is clearly symmetric and positive semidefinite. Notice that for every i, Ye i (projected
onto 
 x0 � 1 � ) is x � i � 1 � and that Ye0 � Yei is x � i � 0 � . These are both guaranteed to be in P by the lemma’s
hypothesis, so x is in P

�
.

3.2 A game

Lemmas 3.1, 3.2 and 3.3 all conclude the same thing from different hypotheses. We now state a protec-
tion lemma that holds for all of the proof systems because it uses a hypothesis that is stronger than any
of those in the previous protection lemmas:

Lemma 3.4 (Game Lemma). The following holds for GC, LS0, LS and LS � : Let P � 
 0 � 1 � n be a
polytope, and x � � 0 � 1

2 � 1  n
�

P. If, for every i � E
�
x � , x � i � 0 � � x � i � 1 � � P, then x � P

�
.

This lemma gives us the following Prover-Adversary game for showing a lower-bound on the rank
of a point w � � 0 � 1

2 � 1  n with respect to P. We think of the Prover as trying to show that w has high
rank, while the Adversary is trying to foil that proof. The game proceeds in rounds. During each round,
there is a current point x � � 0 � 1

2 � 1  n, whose initial value is w. At each round, the Prover either moves
or allows the Adversary to move:

1. Prover-move: The Prover generates a set of points Y � � 0 � 1
2 � 1  n such that x is a convex combina-

tion of those points (x �� Y ). The Adversary selects one point y � Y to be the new x.

2. Adversary-move: The Adversary selects a coordinate e such that xe is 1
2 and a value a � � 0 � 1  .

The new x is x � e � a � .
The game ends when x is no longer in P or x � � n. The Prover gets one reward-point (as distinguished

from geometric points) for each Adversary-move.

Lemma 3.5. If a Prover has a strategy to earn m reward-points against every adversary, then the (GC,
LS0, LS, or LS � )-rank of w with respect to P is at least m.

Proof. Let r � r
�
w� P � be the maximum, over all adversaries, of the number of rounds in the Prover-

Adversary game for the given prover, the point w and the polytope P. We proceed by induction on r.
If r � 0, then m � 0, but the rank of w can never be less than 0. For arbitrary r � 0, the Prover can
start by making a Prover-move or an Adversary-move. If it is a Prover-move, then the Prover presents
Y and, no matter which y � Y the Adversary chooses, r

�
y � P � � r

�
w� P � and the Prover has a strategy

to earn m reward-points. Hence, by induction, each y � Y has rank at least m. By convexity, the rank
of w, which is a convex combination of points in Y , is at least m. If it is an Adversary-move, then, no
matter which e and a the Adversary chooses, r

�
w � e � a � � P � � r

�
w� P � and the Prover has a strategy to earn

m � 1 reward-points. Again, by induction, w � e � a � has rank at least m � 1 for all possible
�
e � a � , so by

Lemma 3.4, w has rank at least m.
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4 Expanding Constraints

In what follows, we deal with F , a set of mod-2 equations over n variables. That is, each equation in F
is of the form ∑i � S xi � a

�
mod 2 � � where S � 
 n � and a � � 0 � 1  . Notice that each such equation can be

represented by the conjunction of 2
�
S
�

� 1 clauses, each of which can be represented as a linear inequality.
We denote by PF the polytope bounded by these inequalities and by the inequalities 0 � xi � 1.

Let GF be the bipartite graph from the set F to the set of variables where each equation is connected
to the variables it contains. We prove a rank lower bound for PF as a function of the expansion of GF .

We will need the following notions of expansion:

Definition 4.1. Let e
�
V1 � V2 � be the number of edges

�
v1 � v2 � with vi � Vi. The edge-expansion of a graph

G � �
V � E � is

min
S � V � � S � ���V � � 2

e
�
S � V � S �
�
S
� �

Definition 4.2. A bipartite graph from V to U is an
�
r� ε � -expander if, for all subsets X � V where�

X
� � r, we have Γ

�
X � � ε

�
X
�
. The expansion of a set X � V , e

�
X � , is the value

�
Γ

�
X � � � �X �

.

Definition 4.3. Let G be a bipartite graph from V to U . The boundary of a set X � V is ∂X
d� � u �

U :
�
Γ

�
u � � X

� � 1  . G is an
�
r� ε � -boundary expander if for all subsets X � V where

�
X
� � r, we have�

∂X
� � ε

�
X
�
. The boundary expansion of a set X � V is the value

�
∂X

� � �X �
.

The following fact relates bipartite expansion with boundary-expansion.

Fact 4.4. If G is a bipartite graph from V to U where V has maximal degree d and if G is an
�
r� ε � -

expander, then G is a
�
r� 2ε � d � -boundary expander.

The reason that we require GF to be a good expander is that it allows us to satisfy subsets of F:

Lemma 4.5. Consider a set F of m mod-2 equations over n variables. Assume that for every variable
v and every value a � � 0 � 1  , there is a solution to F where v assumes the value a. Then all the 0-1
solutions to F average to the all- 1

2 assignment.

Proof. Let Sv� a be a solution to F in which variable v is set to a. It is easy to see that the mapping
S �� S � Sv� 1 � Sv� 0 mod 2 is a one-to-one mapping from solutions with v � 0 onto solutions with v � 1.

Therefore the average over all solutions to F is 1
2 on v.

Lemma 4.6. Let F be a set of m mod-2 equations over n variables. Assume GF is an
�
m � δ � -boundary

expander for some δ � 0. Then F has a 0-1 solution.

Proof. We begin by pairing each equation in F to a variable it includes. For i with 0 � i � m assume we
have a pairing

�
f1 � v1 � ������� � � fi � vi � such that v1 ������� � vi are not in the boundary of F � � f1 ��������� fi  . Since

i � m, F � � f1 ������� � fi  is not empty, so there must be some vi � 1 �� � v1 ������� � vi  in ∂
�
F � � f1 ������� � fi  � . It is

connected to some equation fi � 1 in F � � f1 ��������� fi  and to no other equations in that set. Add
�
fi � 1 � vi � 1 �

to the set of pairs. Eventually we have the set of pairs
�
f1 � v1 � ��������� � fm � vm � . To satisfy F , set all variables

not in � v1 ��������� vm  arbitrarily. Now, for i � m to 1, set vi so that it satisfies equation fi (notice that in this
order, vi is the last unassigned variable of fi).
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We now use the game to show a rank lower bound for expanding sets of equations. For x � � 0 � 1
2 � 1  n,

say an equation f � F is f ixed with respect to x if x sets all the variables of f to 0/1 and f is satisfied
by x. Let GF

�
x � be the subgraph of GF induced by the set of variables E

�
x � and the set of non-fixed

equations.

Theorem 4.7. Let ε � 0 and let w � � 0 � 1
2 � 1  n. If GF

�
w � is an

�
r� 2 � ε � -boundary expander, then w has

(GC, LS0, LS, LS � )-rank at least rε with respect to PF .

Proof. We start the game with x � w. Clearly x � PF since each equation f � F is either fixed or has
two underlying variables set to 1

2 by the expansion requirement. In the latter case, each linear inequality
representing f is satisfied by Proposition 2.1. Let Γx

�
R � be the neighbor set of R � F in GF

�
x � . Let

�
initially be set to r. The Prover’s strategy is as follows:

1. Let the Adversary move as long as all subsets R � F in GF

�
x � of size at most

�
have boundary

expansion � 2 in GF

�
x � . Note that after such a move we have x � PF since all equations in GF

�
x �

have degree at least 2.

2. Let B be a maximal subset of equations in GF

�
x � with boundary expansion � 2 such that

�
B
� � � .

Only one variable has been set (by an Adversary move) since B had boundary expansion � 2,
so now B must have boundary expansion � 1. Now the Prover moves. Let Y be the set of all
assignments satisfying B that are 0 � 1 on Γx

�
B � and that agree with x elsewhere. To see that Y

is nonempty and that it does indeed average to x, consider an arbitrary variable v in Γx
�
B � and an

arbitrary value a � � 0 � 1  . By Lemma 4.5 it is enough to show that there is a point in Y in which
v is set to a. Notice that B still has boundary-expansion greater than 0 on the graph GF

�
x � minus

v, and so Lemma 4.6 implies that, regardless of the setting of v, there exists a 0 � 1 assignment on
Γx

�
B � � � v  satisfying B. The Adversary selects one y � Y to be the new x.

Set
�

to
� � �

B
�
. If

� � 0, stop the game. Otherwise, we argue that x � PF . Indeed, in that case�
B
�
is strictly smaller than

�
, and it is always the case that every equation f not in B has at least

two neighbors in GF

�
x � since otherwise B � � f  would also have boundary-expansion at most 2

contradicting the maximality of B.

3. Repeat until the game is over.

Now we will show that the Prover always earns at least rε reward-points. Assume the game ends
after k rounds of the strategy. For any round i � k, let Bi be the set of vertices designated in step 2 and
let S � � k

j � 1 B j. The size of S is r, so S had a boundary of size at least
�
2 � ε � r in GF . At the end of

the game, S has no boundary (in fact it has no neighbors) in GF

�
x � . At most 2r of these boundary nodes

were removed by the Prover: at the beginning of step 2 of round i, Bi has at most 2
�
Bi

�
boundary nodes

and every boundary node of S is a boundary node for exactly one Bi. Hence at least εr of S’s original
boundary nodes were removed by the Adversary. By Lemma 3.5, w has the required rank.

It turns out that many common formulas are examples of boundary-expanding mod-2 equations.
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Definition 4.8 ([38]). The Tseitin tautology for an odd-size graph G � �
V � E � , denoted TS

�
G � , is the

following: given a boolean variable Xuv for each edge
�
u � v � � E , there exists no assignment to all the

variables satisfying

∑
v � Γ � u �

Xuv � 1
�
mod 2 � �

for every u � V .

Definition 4.9. There are 2 � nk � linear, mod-2 equations over n variables that contain exactly k different
variables. Let � k � n

m be the probability distribution induced by choosing m of these equations uniformly
and independently. There are 2k � nk � clauses over n variables that contain exactly k different variables. Let� k � n

m be the probability distribution induced by choosing m of these clauses uniformly and independently.

Theorem 4.7 enables us to prove our main result:

Corllary 4.10. The following holds for GC, LS0, LS and LS � :
(1) The Tseitin tautology on a graph H has rank at least

�
c � 2 � n � 2, where c is the edge-expansion of H;

(2) Let k � 5. There exists a constant c such that, for all ∆ � c, F ��� k � n
∆n

requires rank Ω
�
n � with high

probability;
(3) Let k � 5. There exists a constant c such that, for all ∆ � c, C � � k � n

∆n
requires rank Ω

�
n � with high

probability.

Proof. Throughout, let w be the all 1
2 point. (1) The edge-expansion of a graph H � �

V � E � is the density
of the sparsest cut:

min
S � V � � S � ���V � � 2

e
�
S � V � S �
�
S
� �

It is easy to see that GTS � H �
�
w � is an

�
n � 2 � c � -boundary-expander: consider any subset of nodes in H ,

S � V and look at the corresponding set R of equations in TS
�
H � . Every variable corresponding to an

edge across the cut
�
S � V � S � is in the boundary of R in the bipartite graph GTS � H � . Now simply apply

Theorem 4.7.
(2) It is well-known that GF

�
w � is an excellent expander ([11]): for any constant ∆, ε ,k, there exists a

constant α � 0 such that GF

�
w � is almost always an

�
αn � k � 1 � ε � -expander. By Fact 4.4, every

�
r� δ �

bipartite expander graph on
�
V � U � where V has maximal degree d is an

�
r� 2δ � d � -boundary-expander.

Hence GF

�
w � is an

�
αn � k � 2 � 2ε � -boundary-expander. For k � 5 and small ε , the boundary-expansion

is more than 2, so w has rank Ω
�
n � by Theorem 4.7. Lastly, we need to fix c such that, whenever ∆ � c,

F is unsatisfiable with high probability (otherwise, F might not have high rank, despite the fact that w
does). The corollary follows.
(3) GC

�
w � , the bipartite graph associated with the clauses of C, is the same as GF

�
w � for random F .

Generate C
�
by adding, for each e � C, the following clauses: if e has an even (odd) number of positive

literals, all clauses on the same variables as e that have an even (odd) number of positive literals. Clearly
w’s rank with respect to PC is at least its rank with respect to PC � , but C

�
is equivalent to a set of

�
C
�
mod-

2 equations such that GC �
�
w � is an

�
αn � k � 2 � 2ε � -boundary expander (with high probability, given

∆ � ε � k � α as in (2)). Again, fix c so that, whenever ∆ � c, C is unsatisfiable with high probability.
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5 Integrality Gaps from Rank Lower Bounds

The problem MAX-k-SAT (MAX-k-LIN) is the following: given a set of k-clauses (mod-2 equations),
determine the maximum number of clauses (equations) that can be satisfied simultaneously. This prob-
lem is well-studied in the theory of approximation algorithms and optimal inapproximation results are
known under the assumption that P �� NP [27]. Here we show optimal inapproximation results (that are
unconditional) for a restricted class of approximation algorithms that involve applying GC or LS pro-
cedures to a relaxation of the standard integer program. These algorithms are not necessarily polytime.
Similar results have been shown for LS-relaxations of vertex cover ([2], see also the improvements
[3, 36]) and maximum independent set ([18]). Both show that a large integrality gap remains after
Ω

�
logn � rounds of LS.
Given a set of k-mod-2 equations F ��� f1 ������� � fm  over variables x1 ������� � xn, add a new set of vari-

ables y1 ������� � ym. For each fi: ∑ j � Ii
x j � ai

�
mod 2 � , let f

�
i be the equation yi � ∑ j � Ii

x j � ai � 1
�
mod 2 � .

Let F
�
be the set of f

�
i ’s. If yi is 1, then f

�
i is satisfied if and only if fi is satisfied. Hence we want to max-

imize the linear function ∑m
i � 1 yi over the constraints F

�
within the boolean cube. Convert these mod-2

equations into linear constraints, and call the resulting linear program LF . The integrality gap of this LP
is at most 2 since, given any set of mod-2 equations, there must be a boolean assignment satisfying at
least half of them. An r-round GC- (respectively, LS0-, LS-, LS � -) relaxation of (the integer version of)
LF (or any linear program) is a linear program with the same optimization function but with all addi-
tional constraints that can be generated in depth r from the original constraints using GC (respectively,
LS0, LS, LS � ).

Theorem 5.1. Let k � 5. For every constant ε � 0, there are constants ∆ � β � 0 such that if F ��� k � n
∆n

then the integrality gap of every βn-round GC- (resp., LS0-, LS-, LS � -) relaxation of LF is at least 2 � ε
with high probability.

Proof. Given ε , fix ∆ � � 8ln 2 � ε
�
2, where

� 1
2 � ε
� � �

2 � ε ��� 1. An arbitrary assignment satisfies each of
F’s equations with probability 1

2 , so the expected number of satisfied equations is 1
2 ∆n. The probability

that it satisfies more than
� 1

2 � ε
� � ∆n equations is at most exp

� � ε � 2∆n
8 � by Chernoff. Given the choice of

∆, this expression is much less than 2
� n, so with high probability no assignment satisfies more than a

1
2 � ε
�
-fraction of F’s equations.

On the other hand, consider an assignment w that sets the variables y1 ��������� y∆n to 1 and sets x1 ������� � xn

to 1
2 . Clearly, w satisfies all of the equations of F

�
. Furthermore, it is well-known that GF �

�
w � is almost

surely an
�
αn � 2 � δ � -boundary expander for some α � δ � 0 that depend on ∆. Let β � αδ . Hence, by

Theorem 4.7, w remains a feasible solution for every βn-round GC- (resp., LS0-, LS-, LS � -) relaxation
of LF .

We can form a linear program LC for a set of k-clauses C in an analogous manner. Similarly,

Theorem 5.2. Let k � 5. For every ε � 0, there exists ∆ � β � 0 such that if C � � k � n
∆n

, then the integrality

gap of every βn-round relaxation of LC is at least 2k

2k � 1 � ε with high probability.

Again, this inapproximation result is optimal since, given any set of k-clauses, there is a boolean
assignment that satisfies at least a 2k

� 1
2k fraction of them.
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6 Separating GC, LS and Resolution Ranks

We consider the following generalization of PHPn, the Pigeonhole Principle on n � 1 pigeons and n
holes, first suggested in [6]. Let G � �

U � V � E � be a bipartite graph, where
�
U
� � n � 1 and

�
V
� � n. The

tautology PHP
�
G � is the statement that G doesn’t have a perfect matching. The formal statement of this

is (1) For each i � U , ∑ j � Γ � i � xi � j � 1; (2) For all j � V , i � i � � Γ
�
j � , such that i �� i

�
, xi � j � xi � � j � 1. The

standard PHPn is just PHP
�
Kn � 1 � n � , where Kn � 1 � n is the complete n � 1 � n bipartite graph.

In this section we show the following separations: (1) PHPn has LS-rank n but GC-rank O
�
logn � ;

(2) For an expander graph G with constant degree d, the Resolution-rank of PHP
�
G � is Ω

�
n � , while its

LS-rank and GC-rank are O
�
d � .

The Resolution-rank lower bound is proven in [6]; it is implied by their size lower bound. The
LS- and GC-rank upper bounds are very similar to each other: for every j � V , it is possible to derive
∑i � Γ � j � xi � j � 1 in rank O

�
d � in both systems (Corollary 3.1.1 of [26] and Corollary 2.8 of [32]). The

point is that the polytope defined by adding these new inequalities is the empty polytope, and therefore
we can get the desired contradiction in one LS or GC step.

For the separation result of the GC and LS ranks, we start with the upper bound on the GC-rank of
PHPn. This result was proved independently by [5]. Actually, the theorem follows almost immediately
from Theorem 3.1.1 of [26], which preceeds both works. We include its proof for illustrative purposes.

Theorem 6.1. The GC-rank of PHPn is O
�
logn � .

Proof. For a subset S � � 1 � 2 ������� � n � 1  and 1 � j � n let fS � j be the inequality ∑i � S xi j � 1. We claim
that it is possible to deduce, from fS � j for every S of size k, any fT � j with T of size � 2k in one GC-cut.

In other words, if fS � j are valid for PHP � r � (recall the notation of Definition 2.6) for every S of size k and

every j, then fT � j is valid for PHP � r � 1 � for every T of size � 2k. This means that for all j, ∑n � 1
i � 1 xi j � 1 is

valid for PHP � O � logn � � . On the other hand, no solution that satisfies these inequalities can satisfy all the
axioms ∑n

j � 1 xi j � 1 for every i. Therefore PHP � O � logn � � � /0, and the Chvátal -rank of PHPn is O
�
logn � .

To see the claim, take any j and T of size l � 2k, and sum up with coefficients 1 � � l � 1
k � 1 � the inequalities

fS � j over all subsets S � T of size k. After rounding the deduced inequality is

∑
i � T

xi � j �
� � lk �� l � 1

k � 1 ��� ��� l � k � � 1 � (6.1)

namely, fT � j. A good way to think of (6.1) is that when using the symmetric sum, we care only about the
average threshold for a single variable. In fS � j it is 1 � � S � , and so basically all we do is take the threshold
xi � 1 � � S � and turn it into ∑i � T xi � �

T
� � � S � , and if

�
T
�
� 2

�
S
�
we get ∑i � T ��� � T � � � S � � � 1.

In fact, this bound is tight by [5]. Again, Theorem 3.1.1 of [26] proves something very similar.
[23] prove that the PHP has constant-rank proofs in LS � . This fact also follows immediately from

Corollary 2.15 of [32]. In light of this, LS � is separated from GC with respect to rank.
A linear lower bound for the LS-rank of PHPn was given by [22]. See Corollary 2.8 of [32] for a

very similar proof. We will give a proof for the LS0-rank using a protection lemma, which we think is
simple and illuminating.
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Theorem 6.2. ([22]) The LS0-rank of PHPn is n � 1.

Proof. The proof proceeds by induction on n. PHP2 consists of a single point, and its LS0-rank is
therefore 1. For PHPn, we argue that the all 1 � n point has rank n � 1. Given 1 � i � n � 1 and 1 � � � n,
let xi � � be the following point: xi � �

i � � � 1; xi � �
i � � � � 0 for all

� � �� �
; xi � �

i � � � � 0 for all i
� �� i; xi � � is 1 � �

n � 1 �
everywhere else. For every coordinate

�
i � j � , let Si j be the set of xi � � for 1 � � � n. Note that for every

point in Si j , the coordinate
�
i � j � has value in � 0 � 1  . Furthermore, the average of all points in S i j is

the all 1 � n point. By Lemma 3.2, the all 1 � n point has rank one more than the minimum rank of the
points in Si j . But each such point is the all 1 � �

n � 1 � point for PHPn � 1, so it must have rank n � 2 by
induction.

The PHP has polynomial-size (tree-like) LS0 proofs. The fact that LS requires rank Ω
�
n � for the

PHP shows that for both LS and LS0 proofs, large rank is not a good indicator of large size (even in the
tree-like systems). Since GC and LS � prove the PHP in small rank, and since Resolution requires large
proofs, the PHP does not resolve this question for these proof systems. In the next section, we give a
different formula which shows that GC and Resolution can have large rank and small size. In fact, it
is not difficult to see that tree-like Resolution can have large rank and small size. The open questions,
then, are whether large rank implies large size in tree-like GC or in LS � (tree-like or not).

7 GC Proofs with Large Rank and Small Size

In theorem 6.1 of [10] and theorem 4 of [5], it is shown that the size s of a GC proof of a tautology
is O

�
nr � where n is the number of variables and r is the GC-rank of the polytope associated with the

tautology. Here we show an example where this bound is very far from being tight. Specifically, we show
an example of a tautology which has a quadratic-size GC proof (in fact even a Resolution proof with
that size) and linear GC-rank. It turns out that such a separation between size and rank can be witnessed
by any formula that has polysize GC refutations, but requires exponential tree-like GC refutations ([5]).

The unsatisfiable formula we take is GTn which is the negation of the property that every total order-
ing on n elements has a maximal element (alternatively, that a directed graph closed under transitivity
and with no cycles of size two has a source node). More formally, given the set of boolean variables
� Xi j : i � j � 
 n � � i �� j  , assert
(1) Xi j � �

X ji for each i �� j (totality);
(2) Xi j

�
X jk � Xik for each i �� j �� k (transitivity);

(3) � j �� i Xi j for each i (no maximal element).
The formula was introduced by [31] and is formulated using n

�
n � 1 � variables. The natural way to state

it uses width-n clauses, but it can be encoded with constant-width. Stalmark [34] shows that GTn has
polynomial-size Resolution refutations, but Bonet and Galesi [8] show that it requires width Ω

�
n � (even

when stated with narrow clauses). Since Resolution-width is at most Resolution-rank (the length of the
path from a width-w clause to the empty clause in a Resolution refutation is at least w), the Resolution-
rank is also Ω

�
n � . Since GC polynomially simulates resolution ([13]), there is a also a polynomial size

GC proof of the formula. It remains to show:

Theorem 7.1. The GC-rank and the LS0-rank of the polytope associated with GTn is Ω
�
n � .
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We associate a partial ordering � on 
 n � with a vector x � � � 0 � 1
2 � 1  n � n � 1 � by the assignment xi j �

0 � 1 � 1
2 when i is smaller than, bigger than, or incomparable to j, respectively.

Definition 7.2. A (partial) order � is called s-scaled if there is a partition of 
 n � into sets A1 � A2 ������� � As,
such that � is a total ordering within each of the Ai’s and is not defined between elements in different
Ai’s.

Claim 7.3. If � is s-scaled with s � 2, then x � remains after s � 3 rounds of GC or LS0 cuts.

The claim immediately provides a lower bound of n � 2 for the rank of P � GTn since the vector
associated with the empty order (which is n-scaled) has that rank.

Proof. (of Claim 7.3) By induction on s. Suppose � is 3-scaled. We need to show that x � � P � P � 0 � .
Transitivity inequalities clearly hold for three elements in the same A i. A transitivity inequality that
involves more than one Ai must contain at least two variables with value 1

2 and therefore must be satisfied
by Proposition 2.1. The “no maximal element” inequalities also hold, because for every element there
are at least two others to which it is not comparable, and the two associated 1

2 values alone satisfy the
inequality. For a general s we let x � x � . Notice that E

�
x � is a set of all edges connecting different

components of the graph when we associate � with a graph which is a union of s complete graphs. We
partition the edges in E

�
x � to � s2 � sets by the components they connect and argue that x and this partition

satisfy the conditions of Lemma 3.1. Indeed, for a choice of components A and B we denote by � A
the order which is the same as � except all the elemens of A are bigger than those of B. Similarly we
define � B. It is easy to see that x � �

x �
A
� x �

B
� � 2. Since � A � � B are

�
s � 1 � -scaled we inductively have

that rank
�
x �

A
� � rank

�
x �

B
� � s � 3, and by Lemma 3.1 rank

�
x � � s � 2. Notice that since Lemma 3.1 is

strictly weaker than Lemma 3.2, the proof is valid for LS0 in addition to GC.

8 Automatizability of the LS-systems for Small-Rank CNF Formulas

In this section, we show that if P � 
 0 � 1 � n is a polytope that can be described by a polynomial number of
halfspaces each with polynomial-length coefficients, then there is a procedure to test P � r � (the r-th round
of LS or LS0) for emptyness in time nO � r � . This is important since it means that if P is a polytope that
comes from an unsatisfiable CNF or set of mod-2 equations and P has small rank, then its unsatisfiability
can be efficiently witnessed. The general idea of this theorem is evident in [32], but it is not explicitly
stated in this form. Also, we rely heavily on the techniques explained in [24].

It is important to note that the ability to optimize over a polytope does not imply the ability to test
it for emptyness. Indeed, optimization procedures generally assume non-emptyness. In particular, when
[32] shows that it is possible to efficiently optimize over P � r � in LS � for small r, this does not seem to
imply anything about testing for emptyness. See the end of this section for further explanation of this
point.

A strong separation oracle for a convex body P 
 � n is a procedure, that given x ��� n , either states
that x � P or supplies a hyperplane separating x from P.

We say that a convex body P 
 � n has f acet-complexity ϕ if it can be represented as a set of linear
inequalities (with rational coefficients) such that each of the inequalities can be encoded in length ϕ .
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Theorem 8.1. Assume we are given a strong separation oracle for a polytope P 
 
 0 � 1 � n of facet-
complexity ϕ . Then, there is an algorithm for the LS and LS0 proof systems that checks if P � r � is empty
with running time poly

�
n � ϕ � r .

Note that for a polytope arising from CNF formulas, ϕ � O
�
n � , and consequently the running time

is nO � r � . The claim follows for LS from the following lemmas. For LS0, the argument is very similar.

Lemma 8.2. Let P 
 
 0 � 1 � n be a polytope with facet-complexity ϕ . Given a strong separation oracle �
for P, there is a strong separation oracle for P � 1 � that makes poly

�
n � ϕ � calls to � .

Lemma 8.3. If a polytope P 
�
 0 � 1 � n has facet-complexity ϕ , then P � 1 � has facet-complexity bounded
by O

�
n6 	 ϕ � .

Lemma 8.2 implies a strong separation oracle for P � r � with running time poly
�
n � ϕ � r. By Lemma 8.3

the facet-complexity of P � r � is bounded by ϕ 	
nO � r � . Theorem 6.4.9 from [24] states that we can check

whether a polytope is empty by querying a strong separation oracle for that polytope. The number of
queries required is polynomial in the facet-complexity and the dimension.

Proof. (of Lemma 8.2)
As usual, we move to the cone P in � n � 1 (see Section 2.1). It is easy to see that a strong separation

oracle for P implies one for P, and that the facet-complexity of P and P are the same. We define a cone
M

�
P � in � � n � 1 � 2

as the collection of
�
n � 1 ��� �

n � 1 � matrices Y satisfying
(i) Y is symmetric,
(ii) Y0 � diag

�
Y � ,

(iii) Yi � P,
(iv) Y0 � Yi � P,
where we denote by Y0 ������� Yn the columns of Y , and by diag

�
Y � its diagonal. From Definition 2.9, we

have

P � 1 � �
�

x � � n : Y � M
�
P � and Y0 ��� 1x ��� �

Let x ��� n . Consider the following polytope Q
x � P in � � n � 1 � 2

.

Q
x � P �

�
Y � M

�
P � �Y0 � � 1x ��� �

By definition x � P � 1 � if and only if Q
x � P is not empty. We first argue that Q

x � P has a separation oracle.

To see that, observe that conditions (i) and (ii) above, as well as the condition that Y0 � � 1x � , are all
simple halfspaces and hyperplanes. Conditions (iii) and (iv) can be checked using the separation oracle
for P. Since the facet-complexity of Q

x � P is bounded by ϕ , we can apply [24] Theorem 6.4.9 to obtain

an algorithm that checks whether Q
x � P is empty, and consequently whether x � P � 1 � . Assume now that

x �� P � 1 � . Along the above run of the algorithm (ending with the conclusion Q
x � P � /0 � , the separation

oracle for P has been invoked a polynomial number of times, resulting in a polynomial number of
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halfspaces containing P. Let R be the intersection of those halfspaces. The crucial point to note here is
that Qx � R � /0. This is since Qx � R and Q

x � P are indistinguishable to this run of the algorithm.

Let
�
a j � 	 � � b j be the halfspaces defining R. By the duality theorem, there is a positive combination

�

α of the inequalities
�
a j � Yi � � b j and

�
a j � Y0 � Yi � � b j plus a combination of the inequalities of M

�
P � ,

such that (i) the coefficient vector of the Y variables is 0 and (ii) the constant term is of the form ∑αixi �
b � 0. On the other hand, if x � P � 1 � then Qx � R is not empty and so the same combination cannot lead
to a contradiction and so ∑αixi � 0. This provides the desired separation. The only thing left to is to
find the combination (the vector of coefficients α) that leads to the above contradiction. Here we use the
fact that R has a polynomial number of faces, and so to find the combination satisfying both (i) and (ii)
above is nothing but solving a polynomial linear program.

We say that a cone has vertex-complexity ν if it is the span of a collection of rational vectors, each
of which can be encoded in length ν .

Proof. (of Lemma 8.3) The facet-complexity of M
�
P � is at most ϕ . Lemma 6.2.4 of [24] states that, for

any polytope in � d of facet-complexity ϕ and vertex-complexity ν , we have ν � 4d2ϕ and ϕ � 3d2ν .
Therefore, the vertex-complexity of M

�
P � is at most O

�
n4ϕ � . This bound also applies to the vertex-

complexity of P
� 1 �

since it is just a projection of M
�
P � . By the same lemma, the facet-complexity of P

� 1 �
is O

�
n2 	 n4ϕ � , and our claim follows.

It is not clear how to test P � r � for emptyness efficiently in LS � because Lemma 8.2 does not seem
to hold. In particular, M

�
P � is now required to be positive semidefinite, so Q

x � P is defined by infinitely
many linear inequalities.

9 Open Questions

Two of the major challenges in this area are to prove size lower bounds for GC or LS refutations of,
say, random k-CNFs or the Tseitin Tautologies, and to prove rank lower bounds on LS as a means of
approximating optimization problems such as Vertex Cover—that is, improving the bound of [2] (see
[3, 36] for some improvements on this result). More immediate open questions are the following: Do our
techniques for MAXSAT rank lower bounds apply to any other optimization problems? For example,
[1] used similar techniques to prove rank bounds for hypergraph Vertex Cover and Set Cover. Does large
GC-rank of a CNF imply large tree-like GC-size? Does large LS � -rank imply large LS � -size? If a CNF
has a rank-r LS � -refutation, can we find such a refutation in time nO � r � ? This would lead to a natural
automated theorem prover that proves the PHP efficiently.
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[19] M. GOEMANS AND L. TUNÇEL: When does the postive semidefiniteness constraint help in lifting
procedures. Mathematics of Operations Research, 26:796–815, 2001. 2.2, 3, 3.3

[20] M. GOEMANS AND D. WILLIAMSON: Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. Journal of the ACM, 42(6):1115–1145,
1995. 1.1

[21] R. E. GOMORY: Solving linear programming problems in integers. In R. Bellman and M. Hall,
Jr., editors, Combinatorial Analysis, pp. 211–215, Providence, RI, 1960. Symposia in Applied
Mathematics X, American Mathematical Society. 1, 2

[22] D. GRIGORIEV, E. A. HIRSCH, AND D. V. PASECHNIK: Complexity of semi-algebraic proofs.
In Symposium on Theoretical Aspects of Computer Science, pp. 419–430, 2002. 1.1, 2.2, 6, 6.2

[23] D. GRIGORIEV, E. A. HIRSCH, AND D. V. PASECHNIK: Exponential lower bound for static
semi-algebraic proofs. Lecture notes in computer science, 2380:257–268, 2002. 6
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