CSC2414 - Metric Embeddings* Lecture 8: Sparsest Cut and Embedding to ℓ_{1}

Notes taken by Nilesh Bansal revised by Hamed Hatami

Abstract

Summary: Sparsest Cut (SC) is an important problem with various applications, including those in VLSI layout design, packet routing in distributed networking, and clustering. But since sparsest cut is NP-hard, we need to find approximate algorithms. Solution to uniform Multi Commodity Flow (MCF) problem using Linear Programming (LP) can be used to approximate SC by $O(\log n)$ in polynomial time. We then discuss, Poincaré inequalities for ℓ_{1} metrics, which can be used to find lower bounds for distortion for embedding a metric to ℓ_{1}. This discussion is further continued, and we define k-gonal inequalities and hypermetrics.

1 Sparsest Cut

Definition 1.1. Flux of a graph $G=(V, E)$ is defined as,

$$
\alpha_{G}=\min _{S \subset V,|S| \leq|V| / 2} \frac{|E(S, \bar{S})|}{|S|} \text {, where } \bar{S}=V \backslash S .
$$

The cut S which minimizes the flux is known as the minimum quotient separator. Computing minimum quotient separator is NP-complete.

Definition 1.2. Sparsity of a graph $G=(V, E)$ is defined as,

$$
\beta_{G}=\min _{S \subset V} \frac{|E(S, \bar{S})|}{|S| \cdot|\bar{S}|} .
$$

The cut S which minimizes the sparsity is known as the sparsest cut (SC), which is NP-hard to compute.

Remark 1.3. Sparsity and flux of a graph are closely related.

$$
\alpha_{G} \leq n \beta_{G} \leq 2 \alpha_{G}
$$

[^0]
1.1 Approximate Solutions to Sparsest Cut

Lemma 1.4. Solving sparsest cut is equivalent to solving

$$
\begin{array}{cl}
\text { minimize } & \sum_{i j \in E} d(i, j) \\
\text { subject to } & \sum_{i, j \in V} d(i, j)=1 \\
& d \in \ell_{1}
\end{array}
$$

Proof. If δ_{S} represents the metric corresponding to the cut S, we can write,

$$
\frac{|E(S, \bar{S})|}{|S| \cdot|\bar{S}|}=\frac{\sum_{i, j \in E} \delta_{S}(i, j)}{\sum_{\forall i, j} \delta_{S}(i, j)}
$$

and therefore,

$$
\min _{S} \frac{|E(S, \bar{S})|}{|S| \cdot|\bar{S}|}=\min _{S} \frac{\sum_{i, j \in E} \delta_{S}(i, j)}{\sum_{\forall i, j} \delta_{S}(i, j)}
$$

Recall that ℓ_{1} metrics are linear combinations of cut metrics, and therefore cut metrics are extreme rays of ℓ_{1}. From the lemma proved in the last lecture, ratio in the equation above is minimized at one of the extreme rays of the cone. Therefore,

$$
\min _{S} \frac{|E(S, \bar{S})|}{|S| \cdot|\bar{S}|}=\min _{d \in \ell_{1}} \frac{\sum_{i, j \in E} d_{i j}}{\sum_{\forall i, j} d_{i j}} .
$$

Since this is invariant to scaling, without loss of generality, we can assume that the sum $\sum_{\forall i, j} d_{i j}=1$.

If we relax our requirement from $d \in \ell_{1}$ to d is a metric by adding $3\binom{n}{3}$ triangle inequalities, we can solve this problem in polynomial time using Linear Programming (LP). The relaxed LP to solve is.

$$
\begin{array}{ll}
\text { minimize } & \sum_{i j \in E} d(i, j) \\
\text { subject to } & \sum \quad d(i, j)=1 \\
& d(i, j \in V \tag{1}\\
& d(i, j) \leq d, \text { and } d(i, j)=d(j, k)+d(j, k)
\end{array}
$$

Theorem 1.5. There exists an $O(\log n)$ approximate algorithm for the sparsest cut problem.

Theorem 1.5 is due to [LLR94] but it originally appeared in [LR88].

Proof. Equation 1 can be solved using LP to get a solution d^{*} (which is a metric). Using the Bourgain's theorem [Bou85], we can find an embedding of d^{*} to $d \in$ $\ell_{1} O\left(\log ^{2} n\right)$ with distortion $O(\log n)$. Now d can be expressed as a linear combination of $O\left(n \log ^{2} n\right)$ cut metrics.

$$
d=\sum_{S \in \mathcal{S}} \lambda_{S} \delta_{S}, \text { where } \mathcal{S} \text { is a collection of cuts. }
$$

Since d is in the cone of cut metrics,

$$
\min _{S \in \mathcal{S}} \frac{\sum_{i, j \in E} \delta_{S}(i, j)}{\sum_{\forall i, j} \delta_{S}(i, j)} \leq \frac{\sum_{i, j \in E} d_{i j}}{\sum_{\forall i, j} d_{i j}} .
$$

From Bourgain's theorem,

$$
\frac{\sum_{i, j \in E} d_{i j}}{\sum_{\forall i, j} d_{i j}} \leq O(\log n) \frac{\sum_{i, j \in E} d_{i j}^{*}}{\sum_{\forall i, j} d_{i j}^{*}}
$$

But,

$$
\frac{\sum_{i, j \in E} d_{i j}^{*}}{\sum_{\forall i, j} d_{i j}^{*}}=\min _{d^{\prime} \text { is metric }} \frac{\sum_{i, j \in E} d^{\prime}}{\sum_{\forall i, j} d^{i j}} \leq \min _{\forall S} \underset{\sum_{i j}, j \in E \delta_{S} \delta_{S}(i, i, j, j)}{\sum_{\forall i, j}}
$$

Therefore,

$$
\min _{S \in \mathcal{S}} \frac{\sum_{i, j \in E} \delta_{S}(i, j)}{\sum_{\forall i, j} \delta_{S}(i, j)} \leq O(\log n) \frac{\sum_{i, j \in E} d_{i j}^{*}}{\sum_{\forall i, j} d_{i j}^{*}} \leq O(\log n) \min _{\forall S} \frac{\sum_{i, j \in E} \delta_{S}(i, j)}{\sum_{\forall i, j} \delta_{S}(i, j)}
$$

1.2 Non-Uniform Sparsest Cut

What we have discussed till now can be generalized to the case of non-uniform sparsest cut, where we have to minimize

$$
\frac{\sum_{\forall i, j} \gamma_{i j} \delta_{S}(i, j)}{\sum_{\forall i, j} \eta_{i j} \delta_{S}(i, j)}
$$

For the problem of uniform sparsest cut, $\gamma_{i j}=1$ if $i, j \in E$, and 0 otherwise; and $\eta_{i j}=1$ always.

2 Multi Commodity Flow Problem

In a Multi Commodity Flow (MCF) problem, there are $k \geq 1$ commodities, each with its own source s_{i}, sink t_{i} and demand D_{i}. The aim is to simultaneously route all the commodities from their source to sink in a way that total amount of commodity passing through an edge is not more than the capacity of the edge. In our analysis we will only discuss a special kind of MCF that we call a uniform multi-commodity flow
problem. In this special case, all edges have capacity 1 , and demand D_{i} is same for all the commodities. Hence the problem statement in the uniform multi-commodity flow problem is to ship simultaneously maximum amount λ of commodity between each pair of vertices.

Remark 2.1. Uniform multi-commodity flow problem forms the dual to the approximate sparsest cut problem presented in Equation (1).

2.1 Uniform Sparsest Cut

If we want to ship λ units from each vertex in S to \bar{S}, the total flow across the cut will be $|S||\bar{S}|$. Since the number of edges carrying this load is $E(S, \bar{S})$, the maximal flow λ between each pair is bounded by

$$
\lambda \leq \frac{E(S, \bar{S})}{|S||\bar{S}|}
$$

Any feasible solution to uniform MCF must therefore have $\lambda \leq \beta_{G}$, where β_{G} is the solution to sparsest cut problem, $\beta_{G}=\min _{S \subset V} \frac{|E(S, \bar{S})|}{|S| \cdot|\bar{S}|}$. While $\lambda \leq \beta_{G}$ is necessary, it is not always sufficient for a uniform MCF to have a flow of size λ. Since MCF forms dual to approximate bet $_{G}$, from Theorem 1.5, $\beta_{G} \leq O(\log n) \lambda$. Therefore,

$$
\lambda \leq \beta_{G} \leq O(\log n) \lambda
$$

Now we will prove that $O(\log n)$ is a tight bound by providing an example where $\beta_{G} \geq \Omega(\log n) \lambda$. Consider a constant degree expander graph G with degree r. We want to ship λ units of commodity between every pair of vertices. The contribution to total load from flow between two vertices x and y is at least $\lambda d_{G}(x, y)$, where $d_{G}(x, y)$ is the length of shortest path. Hence total load is at least $\lambda \sum_{\forall i, j} d_{G}(i, j)$. Since for a constant degree graph, a large fraction of pair of vertices are in distance $O(\log n)$ asymptotically,

$$
\lambda \sum_{\forall i, j} d_{G}(i, j)=\lambda \Omega\left(n^{2} \log n\right)
$$

Since total number of edges is $n r / 2$ with capacity 1 each,

$$
\lambda \Omega\left(n^{2} \log n\right) \leq \frac{n r}{2} \cdot 1
$$

Therefore $\lambda=O\left(\frac{1}{n \log n}\right)$.
Since $\frac{|E(S, \bar{S})|}{\min (|S|,|\bar{S}|)} \geq \epsilon$ for every $S \subseteq V$ in expander graphs,

$$
\frac{|E(S, \bar{S})|}{|S| \cdot|\bar{S}|} \geq \frac{1}{n} \cdot \frac{|E(S, \bar{S})|}{\min (|S|,|\bar{S}|)}=\Omega\left(\frac{1}{n}\right)
$$

The difference in the solution to MCF and SC in this case is $O(\log n)$.
Remark 2.2. Sparsest Cut is NP-hard. MCF is solvable using linear programming. Solution to MCF is within $O(\log n)$ to the solution of the sparsest cut. Hence we can use MCF to find $O(\log n)$ approximation to sparsest cut.

3 Lower Bound for Embedding to ℓ_{1}

To compute the lower bounds for distortion when embedding to ℓ_{1}, we will first construct an inequality that holds for ℓ_{1}, and then use this inequality to say something about distortion while embedding to ℓ_{1}. The inequality we will construct falls under the general class of Poincaré inequalities, and is of form,

$$
\begin{equation*}
\sum_{i, j} \alpha_{i j}\left\|x_{i}-x_{j}\right\|_{1} \geq \sum_{i, j} \beta_{i j}\left\|x_{i}-x_{j}\right\|_{1} \tag{2}
\end{equation*}
$$

We need to determine α, β such that Equation (2) holds true. Distortion for embedding a metric d to ℓ_{1} will be at least,

$$
\frac{\sum_{i, j} \beta_{i j} d(i, j)}{\sum_{i, j} \alpha_{i j} d(i, j)},
$$

if Equation (2) holds true for all ℓ_{1} metrics.
Since linear metrics can be expressed as a linear combination of cut metrics, for every $d_{1} \in \ell_{1}, d_{1}=\sum_{S \in \mathcal{S}} \lambda_{S} \delta_{S}$. Thus Equation (2) will hold true if the equation below holds true for all $S \in \mathcal{S}$.

$$
\begin{align*}
\sum_{i, j} \alpha_{i j} \delta_{S}(i, j) & \geq \sum_{i, j} \beta_{i j} \delta_{S}(i, j) \\
\Leftrightarrow \sum_{i, j \text { separated by } S} \alpha_{i j} & \geq \sum_{i, j \text { separated by } S} \beta_{i j} \tag{3}
\end{align*}
$$

Let G be a graph with d_{G} as the metric induced by it, then one possible attempt to determine α and β can be to set,

$$
\begin{aligned}
\alpha_{i j} & =1 \text { if } i, j \in E \text { and } 0 \text { otherwise (} E \text { is the edge set), } \\
\text { and } \beta_{i j} & =\beta, \text { a constant. }
\end{aligned}
$$

In this case, for a cut S,

$$
\begin{aligned}
& \sum_{i, j \text { separated by } S} \alpha_{i j}=|E(S, \bar{S})|, \\
& \text { and } \sum_{i, j \text { separated by } S} \beta_{i j}=\beta \cdot|S| \cdot|\bar{S}| .
\end{aligned}
$$

Since this must hold true for all S, we can set $\beta=\min _{S} \frac{|E(S, \bar{S})|}{|S| \cdot|\bar{S}|}$ for the Poincaré inequality in Equation 2 to hold true. Therefore, the minimum distortion for embedding a metric d in ℓ_{1} is at least,

$$
\frac{\sum_{i, j} \beta_{i j} d(i, j)}{\sum_{i, j} \alpha_{i j} d(i, j)}=\frac{\min _{S} \frac{|E(S, \bar{S})|}{|S| \cdot|\bar{S}|} \cdot \sum_{i, j} d(i, j)}{|E|}
$$

For a constant degree expander G with n nodes and degree r this becomes,

$$
\frac{\frac{\epsilon}{n} \cdot \Omega\left(n^{2} \log n\right)}{n r}=\Omega(\log n)
$$

because in a constant degree graph, a constant fraction of n^{2} pair of vertices have length $O(\log n)$ asymptotically.

Theorem 3.1. A constant degree expander graph requires distortion $\Omega(\log n)$ for embedding to ℓ_{1}.

$3.1 k$-Gonal Inequalities

Let b be an n-dimensional integral vector, $b \in \mathbb{Z}^{n}$, such that $\sum_{i} b_{i}=1$. Equation (2) holds true if we set ${ }^{1}$,

$$
\alpha_{i j}=\left(b_{i} b_{j}\right)^{-} \text {and } \beta_{i j}=\left(b_{i} b_{j}\right)^{+}
$$

[^1]This can proved by proving the Equation (3) for all S.

$$
\begin{aligned}
\sum_{i, j \text { separated by } S}-\alpha_{i j} & +\sum_{i, j \text { separated by } S} \beta_{i j} \\
& =\sum_{i, j \text { separated by } S}\left(\left(b_{i} b_{j}\right)^{-}+\left(b_{i} b_{j}\right)^{+}\right) \\
& =\sum_{i, j \text { separated by } S} b_{i} b_{j} \\
& =\left(\sum_{i \in S} b_{i}\right) \cdot\left(\sum_{j \notin S} b_{j}\right) \\
& =\left(\sum_{i \in S} b_{i}\right) \cdot\left(1-\sum_{j \in S} b_{j}\right) \text { because } \sum_{i} b_{i}=1 \\
& =M \cdot(1-M) \text { where } M=\sum_{i \in S} b_{i} \text { is an integer } \\
& \leq 0
\end{aligned}
$$

Remark 3.2. For all $b \in \mathbb{Z}^{n}$, such that $\sum_{i} b_{i}=1$,

$$
\begin{equation*}
\sum_{i, j}\left(b_{i} b_{j}\right)^{-}\left\|x_{i}-x_{j}\right\|_{1} \geq \sum_{i, j}\left(b_{i} b_{j}\right)^{+}\left\|x_{i}-x_{j}\right\|_{1} \tag{4}
\end{equation*}
$$

is a valid inequality. This inequality is known as k-gonal inequality, with $k=\sum_{i}\left|b_{i}\right|$.
Example 3.3. Let $b_{i}=1, b_{j}=1$ and $b_{l}=-1$ and all other $b_{k}=0$. Equation 4 can be written as,

$$
\begin{gathered}
b_{i} b_{j}\left\|x_{i}-x_{j}\right\|_{1}+b_{i} b_{l}\left\|x_{i}-x_{l}\right\|_{1}+b_{j} b_{l}\left\|x_{l}-x_{j}\right\|_{1} \leq 0 \\
\text { i.e., }\left\|x_{i}-x_{j}\right\|_{1} \leq\left\|x_{i}-x_{l}\right\|_{1}+\left\|x_{l}-x_{j}\right\|_{1}
\end{gathered}
$$

which is the well known triangle inequality.
Example 3.4. Consider a vector $b=(1,1,1,-1,-1) \in \mathbb{Z}^{5}$. Thus if a metric d is in ℓ_{1}, it must satisfy,

$$
\begin{equation*}
d_{12}+d_{23}+d_{13}+d_{45} \leq d_{14}+d_{24}+d_{34}+d_{15}+d_{25}+d_{35} \tag{5}
\end{equation*}
$$

Consider the bipartite graph $K_{2,3}$ with metric $d_{K_{2,3}}$. For this graph metric, LHS of Equation (5) is 8, while RHS is 6 . Hence $K_{2,3}$ can not be isometrically embedded to ℓ_{1}, and the distortion must be at least $\frac{8}{6}$.

Remark 3.5. If a metric d satisfies the all the k-gonal inequalities, then d is a hypermetric. Therefore, ℓ_{1} is a hypermetric.

Figure 1: $K_{2,3}$ bipartite graph

Figure 2: A schematic diagram showing that all ℓ_{2} metrics are ℓ_{1}, which in turn are hypermetrics.

References

[Bou85] J. Bourgain. On lipschitz embedding of finite metric spaces in hilbert space. Israel Journal of Mathematics, 1985.
[LLR94] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its algorithmic applications. In 35th Annual Symposium on Foundations of Computer Science, pages 577-591, Santa Fe, New Mexico, 20-22 November 1994. IEEE.
[LR88] Tom Leighton and Satish Rao. An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approxima-
tion algorithms. In 29th Annual Symposium on Foundations of Computer Science, pages 422-431, White Plains, New York, 24-26 October 1988. IEEE.

[^0]: * Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.

[^1]: ${ }^{1}$ For a real number $a,(a)^{+}=a$ if $a \geq 0$ and 0 otherwise. $(a)^{-}=(a)^{+}-a$. Examples, $(7)^{+}=7$, $(-7)^{+}=0,(-3)^{+}=0,(-3)^{-}=3$.

