
Approximating the Weight of the Euclidean Minimum Spanning Tree
in Sublinear Time

Artur Czumaj
�

Funda Ergün
�

Lance Fortnow
�

Avner Magen
�

Ilan Newman
�

Ronitt Rubinfeld
�

Christian Sohler
�

Abstract

We consider the problem of computing the weight of a Euclidean minimum spanning tree for
a set of � points in �	� . We focus on the setting where the input point set is supported by certain
basic (and commonly used) geometric data structures that can provide efficient access to the input
in a structured way. We present an algorithm that estimates with high probability the weight of a
Euclidean minimum spanning tree of a set of points to within
��� using only ������ � poly

�
�������
queries for constant � . The algorithm assumes that the input is supported by a minimal bounding
cube enclosing it, by orthogonal range queries, and by cone approximate nearest neighbors queries.

1 Introduction

As the power and connectivity of computers increase and the cost of memory becomes cheaper, we
have become inundated with large amounts of data. Although traditionally linear time algorithms were
sought to solve our problems, it is no longer clear that a linear time algorithm is good enough in every
setting. The question then is whether we can solve anything of interest in sublinear time, when the
algorithm is not even given time to read all of the input data. The answer is yes; in recent years,
several sublinear time algorithms have been presented which solve a wide range of property testing
and approximation problems.

In this paper we consider the problem of estimating the weight of a minimum spanning tree, where
the input is a set of points in the Euclidean space � � . Since the location of a single point may dramat-
ically influence the value of the weight of the Euclidean minimum spanning tree (EMST), we cannot

�
Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA. Email: czu-

maj@cis.njit.edu. Research supported in part by NSF grant CCR-0105701.�
Electrical Engineering and Computer Science Department, Case Western Reserve University, Cleveland, OH 44107,

USA. Email: afe@eecs.cwru.edu. Part of this work was done while the author was at NEC Research, Princeton, NJ 08540,
USA. Research supported in part by NSF grant CCR-0311548.�

NEC Research, Princeton, NJ 08540, USA. Email: fortnow, ronitt@research.nj.nec.com.�
Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3G4, Canada. Email:

avner@cs.toronto.edu. This work was done while the author was at NEC Research, Princeton, NJ 08540, USA.
Department of Computer Science, University of Haifa, Haifa, Israel. Email: ilan@cs.haifa.ac.il. Part of this work was

done while the author was at NEC Research, Princeton, NJ 08540, USA.!
Heinz Nixdorf Institute and Department of Mathematics & Computer Science, University of Paderborn, D-33095

Paderborn, Germany. Email: csohler@uni-paderborn.de. Research partly supported by DFG grant Me 872/8-1 and EU
grant IST-1999-14186 (ALCOM-FT).

1

hope to get a reasonable approximation in sublinear time with only access to the locations of the points.
This is true even when we consider probabilistic algorithms. However, it is often the case that massive
databases, particularly in a geometric context, contain sophisticated data structures on top of the raw
data, that support various forms of queries. Examples of such queries are the nearest neighbor of a
point, or the point with the highest value in a coordinate. Consequently, in this paper, we assume
that algorithms have access to certain commonly used data structures which aid the algorithm in its
computation. This may be considered a motivation for maintaining such data structures, particularly if
they aid in other tasks as well.

1.1 Results

In this paper we describe three algorithms for estimating the weight of a Euclidean minimum spanning
tree over � given points in a Euclidean space � � , where the algorithms are given access to basic
geometric data structures supporting the input. Throughout the paper we assume that

�
is a constant,

though our analysis can be easily carried over for arbitrary values of
�
. It should be noted that our

algorithms do not supply a low weight spanning tree (which takes linear space to represent), but only
estimate its weight.

We first consider the case when the algorithm is given, in addition to access to the input point set,
(1) a minimal bounding cube that contains all points in the input set and (2) access to an orthogonal
range query data structure which, given an axis-parallel cube, answers whether there is an input point
within the cube. In this model, we give a deterministic �������	��
� -time algorithm for the � -dimensional
case which outputs a value � such that �� EMST ������������������� � � EMST �	�!�#"$������� , where
�&%�'(�)���	��*�+-,/.0�1� , � is the side-length of a minimal axis parallel bounding cube of the point set, and2 is an arbitrary constant. We also show that any deterministic algorithm that uses 34�)� �	��
 � orthogonal
range queries cannot significantly improve the quality of approximation.

We next consider the case where, in addition to the above data structures, we are also given (3)
access to a cone nearest neighbor data structure, which given a point 5 and a cone 6 , returns a nearest
point to 5 in the cone 57"86 . Our second algorithm combines the extra power of the cone nearest
neighbor data structures with ideas from the recent randomized sublinear-time algorithm for estimating
the MST in general graphs [10]. The algorithm outputs a value which with high probability is within
a 9:"<; factor of the EMST and it runs in �=�)>@?A;CBD� time, where > is the spread of � (ratio between
maximum and minimum distance between points in �); observe that > can be arbitrarily large.

Our main contribution is the third algorithm that does not have any dependency on > and requires
only cone approximate nearest neighbor queries which we define in the next section. For a constant�

, the algorithm runs in E�=�GF � poly �H9I?I;/�J� time and outputs an approximation of the EMST weight
to within a multiplicative factor of 9K"�; with high probability. The algorithm combines the ideas
from our first two algorithms. It partitions the input points into components and estimates the EMST

separately by considering pairs of points that lie in the same component and pairs of points that belong
to different components. To estimate the EMST within components, we use an extension of our second
algorithm. To estimate the weight required to connect the components we use a variant of our first
algorithm. The combination of these two algorithms leads to a significant improvement in the quality
of approximation (compared to the first algorithm) and in the running time (compared to the second
algorithm).

We notice also that our algorithms lead to sublinear-time �	�L"M;C� -approximation algorithms for two
other classical geometric problems: Euclidean TSP and the Euclidean Steiner tree problem. These

2

results follow from the well known relationship between the weight of EMST and the weight of Eu-
clidean TSP and of Euclidean Steiner tree (see, e.g., [21]). Indeed, it is known that in metric spaces the
weight of Euclidean TSP is between the weight of the EMST and twice the EMST weight. Similarly, it
is known that in metric spaces the EMST weight is between the weight of the Steiner tree and twice of
its weight. On the plane, one can improve this result by using the fact that the EMST weight is upper
bounded by at most �/? F � times the weight of the Euclidean Steiner tree [12].

1.2 Relation to previous works

The Euclidean minimum spanning tree problem is a classical problem in computational geometry and
has been extensively studied in the literature for more than two decades. It is easy to see that to find
the EMST of � points, �=� � �
 � time suffices, by reducing the problem to finding the MST in dense
graphs. In the simplest case where

� % � (on the plane), Shamos and Hoey [20] show that the EMST

problem can be solved in �=�)� +-,/.0�1� time. For
��� � , no E�=�)�1� -time algorithm is known and it is

a major open question whether an ����� +-,/. � � -time algorithm exists even for
� % � [15]; in fact, it

is even conjectured (see, e.g., [15]) that no 34�)��� ��B � -time algorithm does exist. Yao [23] was the first
who broke the �=�)�
� -time barrier for

��� � and designed an E��������� * � -time algorithm for
� % � . This

bound has been later improved and the fastest currently known (randomized) algorithm achieves the
running time of E����� � ��B� [2] for

� % � (and the running time tends to �=�)�1
 � as
�

grows). Significantly
better bounds can be achieved if one allows to approximate the output. Callahan and Kosaraju [7]
give a ����� + ,/.0�M" � +-,C. �H9I?I;/� ; � � ��
 � -time algorithm that finds an approximate Euclidean minimum
spanning tree to within a multiplicative factor of 9 " ; .

Our algorithms rely on a recent randomized algorithm of [10] that, given a connected graph in
adjacency list representation with average degree

�
, edge weights in the range � 9
	�	�	��� , and a pa-

rameter ��� ;�� �
 , approximates, with high probability, the weight of a minimum spanning tree in

time E��� � ; ��B � within a factor of 9 " ; . The time bound does not directly depend on the number of
vertices or edges in the graph. We emphasize, however, that our representation is quite different, and
in general would give a graph with average degree � . Therefore, a direct application of this result to
the EMST problem does not lead to a sublinear-time algorithm.

We notice also that a similar model of computation to that used in our paper has been used recently
in [11].

1.3 Dynamic algorithms

Our model of computation is also interesting in the context of dynamic algorithms. There exist fully
dynamic algorithms that maintain the EMST subject to point insertions and deletions; [14] gives an
algorithm with amortized time E���GF �1� and �=�)���G��� � per update operation for

� ��� and
��� � re-

spectively. A disadvantage of this algorithm (and of all typical dynamic algorithms) is that it requires
as much as E�=� F � � time per input update, making the algorithm very costly in situations where the
EMST queries are very rare. The data structures we require in our setting are dynamically maintained
by standard geometric databases anyway. Thus, if the database supports all required data structures
in polylogarithmic time, the amortized time required by our algorithm is E�=� F � ?�� � , where � is the
typical number of updates per one EMST calculation. We note again that our algorithm does not supply
the minimum spanning tree, but returns only its approximate weight.

3

Organization of the paper. We start by presenting an algorithm that only needs access to a minimal
bounding cube of the point set � and to an orthogonal range query oracle in Section 3. In Section
5, we present a simple algorithm that uses additionally the cone nearest neighbor oracle. Finally,
in Section 6, we discuss the main contribution of this paper, a sublinear time algorithm that uses a
minimal bounding cube oracle, the orthogonal range query oracle and the cone approximate nearest
neighbor oracle.

2 Preliminaries

For a given set � of points in a Euclidean space � � , a (Euclidean) graph on � can be modeled as a
weighted undirected graph �$% ������� � , where � is a vertex set, � is a subset of the (unordered) pairs
of points in � , and the length/weight of edge � 5����	� is equal to the Euclidean distance between points
5 and � , denoted
 5���
 . The weight of the graph is the sum of the weights of its edges.

Throughout the paper we denote by �� the complete (undirected) graph on � where the edge
weights are the Euclidean distances between the endpoints. A graph � on a set of points � is called a
Euclidean minimum spanning tree (EMST) of � if it is a minimum-weight spanning subgraph of �� .
We denote by EMST �	�!� both the EMST of � and the weight of the EMST of � . Similarly, for a given
graph � we will denote by MST ����� the minimum spanning tree of � as well as the weight of the
minimum spanning tree of � .

For a given point set � , we denote by > the spread of � , that is, the ratio between the maximum
and the minimum distances between points in � . We let ��� be a minimal bounding cube of � (which
is made available via the minimal bounding cube oracle) and let � denote its side length.

2.1 Models of computation

In this paper we use some basic geometric data structures supporting access to the input point set.
Given a point set � in � � , we use data structures supporting the following types of queries:

� minimal bounding cube of P: returns the location of a minimum size axis-parallel
�
-dimensional

cube containing � , that is, returns the location of a cube 6$% ��� � ��� � "�� �������
 ���
 "�� ����	�	�	����� � ��� � " � � that contains � such that no axis-parallel cube of edge length smaller than � contains
� .

� (orthogonal) range query oracle: for a given axis-parallel cube 6 , tests if 6 contains a point
from � .

� cone �H9�""!C� -approximate nearest neighbor oracle: ! is any non-negative real number and it
is assumed that a set of cones � with apexes at the origin is given in advance. The cone �H90"#! � -
approximate nearest neighbor oracle, for a given point 5%$ � and a given cone 6&$'� , returns
a �H9:"(! � -approximate nearest neighbor1 of 5 in �	�*)+� 5,� �.- � 57" 6�� . (We denote by 57" 6
the translated cone �/� "&5'01�2$ 6 � .) If ���3)4� 5,� �5- � 5 "<6!� is empty, then a special value is
returned.

1For a point 6+748 and a set of points 9;: �5< , a =?>,@BADC -approximate nearest neighbor of 6 in 9 is any point E�7+9
such that for every F�7G9 it holds that H 6IEJHLKM=?>N@OADCQPRH 6/F�H .

4

In the special case where !�% � , the oracle gives the true nearest neighbor, and is simply called
the cone nearest neighbor oracle.

2.1.1 Implementing supporting data structures

To make our model of computations viable, we discuss here how our supporting data structures (ora-
cles) can be implemented efficiently using standard geometric data structures.

Minimal bounding cube. The query about the minimal bounding cube of a set of points � $ � �
can be supported by many standard geometric data structures. Indeed, the only information required
to find the minimal bounding cube is to know the minimum and maximum

�
-dimensional coordinates

of all input points. Therefore, many standard geometric data structures can support this query in time
�=� � � or �=� � +-,/.0� � .

Orthogonal range query oracle. There are many efficient data structures supporting the orthogonal
range query oracle and actually, orthogonal range queries are perhaps the most widely supported
geometric queries (for survey expositions, see, e.g., [1, 3, 6]). One of the first data structures for
orthogonal range searching is the quadtree. Despite its bad worst-case behavior, the quadtree is still
used in many applications because it provides an easy-to-implement linear-space data structure that
often has a very good performance. The best known data structures for orthogonal range searching
based on compressed range trees and some other techniques such as filtering search can be found in
[8, 9]. The query time is ����+ ,/. � � � �1� . If one uses standard range trees with the fractional cascading
technique then the same bound on the query time can be achieved [18, 22].

Cone nearest neighbor oracle. In the seminal paper on Euclidean minimum spanning trees, Yao
[23] examined algorithms for cone nearest neighbor in the cones with the angular diameter � ? � . Cone
nearest neighbor queries have been also studied extensively in follow-up papers dealing with the EMST

problem (see, e.g., [2]).

Cone approximate nearest neighbor oracle. Cone approximate nearest neighbor queries have been
widely investigated. They play an important role in the context of construction of Euclidean spanners
(see, e.g., [4, 5, 13, 19]). And thus, among others, Ruppert and Seidel [19] show how to answer a
query in amortized time �=�)�&+ ,/. � � � � � per cone in 6 ; a similar construction is presented in [5]. Arya
et. al. [4] present a fully dynamic algorithm which in polylogarithmic time supports cone approximate
nearest neighbor queries. Notice also that a single cone approximate nearest neighbor query can be
answered using a logarithmic number of simplex (triangular) range queries, which is another classical
geometric data structure (see, e.g., [1, 3, 6]).

3 Estimating the EMST with bounding cube and range queries

In this section we describe a natural approach to the approximation of EMST �	�!� using minimum
bounding cube oracle and orthogonal range queries. This approach, by itself, does not give a good
enough multiplicative approximation, but is used as a building block in the sublinear algorithm we

5

present later. For simplicity, we only describe in detail the two-dimensional case (
� %��); the algorithm

can be generalized to arbitrary
�

in an obvious way. The algorithm we supply is deterministic and
outputs a value � such that �� EMST �	�!� � � �8� � � EMST ����� " � , where � % �=�)�L�	��*�+-,/.0�1� , and� % �=� ��� , where � is the side-length of a minimal bounding cube of � and 2 is a constant. The
algorithm has a running time of �=�)� �	��
 � . We also show that any algorithm that uses the same running
time (in fact, the same amount of queries and arbitrary large running time) cannot significantly improve
the quality of the approximation.

3.1 The quad-tree algorithm

We apply a standard quad-tree subdivision to the bounding cube ��� (see, e.g., [6, Chapter 14]). That
is, we first partition ��� into four disjoint blocks (squares) of equal size. We can check which blocks
contain points from � via orthogonal range queries. We then further subdivide the nonempty blocks,
and iterate this process as long as fewer than F � queries are made. This induces a tree structure on
the blocks, where a block at level � has side length � ?/��� . Let � be the depth of this tree. We may
assume that all nonempty blocks at level �(� 9 were subdivided into subblocks (of level �) and each
subblock of level � was queried. Let � be the set of nonempty blocks at level � and let � %
��
 .
Clearly � % ��� F � � . We now run any minimum spanning tree algorithm (as we will see later, a
�H9 " ;C� -approximation is good enough) on the centers of the blocks in � . This would result in a value�

. We set � % � "
	 F � � , where 	!%$��� ���� and output the value � % F � � as an approximation
for ��� % EMST �	�!� .

Claim 1 For an arbitrary constant 2 , �� ��� � � � � � ������" � , where � % �=�)���	��* +-,C. �1� and� % �=����� .
Proof : First note that the minimum spanning tree of any � points in a

�
-dimensional cube with

side-length � is �=��� �������� � and this bound is tight (i.e., it is achievable for some inputs), see, e.g., [17].
Now, we set

� � be the weight of a minimum weight tree that touches every block in � . It is easy to
see that

� � ����� ��� (the last inequality is by the above upper bound and using convexity).
Assume now that � � F � ? � � � 2 " 9I��+-,/.0�1� ; then it can be seen that

�
upper bounds

� � and
approximates it within an additive term of ����	��� , and hence within a constant factor, say ! . Namely,
����� �!	K� � � � � � !�� � � for some constants � and ! .

Hence, as � is an upper bound on �"� , the approximation factor is � %$#&%!'�� ��? � �D� ? � �D� . By our

choice of � and the fact that
�

approximates
� � up to a constant we get � % �)(!*+-, % �/.10 *24365 %

�87 .:96; <>=2 5 �	��
@? % � . �)�1?��� �	� � 5 (where the last inequality follows by plugging in the expression for

� and
�

and the previous follows from the fact that
�

approximates
� � within a constant factor). Now,

by the above bound on
�

and on � we obtain that � � A�������	��*� . Note that, if we used an approximation�CB
guaranteed to be within a constant factor of

�
, we would still get the same result.

Assume now that � � F �1? � � � 2 " 9I��+-,/.0�1� . Then it can be seen that the depth of the quad-tree
is at least � 2 "�9 �@+ ,/.0� and hence 	 � ��� � �:D �FE ��G . Therefore, the additive term is upper bounded by
� � � �8����	H� F � � � %$�=�)���:D �FE ��GI� �J� �1� %$�����J� �����G� . K

A note on the running time is due here. We use �=�HF � � queries in the course of constructing the
quad-tree. Next, we have to find the minimum spanning tree (or any �H9 " !C� approximation to it for any

6

fixed !). In the two-dimensional case this can be done in E� �GF � � time [20], and this term dominates
the total complexity.

Higher dimensions: In the case of dimension
� � � the quad-tree has to be replaced with a � � -ary

tree. The algorithm will be run similarly to the above until �=�	� � F � � queries have been made, and all
rectangles at the bottom level have been queried. Then,

�
is set similarly to the two-dimensional case,

and � % � "�	 � � � ���� ��� �	� � . The approximation � for �"� is taken to be the same. To have an efficient
running time, a constant approximation for

�
can be used, rather then the exact value. This can be

done in time �=�)� +-,/.0�1� by Callahan and Kosaraju result [7].
It is easy to see that the following replaces Claim 1 with an analogous proof.

Claim 2 For an arbitrary constant 2 , �� ��� � � �<� � ����� " � , where � % ��� � � ��
 � � D � � ��G � � � + ,/.0�1�
and

� % �=����� .
As it turns out, the above quality of approximation is nearly optimal for the given time bound as

shown by the following claim (shown only for the two-dimensional case, a similar result is true for the�
-dimensional case as well).

Claim 3 Any deterministic algorithm for approximating EMST ����� in the two-dimensional case that
uses �=�GF � � orthogonal range queries has an approximation factor of �K�����	��*� .
Proof : Consider any deterministic algorithm that uses at most F � range queries. Consider the
following adversary for supplying the answer to the queries: The adversary will subdivide the unit
square into a mesh of squares, each of side length 	M% = � ������ , namely into 9 � � ���	��
 squares, denoted
blocks. The adversary commits itself to locate � �	��
? 9 � � input points in each block. In what follows,
the adversary will mark some blocks in which he will commit to the internal location of points. The
invariant that is kept is that in unmarked blocks, any configuration of input points is still consistent
with the answers so far.

At the beginning no block is marked. Now, for each queried rectangle, if the query intersects an
unmarked block then the adversary will answer “not-empty.” In addition it will choose one unmarked
block that intersects the given query, mark it and commit to have all points in that block, in an arbitrary
single point in the intersection. If the query intersects only previously marked blocks, then if it contains
any of the previous locations in which the adversary has already committed to have input points then
a “non-empty” answer will be given (this is forced). If the query does not include any of the previous
locations in which the adversary has committed to have input points then the adversary will answer
“empty.”

Keeping up this way, it is easy to see that the adversary can supply consistent answers to all F �
queries.

At the end, since there are 9 ��F � blocks while the adversary has marked at most F � blocks, in� F � blocks there is complete freedom as to where the input points are located within such block. Now
notice that if the adversary chooses to locate all points within a block in one (arbitrary) point then the
minimum spanning tree is of cost �=�)� �	� � � , while, if it chooses to locate the points in each unmarked
block spread uniformly within the block, then the cost of the tree is �K��� �	��
 � . Hence the lower bound
follows. K

Finally, we note that our choice of using ���HF �1� orthogonal range queries was arbitrary; one can
use a different number of queries and obtain a whole range of tradeoffs between the running time and
the quality of approximation.

7

4 Two related previous results

We now describe two previous results that we utilize in our EMST algorithms: the concept of Yao
graphs [23] and an algorithm for approximating the MST in bounded degree graphs due to Chazelle et
al. [10].

4.1 Yao graphs

Yao graphs are Euclidean graphs that relate the EMST to the cone nearest neighbor oracle presented
in Section 2.1. Fix an integer

� � � . Let � be a collection of
�
-dimensional cones with apex at

the origin such that (a) each cone has angular diameter2 at most � , where � is some fixed angle, and
(b) ������� 6 % � � . There is always such a collection � of ��� � B ��
H�	��
� � � ���/?/�C� ��+ ,/. � � ��
�� � � ���C?/�/�J� �
cones (not necessarily disjoint); note that for constant

�
and � this bound is ���H9I� . Yao [23] gives

one possible construction for such a collection. For a point 5 $ � � and a cone 6 $ � , let 6�� be
5 " 6 % �/� " 5 0;� $ 6 � , that is, a translation of 6 so that its apex is at 5 . Let �+��� 5��D6�� be the
nearest neighbor of 5 in the set �	�3) � 5N� � -�6�� . Given a point set � and a collection of cones � , the
Yao graph of � (with respect to �) is the Euclidean graph � with vertex set � and (undirected) edge
set � %&� � 5����C��
�� 6 $#� such that �7%��4��� 5�� 6�� � . That is, each 5#$ � is connected to its nearest
neighbor in each cone which has 5 at its apex. The following result due to Yao [23] motivates our use
of these graphs.

Claim 4 [23] Let � be a point set in � � . Let � be the undirected Yao graph for � with � � � ? � . Then,
the Euclidean minimum spanning tree of � is a subgraph of the Yao graph � . K
4.2 Chazelle et al.: approximate MST in low-degree graphs

Our algorithms make use of a recent algorithm for estimating the weight of MST in graphs due to
Chazelle et al. [10]. This algorithm assumes that the input graph (i) is represented by an adjacency
list, (ii) has degree at most � (the full version of [10] allows � to be the average degree), and (iii) has
known minimum and maximum edge weights, where the ratio of the maximum edge weight to the
minimum is > . Then, for � � ; � �
 , the algorithm estimates the weight of the minimum spanning tree
with a relative error of at most ; , with probability at least B� , and runs in time ����� � > � +-,C. ����>@?I;/�J?A; B � .
(The authors also give a nearly matching lower bound of �K��� �C>@?I;
 � on the time complexity of any
; -approximation algorithm for the MST.)

Let � % �� .��� � , be an input graph having � vertices with maximum degree � and edge weights
in the interval � 9 �D> � . For any � $�� , let � D + G denote the maximal subgraph of � containing edges of
weight at most � , and 2 + denote the number of connected components in � D + G . The main ingredient of
the algorithm from [10] is a procedure approx-number-connected-components run on � D + G for estimating2 + for � % � �
 "$�G� �/; with �K% 9 � � ��	�	�	 � >@?A; . For integer weights, the weight of the MST of � is
equal to � � > ""!$# � �%�& �

2 % . The algorithm uses the above estimations to produce a value which, with
probability at least B� , is a � 9(' ;C� -approximation of the MST of � .

2The angular diameter of a cone) in � < having its apex at point 6�7 � < is defined as the maximum angle between any
two vectors * +6IF and * +6-, , F	.�, 7/) .

8

Procedure approx-number-connected-components works by sampling ���H9 ?A;
 � vertices in � . For
each sampled vertex � , a random estimator

���
is computed by traversing � D + G from � (for example, us-

ing breadth-first search) with a stochastic stopping rule.
���

is a random variable whose distribution is a
function of only the size of the connected component containing � (i.e., the number of vertices reached
from � in the traversal) in � D + G . The simple relation between these sizes and 2 + together with the fact
that the distribution of

���
is concentrated around the expected value yields the connection between���

and 2 + . Procedure approx-number-connected-components runs in expected time ������; ��
 +-,C. ��>�?A;C� � .
Therefore, the expected running time of the algorithm in [10] is ����> � ;4��B�+-,/. ��>@?I;/�J� .

5 A simple estimation for EMST using Yao graphs

The algorithm we present in this section is conceptually an important component of the sublinear
algorithm we design later in Section 6. It combines the two results described in Section 4. Our
algorithm uses the cone nearest neighbor oracle and achieves a query complexity of ��� D � G � E�=�)>@?A;
 � .

Since by Claim 4 the undirected Yao graph � for � contains all edges of the EMST of � , it is
natural to try to apply the algorithm of Chazelle et al. to � to estimate the weight of the EMST of � .
To do that efficiently, instead of generating � at the beginning of the algorithm, we generate the edges
of � (using the cone nearest neighbor queries) only when the edges are needed in the algorithm. That
is, whenever the algorithm needs edges adjacent in � to a vertex 5 , we use the cone nearest neighbor
query to obtain the nearest neighbor of 5 in each cone in � 5 " 6 � ����� . Motivated by Claim 4, we set
the angular diameter of the cones to � ? � . This creates parts of an implicit directed Yao graph � on �
with edges � 5����C� such that there is a 6 $ � where � % �+� � 5�� 6�� .

The above approach has a number of problems. First, the algorithm of Chazelle et al. requires
the input graph to be undirected and represented by an adjacency list, whereas in our model, we have
fast access only to the out-going edges at a vertex in � . Furthermore, the running time is linear in > ,
which can be arbitrarily large. The following lemma helps in overcoming the first difficulty, while the
second one is tackled in the main algorithm in Section 6. The proof of Lemma 1, being a special case
of Claim 5, is omitted.

Lemma 1 Let ���� be the number of vertices in �� that are reachable from � using only edges of weight
at most 	 . Let
��� be the number of vertices in directed Yao graph � reachable from � using only edges
of weight at most 	 . Then
 � � % � � � . K

Equipped with this lemma, we can modify the algorithm due to Chazelle et al. to obtain its efficient
implementation in our model. The only difference is in procedure approx-number-connected-components.
We still sample ���H9I?A;
 � vertices and randomly traverse � D + G from the sampled vertices. To imple-
ment the traversing algorithm we explore the graph in a breadth-first search fashion by going to the
outgoing neighbors of the vertices that are closer than the current threshold weight � . Such a proce-
dure can be easily implemented in our model by using the cone nearest neighbor queries; the running
time is proportional to the number of the edges traversed. To estimate the value of 2 + we use the
same estimators as in [10]. Since for each vertex � in the sample, the distribution of

���
depends

only on
 +� , the number of the vertices reachable from � in � D + G , by Lemma 1, we can conclude
that

��
has the same distribution as in the algorithm of Chazelle et al. [10]. Therefore, the qual-

ity of this algorithm of the estimation of EMST of � is the same as in the algorithm of Chazelle et

9

al. [10]. Since the maximum out-degree of the directed Yao graph is ��� D � G , the modified procedure
approx-number-connected-components has identical complexity to that of running the original algorithm
of Chazelle et al. in a (undirected) graph with maximum degree � � D � G . Thus, we obtain the following
theorem.

Theorem 1 Let � be a set of points in � � . Assume the value > of the spread of � is known and access
to a cone nearest neighbor oracle for � is given. Then, there is an algorithm that outputs a value �
which, with probability at least B� , approximates the values of EMST ����� to within a factor of 9 ' ; with

query complexity E� (� � D � G � >�?A; B , . K
For constant

�
and ; , this complexity is E�=�)>@� , which is sublinear for > % 34�)�1� . However, for

example, on the plane, > is known to be �K�HF �1� , and in general, > may be arbitrarily large. In the next
section, we discuss our main contribution, which is a truly sublinear-time approximation algorithm
whose complexity is independent of > .

6 Sublinear-time approximation algorithm

In this section we show how the two algorithms from Sections 3 and 4 can complement each other.
In addition to improving the running time, our algorithm requires a weaker computational model, in
which the cone nearest neighbor query is replaced by the cone �H9#" ! � -approximate nearest neighbor
query.

6.1 Overview of the algorithm

In Section 6.2, we begin by partitioning a minimal bounding cube ��� of � into blocks of equal size;
we then consider only blocks containing points from � . Next, we group blocks that are “close” to
each other together, calling the resulting clusters connected block-components. The algorithm then
proceeds in two phases. First, in Section 6.5, we show how to approximate the weight of a minimum
spanning forest (MSF) of the connected block-components by using the ideas of Section 5. We then,
in Section 6.6, approximate the optimal way to connect different connected block-components. We
prove in Lemma 2 that the MSF of the connected block-components combined with the optimal set of
edges joining them approximates the EMST of � .

In our analysis, throughout the entire section we assume that � � ; � ���� .

6.2 Partitioning the bounding cube

After the translation and scaling of the points in � we can assume that ��� , the bounding cube of � , is
� �Q� �1?A; � � . In particular, the side length is � % �1?A; and we have a trivial lower bound EMST ����� � � ?A; .

We follow the approach from Section 3 with small modifications, by extending it to higher dimen-
sions and applying a different stopping procedure. We first partition ��� into � � disjoint blocks of equal
size, then partition iteratively the nonempty ones into � � disjoint subcubes, and so on. Call a block at
level � an active block if it contains a point from � . Let � be the number of active blocks at level �
(number of blocks that contain points from �), and � % � ?/�! be the side length of blocks in the � th
level of the subdivision. Let � �@% #&%!' � ; � ��
 ��B F � � � � E �D� . We stop our subdivision at the first level � �

10

Figure 1: Block-partitioning, connected block-components and a schematics to the sublinear algo-
rithm.

such that either � �� � �@� or � �� � � ; . Let �@% � �� and � % � �� . Notice that �:� � � �@� and � � ; . By
our arguments from Section 3, the active blocks at level � � can be found by querying the range query
oracle ����� � � +-,/. ���1?4�); �(�J� times.

6.3 Spanners and connected block-components

For any
� � 9 , a

�
-spanner (see, e.g., [7, 13, 16]) for a set � of points in a Euclidean space is any

Euclidean graph � with the vertex set � such that for every pair of points � ��� $�� there is a path in �
between � and � of total length at most

� ��
 �	�
 .
In our analysis, we will frequently use centers of blocks as the representatives of the blocks. Let� be the set of centers of active blocks and let
��� be a � 9#" ;C? � � -spanner of � with ����� � � ?I;/� � � �J�

edges. Such a spanner can be found in time �����:+ ,/. � "���+-,/. � 9I?A;C� ; � � � %�E�=� F � ; B � � ��
 � [7].
Call two blocks close if the distance between their centers in the graph
��� is at most � � � ,

where � % 9�� F � ?I; . We use equivalence classes of the relation close to define the connected block-
components. That is, two blocks are in the same connected block-component if there is a sequence of
active blocks between them, where every consecutive pair of blocks in the sequence is close. We shall
abuse notation and refer also to the partition of � induced by the connected components as connected
block-components. Notice that all connected block-components can be found in time proportional to
the number of edges in
��� , which is �=�F��� � ?A;C� � � �J� .
6.4 The EMST of P and connected block-components

We refer to the spanning forest of a graph � as a union of spanning trees of the connected components
of � . A minimum spanning forest of � , denoted by MSF ����� , is a spanning forest of � of minimum
weight.

Let � � = be the set of edges of � whose endpoints lie within the same connected block-component.
Let % ��� " F � � � . We now relate block-components to the distances between points.

Observation 1 Let 5 and � be an arbitrary pair of points in � .

1. If
 5���
 � ���M� � F � � � then 5 and � are in the same connected block-component.

11

2. If 5 and � are in the same connected block-component then there is a path between 5 and �
consisting of edges in � � = that are all of length at most ����" F � � � %� .

3. If
 5���
 � � � " F � � � % and 5 and � are in the same connected block-component, then
EMST �	�!� does not contain the edge 5�� .

Proof : For any point 5 $�� , we let 2 � denote the center of the block at level � � that contains 5 .
To see the first assertion, notice that if
 5 ��
 � � � ��� F � � � then
 2 � 2 �
 �&
 5 ��
 � F � � � ��� �

��F � � � . Therefore, the distance in
 �� between 2 � and 2 � is at most �H9 "=;C? � �1� �!� �#F � � � � � � ,
which implies the first claim. Next, this also implies the existence of a path 2 � % 2 D � G � 2 D ��G ��	�	�	 � 2 D 9 G % 2 �
in
��� such that
 2 D � G 2 D � E ��G
 � � � � for all � . Clearly, the corresponding path 57% 5 D � G � 5 D ��G ��	�	�	R� 5 D 9 G %
� with 2 D � G % 2 ������� shows the second assertion, since
 5 D � G 5 D � E ��G
4�
 2 D � G 2 D � E ��G
 " F � � � � �$" F � � .
The third assertion follows from the second one and the fact that the (strictly) largest edge in a cycle
in a graph cannot be part of its MST. K

In our algorithm we use the following graphs:
� � < �
	 � is the graph containing all edges in � � = of weight at most . By Observation 1, the

connected components of MSF � � < �
	 � � are identical to the connected block-components and the
minimum spanning forest of these components is the same as MSF � � < �
	 � � .

� ��� is the directed �H94"B!C� -Yao graph that is obtained from � using the cone � 9 " !C� -approximate
nearest neighbor oracle. We use the same definitions as in the definition of directed Yao graphs
and we formally define � D ��E � G� � 5�� 6�� to be the point that is returned by the cone � 9 " !C� -
approximate nearest neighbor oracle for 5 and 6 . If �	�) � 5,� � - 6 � %

, then � D ��E � G� � 5��D6��
is undefined. Then, ��� is a directed Euclidean graph on � with the edge set containing an edge
� 5�� �/� if there is 6 $ � such that � %$� D ��E � G� � 5�� 6�� .

��� is the minimum weight subgraph of �� that, when added to � < �
	 � � forms a connected graph.

� � 	 ��� is the same as � except that the weights of edges in � � = are considered to be zero. Observe
that the weight of MST ��� 	 ��� � is identical to the weight of � .

The following lemma displays the two-level nature of the algorithm that we will present.

Lemma 2 The sum of the weights of MSF � � < �
	 � � and MST ��� 	 ��� � is a � 9K"�;/?C�/� -approximation of
EMST ����� .
Proof : We show that the union of MSF � � < �
	 � � and � is a spanning tree of � whose weight
approximates the weight of EMST ����� to within a factor of 9 " ;/?C� . From that the lemma follows
immediately.

Clearly, the union of MSF � � < ��	 � � and � forms a spanning tree of � . To prove the second part of
the claim, let us consider an undirected graph � � obtained from � by decreasing to � � ��� F � � � the
weight of every edge in � � = having weight larger than � � � � F � � � and smaller than or equal to .
(Note that we change only the weights of the edges in � < �
	 � .) Since the weight of every edge decreases

by a factor of at most �D��C� � ; � G�� % D���E ; � G��D��C� � ; � G�� � 9@" ;C?/� , we have MST � ��� � � EMST �	�!� ? � 9�" ;C?/�/� .
Notice further that by Observation 1, each edge in � � that is not in � < ��	 � has weight larger than
���=� � F � � � . This means that MST ��� � � must contain a minimal spanning forest of � < ��	 � , and hence
the weight of the union of MSF � � < �
	 � � and � is a �H9 " ;C?/�/� approximation of EMST ����� . K

12

x

β

xx 2
3

yb

a

α

c

γ

z=x1

Figure 2: Illustration to the proof of Claim 5. The figure shows the reachability in � � . The dashed line

is the path showing the connectivity of � and � in � � D D ��E � G � G .
6.5 First level – estimating the weight of MSF

�������
	�����
In this section we show how to estimate the weight of the MST within a single block component. This,
combined for all block components, yields an estimate on the weight of MSF ��� < �
	 � � . Since our model
does not allow constant-time access to the edges of � < �
	 � , we will use the directed Yao graph � � to
estimate the weight of MSF ��� < �
	 � � . Our analysis will explore the relationship between � � and � < �
	 � .

For a weighted graph � denote by
� � � the graph � with edge weights multiplied by

�
. Recall that

� D�� G denotes the subgraph of � consisting of the edges of weight at most � , and 2 � is the number of

connected components in � D�� G< ��	 � . Let ���� and
��� be the number of vertices in � D�� G< ��	 � and in ��� D�� G that are
reachable from � respectively. Notice that 2 � % ! � � � 9I?A� �� . Analogously, define 2 �� % ! � � � 9I?
 �� .
Also, let �2 � be the number of connected components in �H9 " ! � � � D�� G< �
	 � .It follows from [10] (see also Section 4) that

MSF � � D�� G< ��	 � �=� ����� 2 � "
� � ��
� & �
2 � � MSF ��� D�� G< �
	 � �1" � 	 (1)

Since we only have access to � � , we can only deal with the 2 �� ’s rather than the 2 � ’s. To bound the error
due to this replacement, now we relate reachability in � � to reachability in � < �
	 � .
Claim 5 Let ; � �� and ! � ���� . Then for every � and every �M$ � , � � � D ��E � G� �
��� �<����

. In particular,2 � � D ��E � G � 2 �� � 2 � .
Proof : Let us first notice that
 �� �<� �� follows directly from the definition. To show that � � � D ��E � G� �

 �� , it suffices to show that for every � , if a vertex � is reachable in � D � G< �
	 � from a vertex � , then � is

reachable from � in � � D D ��E � G � G . Assume that � is reachable from � in � D � G< ��	 � ; this implies that � and �
are in the same connected block-component. Assume further, without loss of generality, that � �
(indeed, if � � then � D � G< �
	 � % � D � G< �
	 �).Let � be the �H9 ""! � -approximate nearest neighbor of � (returned by the cone approximate nearest
neighbor oracle) in the cone 6�� containing � . Clearly, if � % � , then the claim holds. So let us assume
that ���% � . Let � %
 ���1
 , � %
 �	�
 , 2 %
 ���1
 , and � %! � �	��� � , � %! � ��� �4� , and " %# !� � ��� � , see
Figure 2. Notice that since � and � are contained in the cone 6$� with the angular diameter � ? � , we
have "�� � ? � .

13

We first show the following three inequalities: (i) �M� �H9#""! � � , (ii) 2 �$� , and (iii) #
���/��� 2 � �� ?4�H90" ;C� . Inequality (i) follows directly from the definition of the cone approximate nearest neighbor
oracle. To prove inequality (ii), let us suppose that 2 � � . Then,

� � " , and since " � � ? � , we
obtain that � � � ?/� . This in turn implies that � � F �
 " 2
 � F � � , which contradicts the first
inequality that � � �H9K" ! � � � 9 	 9 �1� . For inequality (iii), we first use the law of cosines to get2
 % �
 " �
 � � � � � , � "$� �
 " �
 � F � ��� , since " � � ? � . To show #
� �/��� 2 � � �? � 9 " ;C�
we assume � � �? �H9 " ;/� and show 2 � �? � 9 " ;C� . Since � � �? � 9 " ;C� � ;

 � , the expression
�
 "��
 � F �I��� increases with � . Therefore, by inequality (i) we obtain

2
 � �
 " �
 � F �I������� � 9 " ! � ��
 " �
 � F � �H9 " ! � �
 % �
 � �	� � F �/� �H9 " !C�C" !
 �M� ���? � 9 "�;C�J�
 �
where the last inequality holds for ; � �� and !�� ���� .

Now, we prove the claim using inequalities (i–iii). Assume, without loss of generality, that
 �	�
 �
� ; otherwise apply the following arguments to all edges on the path between � and � in � D � G< ��	 �F (all the
edges on this path are of length at most �). We define inductively the sequence � % � � � � � � �
 ��	�	�	��
such that for every � , if � � �% � , then � � E � is the � 9 "(!C� -approximate nearest neighbor of � � in the
cone 6 � � containing � . By inequality (ii), the sequence
 � � �
 is strictly decreasing. This immediately
implies that � � % � for some � , and so the sequence is finite.

Next, we show inductively that each � � is in the same connected block-component as � . Suppose
that � � is in the same connected block-component as � . Since the sequence
 � � �
 is decreasing and
since
 �	�
 � � � % � �7" F � � � � , we obtain

 � � �
9#" ; �

 �	�

9#" ; �

��� " F � � � �
9 " ; � ��� " F

� � � �
9 " ; 	

Therefore, using inequality (iii) with �M% � � and ��% � � E � , we obtain

#�
�� ��
 � � � � E �
 �
 � � E � �
 �D� �
 � � �
9#" ; � ���M� F
� � � � 	

Hence, by Observation 1, either � � and � � E � are in the same connected block-component or � � E �
and � are in the same connected block-component. In either case, the transitivity ensures that � � E �
and � are in the same connected block-component. We finally observe that inequality (i) implies that

 � � � � E �
 � � 9 " ! �5
 � � �
 , and since
 � � �
 �
 �	�
 , we obtain
 � � � � E �
 � � 9 " ! �5
 �	�
 . Hence, the sequence
�=% � � � � � � �
 ��	�	�	 ��� corresponds to a path contained in a connected block-component having all edges

of length at most �H9 ";!C��� . This implies that � is reachable from � in � � D D ��E � G � G . K
Let B % � � 9�" !C��� . Motivated by inequality (1), let us introduce an estimator � for the value

of MSF ��� < �
	 � � .
� % �(" ��� � ��

� & �
2 �� � B � 2 �� � 	

We analyze now the quality of this estimator.

Lemma 3 MSF ��� < ��	 �F ����� � � 9 " ! � � MSF � � < ��	 � �1" � .
14

Proof : Let us first remind that �2 � % 2 � � D ��E � G . Next, let us observe that if � � then 2 � % 2 � . As a
corollary, 2 �� � % 2 � % 2 � � . With this, we have the following sequence of inequalities:

MSF � � < ��	 �F � � � " � � ��
� & �
2 � � � 2 � � �(" � � � ��

� & �
2 � �� B � 2 � � % � " � � � ��

� & �
2 � �� B � 2 �� �

� � " � � � ��
� & �
2 �� �� B � 2 �� � % � � �(" � � � ��

� & �
2 � � D ��E � G �� B � 2 �

% � " � � � ��
� & � �2 � �� B � �2 � � � MSF � �H9 ";!C� �J� < ��	 �F �1" �

% �H9 " ! � � MSF ��� < �
	 � � " � 	
The first inequality is due to inequality (1). The second one follows from the observation above. Next,
we use Corollary 5 and the both observations above. The last inequality is implied by inequality (1).K

We now modify the algorithm of Chazelle et al. [10] to obtain a good approximation of � . Let us

first notice that similarly as in Section 5, we can easily traverse the graph � � D�� G : each time we want to
access all edges incident to a point 52$ � , we first ask the cone approximate nearest neighbor queries
to all cones 6�� and then for each nearest neighbor � of 5 in 6 � , we verify if
 5���
 � � and if the blocks to
which 5 and � belong are in the same connected block-component. The first test is a simple ���H9I� time
calculation, while the second requires the computation of the connected block-components. Establish-
ing that, we can apply the approach from Sections 4.2 and 5 to estimate the value 2 � % ! � � � �� & � 2 �� , and
hence to estimate the value of � . For this, we run procedure approx-number-connected-components to
get an estimator

�
� to 2 �� for all �7% 9 � � ��	�	�	 � B , and we now show that

� % ! � � � �� & �
�
� is a good

approximation to 2 � % ! � � � �� & � 2 �� .
An analysis similar to [10] gives

2 � � � ?/� � E
� � 2 � �

and
var
� ����� 2 � ? 	 �

where 	 is the number of random choices of initial vertices in approx-number-connected-components.
Next, using the bounds above, the fact that EMST �	�!� � �1?I; , and Chebyshev’s inequality, we have

��� �
 � � 2 �
 � ;C?/�"� EMST �	�!� � � ��� �
 � � E
�
 � ;C? � � EMST �������

� 9�� var
�

;
 ��� EMST �	�!� �
 �
� �"� � � 2 �

;
 �!	H� � EMST �����J�
 	

We argue that � ��� 2 � ? �);
 	#� EMST �	�!� �
 � % �)(�� 9 , , or alternatively, that � EMST �����J�
 % �K��� 2 � ?A;C� .
Indeed, if 2 � � ���1?A; , then � EMST �	�!� �
 � �)�1?A;C�
 � ��� 2 � ?A; , by our assumption in Section 6.2.
Otherwise, we have to use a stronger lower bound for EMST �	�!� . By Lemma 2, we have

EMST �	�!� % �&� MSF � � < �
	 � �1" MST ��� 	 ��� � �&% � � MSF � � < ��	 �F �1"� B ��� 2 B � �<9I� � 	
15

Next, by Lemma 3, we have

�H9 " ! � � MSF � � < �
	 � � � � � � % 2 � � B � 2 �� � 	
Hence,

EMST �����&% �K� 2 � �� B � 2 �� � " B ��� 2 B � �<9I�J� % �K� 2 � ���
from which it follows that for 2 � � � � ?A; we have, � EMST �	�!� �H
#% � �K� 2 � �J�H
#% �K��� 2 � ?A;C� , as required.

Summarizing the discussion above, we have always � EMST �	�!� �D
 % �K�)� 2 �D?A;C� and hence
��� �
 � � 2 �
 � ;C?/�"� EMST �	�!� � � ��� ���� 9 � 	

Therefore, if we choose 	 % ���H9 ?A;C� , then we obtain
� � �
 � � 2 �
 � ;C?/��� EMST �	�!� � � 9 ? ��	

Next, observe that 2 �� � is nothing but the number of connected block-components, which is known
to the algorithm that computes the connected block-components. This leads to an efficient algorithm
that calculates � B % � " � � B � 2 �� � for which

��� �
 � B � �2
 � �
 ; � EMST �	�!� � � 9I? � . The

complexity of this algorithm, following the analysis from Section 5 (see also [10]) is E��� �C� � D � G ?A;C�
cone approximate nearest neighbor queries. The algorithm approximates 2 � to within an additive
error of � with probability at least B� (see [10]), and hence EMST ����� to within an additive error of
�
 ;�� EMST ����� " !�� EMST �	�!�1" � % � !@" �
 ;C� � EMST ����� " � .

We note that by scaling down all weights by a factor
� � 9 , applying the algorithm above, and

then rescaling to the original weight, we decrease the running time by a factor of
�

, and increase the
additive error by the same factor. In this way we obtain an algorithm that performs E�=� �D� � D � G	? � � ;C� �
cone approximate nearest neighbor queries and achieve an additive error of ��! " �
 ;C� � EMST ����� " � �G� .

Let us examine the term ? � in the running time and the additive error term ��!1" �
 ;C� � EMST �	�!� "
� � � . Recall that there are two possible termination states: � � � � or � � � ; .

Consider first the case � � � � . Since � has � active blocks of size � we have that EMST ����� �
�
 ���

� �?/� � � � 9I� . This bound is achieved by considering a subdivision of the active block to � � �
subcubes of size �(?/� . Now color these subblocks with � � different colors, using the same arrangement
of colors for each of the original active blocks. This induces a partition of the active blocks into � �
monochromatic sets. There has to be a set of

� �?/� � � points in � from different active blocks that
are colored the same. Clearly, the minimal distance between these points must be at least � ?C� , and
hence the bound. Once we established that EMST ����� � �
 ���

� �?/� � ���$9I� , we use the inequalities� � �@� � � � E � to get EMST ����� � �� � �)���?/� � . Setting
� % � < �*��
 � = we upper bound the relative error by

!@" ;C?/�@"
� � �

�� � � ���?/� � % 9 ";!@" ; 	
The running time, using the fact that � � � � � ; � ��
 ��B F � , is bounded by

E�=� B ? � � ;/�J�&% E��� F � �A� � � �1? �F�D; B �J� � E�=� F � �A� � � F � ?A; � ��
 � % E��� F � ?A; � ��
 � 	
On the other hand, when � � � ; , we use the trivial lower bound EMST ����� � �1?I; , and by setting
� % 9I?/� obtain a multiplicative error of 9@" ! " ; . In this case notice that B % � �H9�" !C�-� � � F � �
�H9 " 9�� ?A;C� �:% ���H9I� . And so, we bound the running time by

 ?4� � ; B �(% E�=� ; ��B �#� E�=� F � ?I;
 E � ��
 �
16

for
� � � .
Thus we have the following lemma.

Lemma 4 Given the graph � < ��	 � , there is an algorithm that estimates with probability at least B�the weight of MSF ��� < �
	 � � to within a multiplicative relative error of !K"<; . The algorithm requires
E�=��F �1?I;
 E � ��
� range queries and cone �H9�" !C� -approximate nearest neighbor queries (for !�� ;C? �).K
6.6 Second level — estimating the weight of MST

��� 	�� � �
Let

�
be the complete undirected graph with the vertex set � , the set of active blocks, and with the

edge weights equal to the Euclidean distances between the corresponding block-centers if the blocks
are in different connected block-components, and zero otherwise. Arguments similar in the spirit
of Observation 1 can be used to show that 9 � ;C?/� � MST ��� 	 ��� � ? EMST � � � � 9 "<;C?/� . Therefore,
to obtain a good estimation of the weight of MST � � 	 ��� � it is sufficient to estimate the weight of a
minimum spanning tree of

�
.

We could find a minimum spanning tree of
�

by calling any algorithm that finds a minimum
spanning tree in graphs. However, any such algorithm requires time �K�F�
� , because

�
contains ' �F�
�

edges. To improve the running time to E����� ; �G� � ��% E�=��F �1?I;
 E � ��
� we use
��� , which is the � 9@"
;/? � � -spanner of � (having ����� �H9I?A;C� � � � � edges) defined in Section 6.2. Let � be any spanning forest
of the subgraph of

�
induced by the edges of weight � . It is easy to see that the weight of any minimum

spanning tree of
�

is identical to the weight of a minimum spanning tree of
�

that uses the edges from
� .

We create a new graph � � with the vertex set � and the edge set which is the union of the edges
in � and the spanner edges. Then, we apply, for instance, the classical Kruskal’s algorithm to find in
time ����� ; �G� � + ,/. ���?A; � �J�@% E�=�GF � ?A;A
 E � ��
 � a minimum weight spanning tree of � � . It is easy to see
now that the obtained spanning tree of � is a spanning tree of � that uses edges from � and whose
weight is at most �� ; times greater than the minimum. We summarize the discussion in this section in
the following lemma.

Lemma 5 There is an algorithm which, given as input the graph � < �
	 � , estimates the weight of � to
within a relative error of B� ; with running time E���GF �1?A;A
 E � ��
 � .

Our analysis in this section can be improved in the case where
� %8� . In this case, one can simplify

the arguments to achieve the running time of ������+-,/. ��0%$�=�HF � + ,/. ��F �1?I;/�J?A;C� .
6.7 Estimating the weight of MSF

��� ��� 	��� ���
MST

��� 	�� � �
Now, we can summarize our algorithm for estimating the EMST of any set of points in � � . We use the
fact that � % ' ���1?I;/� and apply Lemmas 2, 4, and 5 to estimate the weight of the EMST. Summing up
the error terms in our estimation we get that the multiplicative relative error is at most !:"<� �� ; with
probability at least B� . Using ; B % ;C? � as the input parameter for our algorithm we can conclude with
the following main theorem of the paper.

17

Theorem 2 Let � be a set of � points in � � for a constant
�
. Let ; be any real number, � � ; � ���� , and

let ! � ;C? � . There is an algorithm that with probability at least B� estimates the weight of a Euclidean

minimum spanning tree of � with a relative error of at most ; . This algorithm runs in E�=��F �1?I;
 E � ��
�
time and requires E���GF � ?A;A
 E � ��
� orthogonal range queries, E�=��F �1?I;
 E � ��
� cone �H9�"#! � -approximate
nearest neighbor queries, and a single minimal bounding cube of � . K

Let us also mention that the remark at the end of Section 6.6 can be incorporated here to improve
the complexity bounds in the most basic case when

� % � , that is, for the EMST problem on the
Euclidean plane. Then, we obtain the following theorem.

Theorem 3 Let � be a set of � points in ��
 . Let ; be any real number, � � ; � ���� , and let ! ��;C? � .
There is an algorithm that, with probability at least B� , estimates the weight of a Euclidean minimum

spanning tree of � with a relative error of at most ; . This algorithm runs in E��� F �1?A;C� time and
requires E�=� F � ?A;C� orthogonal range queries, E��� F �1?A;C� cone �H9 " !C� -approximate nearest neighbor
queries, and a single minimal bounding cube of � . K
Acknowledgements

We thank Bernard Chazelle and Sariel Har-Peled for helpful discussion on geometric data structures.

References

[1] P. K. Agarwal. Range searching. In Handbook of Discrete and Computational Geometry, pp.
575–598. CRC Press, Boca Raton, FL, 1997.

[2] P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. Euclidean minimum spanning
trees and bichromatic closest pairs. Discrete & Computational Geometry, 6:407–422, 1991.

[3] P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In Advances in
Discrete and Computational Geometry, pp. 1–56. AMS Press, 1999.

[4] S. Arya, D. M. Mount, and M. Smid. Dynamic algorithms for geometric spanners of small
diameter: Randomized solutions. Discrete & Computational Geometry, 13(2):91–107, 1999.

[5] S. Arya and M. Smid. Efficient construction of a bounded-degree spanner with low weight.
Algorithmica, 17(1):33–54, January 1997.

[6] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry –
Algorithms and Applications. Springer-Verlag, Berlin, 1997.

[7] P. B. Callahan and S. R. Kosaraju. Faster algorithms for some geometric graph problems in higher
dimensions. In Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 291–300, 1993.

[8] B. Chazelle. Lower bounds for orthogonal range searching: I. The reporting case. Journal of the
ACM, 37(2):200–212, April 1990.

18

[9] B. Chazelle. Lower bounds for orthogonal range searching: II. The arithmetic model. Journal of
the ACM, 37(3):439–463, June 1990.

[10] B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the minimum spanning tree weight
in sublinear time. In Proceedings of the 28th Annual International Colloquium on Automata,
Languages and Programming (ICALP), pp. 190–200, 2001.

[11] A. Czumaj and C. Sohler. Property testing with geometric queries. In Proceedings of the 9th
Annual European Symposium on Algorithms (ESA), pp. 266–277, 2001.

[12] D. Z. Du and F. K. Hwang. Gilbert-Pollack conjecture on Steiner ratio is true. Algorithmica,
7:121–135, 1992.

[13] D. Eppstein. Spanning trees and spanners. In Handbook of Computational Geometry, pp. 425–
461. Elsevier Science B.V., 1997.

[14] D. Eppstein. Dynamic Euclidean minimum spanning trees and extrema of binary functions.
Discrete & Computational Geometry, 13(1):111–122, Jan 1995

[15] J. Erickson. On the relative complexity of some geometric problems. In Proceedings of the 7th
Canadian Conference on Computational Geometry (CCCG), pp. 85–90, 1995.

[16] J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Fast greedy algorithms for constructing
sparse geometric spanners. SIAM Journal on Computing, 31(5): 1479–1500, 2002.

[17] R. M. Karp and J. M. Steele. Probabilistic analysis of heuristics. In E. L. Lawler, J. K. Lenstra,
A. H. G. Rinnooy Kan, and D. B. Shmoys, editors, The Traveling Salemsan Problem, chapter 6,
pages 181–205. John Wiley & Sons, 1985.

[18] G. S. Lueker. A data structure for orthogonal range queries. In Proceedings of the 19th IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 28–34, 1978.

[19] J. Ruppert and R. Seidel. Approximating the
�
-dimensional complete Euclidean graph. In Pro-

ceedings of the 3rd Canadian Conference on Computational Geometry (CCCG), pp. 207–210,
1991.

[20] M. I. Shamos and D. Hoey. Closest-point problems. In Proceedings of the 16th IEEE Symposium
on Foundations of Computer Science (FOCS), pp. 151–162, 1975.

[21] V. V. Vazirani. Approximation Algorithms. Springer-Verlag, Berlin, 2001.

[22] D. E. Willard. Predicate-Oriented Database Search Algorithms. PhD thesis, Harvard University,
Aiken Computation Lab, Cambridge, MA, 1978. Report TR-20-78.

[23] A. C.-C. Yao. On constructing minimum spanning trees in � -dimensional spaces and related
problems. SIAM Journal on Computing, 11(4):721–736, November 1982.

19

