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Abstract. Inverse graphics attempts to take sensor data and infer 3D
geometry, illumination, materials, and motions such that a graphics ren-
derer could realistically reproduce the observed scene. Renderers, how-
ever, are designed to solve the forward process of image synthesis. To
go in the other direction, we propose an approximate differentiable ren-
derer (DR) that explicitly models the relationship between changes in
model parameters and image observations. We describe a publicly avail-
able OpenDR framework that makes it easy to express a forward graph-
ics model and then automatically obtain derivatives with respect to the
model parameters and to optimize over them. Built on a new auto-
differentiation package and OpenGL, OpenDR provides a local optimiza-
tion method that can be incorporated into probabilistic programming
frameworks. We demonstrate the power and simplicity of programming
with OpenDR by using it to solve the problem of estimating human body
shape from Kinect depth and RGB data.

Keywords: Inverse graphics, Rendering, Optimization, Automatic Dif-
ferentiation, Software, Programming

1 Introduction

Computer vision as analysis by synthesis has a long tradition [9, 24] and remains
central to a wide class of generative methods. In this top-down approach, vision
is formulated as the search for parameters of a model that is rendered to produce
an image (or features of an image), which is then compared with image pixels
(or features). The model can take many forms of varying realism but, when
the model and rendering process are designed to produce realistic images, this
process is often called inverse graphics [3,33]. In a sense, the approach tries to
reverse-engineer the physical process that produced an image of the world.

We define an observation function f(©) as the forward rendering process
that depends on the parameters ©. The simplest optimization would solve for
the parameters minimizing the difference between the rendered and observed
image intensities, F(0) = || f(©) — I||?. Of course, we will specify much more
sophisticated functions, including robust penalties and priors, but the basic idea
remains — minimize the difference between the synthesized and observed data.
While much has been written about this process and many methods fall under
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this rubric, few methods literally adopt the inverse graphics approach. High
dimensionality makes optimizing an objective like the one above a challenge;
renderers have a large output space, and realistic renderers require a large input
parameter space. Fundamentally, the forward rendering function is complex, and
optimization methods that include it are often purpose-built with great effort.
Put succinctly, graphics renderers are not usually built to be inverted.

Here we fully embrace the view of vision as inverse graphics and propose a
framework to make it more practical. Realistic graphics engines are available
for rendering the forward process and many discriminative approaches exist to
recover scene properties directly from images. Neither explicitly models how the
observables (pixels or features) smoothly change with model parameters. These
derivatives are essential for optimization of high-dimensional problems and con-
structing these derivatives by hand for each application is onerous. Here we
describe a general framework based on differentiating the render. We define a
differentiable renderer (DR) as a process that (1) supplies pixels as a function of
model parameters to simulate a physical imaging system and (2) supplies deriva-
tives of the pixel values with respect to those parameters. To be practical, the
DR also has to be fast; this means it must have hardware support. Consequently
we work directly with OpenGL. Because we make it publicly available, we call
our framework OpenDR (http://open-dr.org).

Since many methods formulate generative models and differentiate them,
why has there been no general DR framework until now? Maybe it is because
rendering seems like it is not differentiable. At some level this is true, but the
question is whether it matters in practice. All renderers are approximate and
our DR is no exception. We describe our approximations in Sections 3 and 4 and
argue that, in practice, “approximately differentiable” is actually very useful.

Our goal is not rendering, but inverse rendering: we wish to specify and mini-
mize an objective, in which the renderer is only one part. To that end, our DR is
built upon a new autodifferentiation framework, called Chumpy, in Python that
makes programming compact and relatively easy. Our public autodiff framework
makes it easy to extend the basic features of OpenDR to address specific prob-
lems. For example, instead of specifying input geometry as vertices, one might
parameterize the vertices in a shape space; or in the output, one might want a
Laplacian pyramid of pixels, or edges, or moments, instead of the raw pixel val-
ues. While autodifferentiation does not remove the need to write these functions,
it does remove the need to differentiate them by hand.

Using this we define the OpenDR framework that supports a wide range of
real problems in computer vision. The OpenDR framework provides a compact
and efficient way of expressing computer vision problems without having to worry
about how to differentiate them. This is the first publicly-available framework
for differentiating the image generation process.

To evaluate the OpenDR, and to illustrate how to use it, we present two
examples. The first is a simple “hello world” example, which serves to illustrate
the basic ideas of the OpenDR. The second, more complex, example involves
fitting an articulated and deformable model of 3D human body shape to image
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and range data from a Kinect. Here we optimize 3D body shape, pose, lighting,
albedo, and camera parameters. This is a complex and rich generative model and
optimizing it would generally be challenging; with OpenDR, it is straightforward
to express and optimize.

While differentiating the rendering process does not solve the computer vision
problem, it does address the important problem of local refinement of model
parameters. We see this as piece of the solution that is synergistic with stochastic
approaches for probabilistic programming [22]. We have no claim of novelty
around vision as inverse graphics. Our novelty is in making it practical and easy
to solve a fairly wide class of such problems. We believe the OpenDR is the first
generally available solution for differentiable rendering and it will enable people
to push the analysis-by-synthesis approach further.

2 Related Work

The view of vision as inverse graphics is nearly as old as the field itself [3]. Tt
appears in the work of Grenander on analysis by synthesis [9], in physics-based
approaches [13], in regularization theory [5,32], and even as a model for human
perception [18,24, 27]. This approach plays an important role in Bayesian models
and today the two notions are tightly coupled [19]. In the standard Bayesian for-
mulation, the likelihood function specifies the forward rendering process, while
the prior constrains (or regularizes) the space of models or parameters [19]. Typ-
ically the likelihood does not involve an actual render in the standard graphics
sense. In graphics, “inverse rendering” typically refers to recovering the illumi-
nation, reflectance, and material properties from an image (e.g. the estimation
of BRDFs); see [26] for a review. When we talk about inverting the rendering
process we mean something more general, involving the recovery of object shape,
camera parameters, motion, and illumination.

The theory of inverse graphics is well established, but what is missing is the
direct connection between rendering and optimization from images. Graphics is
about synthesis. Inference is about going from observations to models (or pa-
rameters). Differentiable rendering connects these in a concrete way by explicitly
relating changes in the observed image with changes in the model parameters.

Stochastic Search and Probabilistic Programming. Our work is similar philosophy
to Mansinghka et al. [22]. They show how to write simple probabilistic graphics
programs that describe the generative model of a scene and how this relates
to image observations. They then use automatic and approximate stochastic
inference methods to infer the parameters of the scene model from observations.
While we share the goal of automatically inverting graphics models of scenes,
our work is different and complimentary. They address the stochastic search
problem while we address the deterministic refinement problem. While stochastic
sampling is a good way to get close to a solution, it is typically not a good way
to refine a solution. A full solution is likely to incorporate both of these elements
of search and refinement, where the refinement stage can use richer models,
deterministic optimization, achieve high accuracy, and be more efficient.



4 Matthew M. Loper and Michael J. Black

Our work goes beyond [22] in other ways. They exploit a very general but
computationally inefficient Metropolis-Hastings sampler for inference that will
not scale well to more complex problems. While their work starts from the
premise of doing inference with a generic graphics rendering engine, they do
not cope with 3D shape, illumination, 3D occlusion, reflectance, and camera
calibration; that is, they do no render graphics scenes as we typically think of
them. None of this is to diminish the importance of that work, which lays out a
framework for probabilistic scene inference. This is part of a more general trend
in probabilistic programming where one defines the generative graphical model
and lets a generic solver do the inference [8,23,37]. Our goal is similar but for
deterministic inference. Like them we offer a simple programming framework in
which to express complex models.

Recently Jampani et al. [15] define a generic sampler for solving inverse graph-
ics problems. They use discriminative methods (bottom up) to inform the sam-
pler and improve efficiency. Their motivation is similar to ours in that they want
to enable inverse graphics solutions with simple generic optimization methods.
Their goal differs however in that they seek a full posterior distribution over
model parameters, while we seek a local optimum. In general, their method is
complimentary to ours and the methods could be combined.

Differentiating Graphics Models. Of course we are not the first to formulate a
generative graphics model for a vision problem, differentiate it, and solve for
the model parameters. This is a tried-and-true approach in computer vision. In
previous work, however, this is done as a “one off” solution and differentiating the
model is typically labor intensive. For a given model of the scene and particular
image features, one defines an observation error function and differentiates this
with respect to the model parameters. Solutions obtained for one model are not
necessarily easily applied to another model. Some prominent examples follow.

Face modeling: Blanz and Vetter [6] define a detailed generative model of
human faces and do analysis by synthesis to invert the model. Their model
includes 3D face shape, model texture, camera pose, ambient lighting, and di-
rectional lighting. Given model parameters they synthesize a realistic face image
and compare it with image pixels using sum-of-squared differences. They explic-
itly compute derivatives of their objective function and use a stochastic gradient
descent method for computational reasons and to help avoid local optima.

3D shape estimation: Jalobeanu et al. [14] estimate underlying parameters
(lighting, albedo, and geometry) of a 3D planetary surface with the use of a
differentiated rendering process. They point out the importance of accurate ren-
dering of the image and the derivatives and work in object space to determine
visibilities for each pixel using computational geometry. Like us, they define a
differentiable rendering process but with a focus on Bayesian inference.

Smelyansky et al. [29] define a “fractional derivative renderer” and use it
to compute camera parameters and surface shape together in a stereo recon-
struction problem. Like [14], they use geometric modeling to account for the
fractional contributions of different surfaces to a pixel. While accurate, such a
purely geometric approach is potentially slow.
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Bastian [2] also argues that working in object space avoids problems of work-
ing with pixels and, in particular, that occlusions are a problem for differentiable
rendering. He suggests super-sampling the image as one solution to approxi-
mate a differentiable render. Instead he uses MCMC sampling and suggests that
sampling could be used in conjunction with a differentiable renderer to avoid
problems due to occlusion. See also [34], which addresses similar issues in image
modeling with a continuous image representation.

It is important to remember that any render only produces an approximation
of the scene. Consequently any differentiable render will only produce approx-
imations of the derivatives. This is true whether one works in object space or
pixel space. The question is how good is the approximation and how practical
is it to obtain? We argue below that pixel space provides the better tradeoff.

Human pose and shape: Sminchisecu [31] formulates the articulated 3D hu-
man tracking problem from monocular video. He defines a generative model
of edges, silhouettes and optical flow and derives approximations of these that
are differentiable. In [30] Sminchisescu and Telea define a generic programming
framework in which ones specifies models and relates these to image observations.
This framework does not automatically differentiate the rendering process.

de La Gorce et al. [20] recover pose, shape, texture, and lighting position in
a hand tracking application. They formulate the problem as a forward graphics
synthesis problem and then differentiate it, paying special attention to obtaining
derivatives at object boundaries; we adopt a similar approach. Weiss et al. [36]
estimate both human pose and shape using range data from Kinect and an edge
term corresponding to the boundary of the human body. They formulate a differ-
entiable silhouette edge term and mention that it is sometimes not differentiable,
but that this occurs at only finitely many points, which can be ignored.

The above methods all render a model of the world and differentiate some
image error with respect to the model parameters. Despite the fact that they all
can be seen as inverse rendering, in each case the authors formulate an objective
and then devise a way to approximately differentiate it. Our key insight is that,
instead of differentiating each problem, we differentiate the render. Then any
problem that can be posed as rendering is, by construction, (approximately)
differentiable. To formulate a new problem, one writes down the forward process
(as expressed by the rendering system), the derivatives are given automatically,
and optimization is performed by one of several local optimization methods. This
approach of differentiating the rendering process provides a general solution to
many problems in computer vision.

3 Defining our Forward Process

Let f(©) be the rendering function, where © is a collection of all parameters used
to create the image. Here we factor © into vertex locations V', camera parameters
C, and per-vertex brightness A: therefore © = {V,C, A}. Inverse graphics is
inherently approximate, and it is important to establish our approximations in
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both the forward process and its differentiation. Our forward model makes the
following approximations:

Appearance (A): Per-pixel surface appearance is modeled as product of
mipmapped texture and per-vertex brightness, such that brightness combines the
effects of reflectance and lighting. Spherical harmonics and point light sources are
available as part of OpenDR; other direct lighting models are easy to construct.
Global illumination, which includes interreflection and all the complex effects of
lighting, is not explicitly supported.

Geometry (V): We assume a 3D scene to be approximated by triangles,
parameterized by vertices V', with the option of a background image (or depth
image for the depth renderer) to be placed behind the geometry. There is no
explicit limit on the number of objects, and the DR does not even “know”
whether it is rendering one or more objects; its currency is triangles, not objects.

Camera (C): We approximate continuous pixel intensities by their sampled
central value. We use the pinhole-plus-distortion camera projection model from
OpenCV. Its primary difference compared with other projections is in the details
of the image distortion model [7], which are in turn derived from [11].

Our approximations are close to those made by modern graphics pipelines.
One important exception is appearance: modern graphics pipelines support per-
pixel assignment on surfaces according to user-defined functions, whereas here
we support per-vertex user-defined functions (with colors interpolated between
vertices). While we also support texture mapping, we do not yet support dif-
ferentiation with respect to intensity values on the texture map. Unlike de La
Gorce [20], we do not support derivatives with respect to texture; whereas they
use bilinear interpolation, we would require trilinear interpolation because of our
use of mipmapping. This is future work.

We emphasize that, if the OpenDR, proves useful, users will hopefully expand
it, relaxing many of these assumptions. Here we describe the initial release.

4 Differentiating our Forward Process

To describe the partial derivatives of the forward process, we introduce U as
an intermediate variable indicating 2D projected vertex coordinate positions.
Differentiation follows the chain rule as illustrated in Fig. 1. Our derivatives
may be grouped into the effects of appearance (g—ﬁ), and changes in projected

coordinates (g—g and g—g), and the effects of image-space deformation (%).

4.1 Differentiating Appearance

Pixels projected by geometry are colored by the product of texture T and ap-
pearance A; therefore g—;’; can be quickly found by rendering the texture-mapped
geometry with per-vertex colors set to 1.0, and weighting the contribution of
surrounding vertices by rendered barycentric coordinates. Partials % may be
zero (if only ambient color is required), may be assigned to built-in spherical

harmonics or point light sources, or may be defined directly by the user.
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Fig. 1. Partial derivative structure of the renderer.

4.2 Differentiating Projection

Image values relate to 3D coordinates and camera calibration parameters via 2D
coordinates; that is, where U indicates 2D coordinates of vertices,

of _ofou  of _ofou
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Partials g—g and g—g are straightforward, as projection is well-defined. Conve-

niently, OpenCV provides g—g and g—g directly.

4.3 Differentiating Intensity with Respect to 2D Image Coordinates

In order to estimate %, we first segment our pixels into occlusion boundary

pixels and interior pixels, as inspired by [20]. The change induced by boundary
pixels is primarily due to the replacement of one surface with another, whereas
the change induced by interior pixels relates to the image-space projected trans-
lation of the surface patch. The assignment of boundary pixels is obtained with
a rendering pass by identifying pixels on edges which (a) pass a depth test (per-
formed by the renderer) and (b) join triangles with opposing normals: one trian-
gle facing towards the camera, one facing away. We consider three classifications
for a pixel: interior, interior/boundary, and many-boundary.

Interior: a pixel contains no occlusion boundaries. Because appearance is
a product of interpolated texture and interpolated color, intensity changes are
piecewise smooth with respect to geometry changes. For interior pixels, we use
the image-space first-order Taylor expansion approach adopted by [17]. To un-
derstand this approach, consider a patch translating right in image space by a
pixel: each pixel becomes replaced by its lefthand neighbor, which is similar to
the application of a Sobel filter. Importantly, we do not allow this filtering to
cross or include boundary pixels (a case not handled by [17] because occlusion
was not modeled).

Specifically, on pixels not neighboring an occlusion boundary, we perform
horizontal filtering with the kernel %[—1, 0, 1]. On pixels neighboring an occlu-
sion boundary on the left, we use [0,—1,1] for horizontal filtering; with pixels
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neighboring occlusion boundaries on the right, we use [—1, 1,0]; and with occlu-
sion boundaries on both sides we approximate derivatives as being zero. With
vertical filtering, we use the same kernels transposed.

Interior /Boundary: a pixel is intersected by one occlusion boundary. For
the interior/boundary case, we use image-space filtering with kernel %[—1, 0,1]
and its transpose. This approximates one difference (that between the foreground
boundary and the surface behind it) with another (that between the foreground
boundary and a pixel neighboring the surface behind it). Instead of “peeking”
behind an occluding boundary, we are using a neighboring pixel as a surrogate
and assuming that the difference is not too great. In practical terms, the bound-
ary gradient is almost always much larger than the gradient of the occluded
background surface patch, and therefore dominates the direction taken during
optimization.

Many-Boundary: more than one occlusion boundary is present in a pixel.
While object space methods provide exact derivatives for such pixels at the
expense of modeling all the geometry, we treat this as an interior/boundary
case. This is justified because very few pixels are affected by this scenario and
because the exact object-space computation would be prohibitively expensive.

To summarize, the most significant approximation of the differentiation pro-
cess occurs boundary pixels where we approximate one difference (nearby pixel
minus occluded pixel) with another (nearby pixel minus almost-occluded pixel).
We find this works in practice, but it is important to recognize that better ap-
proximations are possible [20].

As an implementation detail, our approach requires one render pass when a
raw rendered image is requested, and an additional three passes (for boundary
identification, triangle identification, and barycentric coordinates) when deriva-
tives are requested. Each pass requires read back from the GPU.

4.4 Software Foundation

Flexibility is critical to the generality of a differentiable renderer; custom func-
tions should be easy to design without requiring differentiation by hand. To
that end, we use automatic differentiation [10] to compute derivatives given only
a specification of the forward process, without resorting to finite differencing
methods. As part of the OpenDR release we include a new automatic differen-
tiation framework (Chumpy). This framework is essentially Numpy [25], which
is a numerical package in Python, made differentiable. By sharing much of the
API of Numpy, this allows the forward specification of problems with a pop-
ular API. This in turn allows the forward specification of models not part of
the renderer, and allows upper layers of the renderer to be specified minimally.
Although alternative auto-differentiation frameworks were considered [4, 35, 21],
we wrap Numpy for its ease-of-use. Our overall system depends on Numpy [25],
Scipy [16], and OpenCV [7].
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5 Programming in OpenDR: Hello World

First we illustrate construction of a renderer with a texture-mapped 3D mesh of
Earth. In Sec. 3, we introduced f as a function of {V, A,U}; in Fig. 2, V, A, U
and f are constructed in turn. While we use spherical harmonics and a static set
of vertices, anything expressible in Chumpy can be assigned to these variables,
as long the dimensions make sense: given N vertices, then V' and A must be
N x 3, and U must be N x 2.

from opendr.simple import *
w, h = 320, 240

import numpy as np
m = load_mesh(’nasa_earth.obj’)

# Create V, A, U, f: geometry, brightness, camera, renderer
V = ch.array(m.v)

A = SphericalHarmonics(vn=VertNormals(v=V, f=m.f),
components=[3.,1.,0.,0.,0.,0.,0.,0.,0.],
light_color=ch.ones(3))

U = ProjectPoints(v=V, £=[300,300.], c=[w/2.,h/2.], k=ch.zeros(5),

t=ch.zeros(3), rt=ch.zeros(3))

f = TexturedRenderer (vc=A, camera=U, f=m.f, bgcolor=[0.,0.,0.],

texture_image=m.texture_image, vt=m.vt, ft=m.ft,
frustum={’width’:w, ’height’:h, ’near’:1,’far’:20})

Fig. 2. Constructing a renderer in OpenDR.

Figure 3 shows the code for optimizing a model of Earth to match image
evidence. We reparameterize V with translation and rotation, express the error
to be minimized as a difference between Gaussian pyramids, and find a local
minimum of the energy function with simultaneous optimization of translation,
rotation, and light parameters. Note that a Gaussian pyramid can be written as
a linear filtering operation and is therefore simply differentiable. The process is
visualized in Fig. 4.

In this example, there is only one object; but as mentioned in Sec. 3, there is
no obvious limit to the number of objects, because geometry is just a collection
of triangles whose vertices are driven by a user’s parameterization. Triangle face
connectivity is required but may be disjoint.

Image pixels are only one quantity of interest. Any differentiable operation
applied to an image can be applied to the render and hence we can minimize
the difference between functions of images. Figure 5 illustrates how to minimize
the difference between image edges and rendered edges. For more examples, the
opendr.demo () function, in the software release, shows rendering of image mo-
ments, silhouettes, and boundaries, all with derivatives with respect to inputs.
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# Parameterize the vertices
translation, rotation = ch.array([0,0,4]), ch.zeros(3)
f.v = translation + V.dot(Rodrigues(rotation))

# Create the energy
difference = f - load_image(’earth_observed.jpg’)
E = gaussian_pyramid(difference, n_levels=6, normalization=’SSE’)

# Minimize the energy

light_parms = A.components

ch.minimize(E, xO=[translation])

ch.minimize(E, xO=[translation, rotation, light_parms])

Fig. 3. Minimizing an objective function given image evidence. The derivatives from
the renderer are used by the minimize method. Including a translation-only stage typ-
ically speeds convergence.

Fig. 4. Illustration of optimization in Figure 3. In order: observed image of earth,
initial absolute difference between the rendered and observed image intensities, final
difference, final result.

6 Experiments

Run-time depends on many user-specific decisions, including the number of pix-
els, triangles, underlying parameters and model structure. Figure 6 illustrates
the effects of resolution on run-time in a simple scenario on a 3.0 GHz 8-core
2013 Mac Pro. We render a subdivided tetrahedron with 1024 triangles, lit by
spherical harmonics. The mesh is parameterized by translation and rotation, and
timings are according to those 6 parameters. The figure illustrates the overhead
associated with differentiable rendering.

rn = TexturedRenderer(...)

edge_image = rn[:,1:,:] - rn[:,:-1,:]

ch.minimize(ch.sum((edge_image - my_edge_image)**2.),
x0=[rn.v], method=’bfgs’)

Fig. 5. Optimizing a function of the rendered image to match a function of image
evidence. Here the function is an edge filter.
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Fig. 6. Rendering performance versus resolution. For reference, 640x480 is 0.3
million pixels. Left: with rendering only. Right: with rendering and derivatives.

Fig. 7. Differentiable rendering versus finite differencing. Left: a rotating
quadrilateral. Middle: OpenDR/’s predicted change in pixel values with respect to in-
plane rotation. Right: finite differences recorded with a change to in-plane rotation.

Finite differences on original parameters are sometimes faster to compute
than analytic differences. In the experiment shown in Fig. 6, at 640x480, it is
1.75 times faster to compute forward finite differencing on 6 parameters than to
find analytic derivatives according to our approach. However, if derivatives with
respect to all 514 vertices are required, then forward finite differencing becomes
approximately 80 times slower than computing derivatives with our approach.

More importantly, the correct finite differencing epsilon is pixel-dependent.
Figure 7 shows that the correct epsilon for finite-differencing can be spatially
varying: the chosen epsilon is too small for some pixels and too large for others.

6.1 Body Shape from Kinect

We now address a body measurement estimation problem using the Kinect as
an input device. In an analysis-by-synthesis approach, many parameters must
be estimated to effectively explain the image and depth evidence. We effectively
estimate thousands of parameters (per-vertex albedo being the biggest contrib-
utor) by minimizing the contribution of over a million residuals; this would be
impractical with derivative-free methods.

Subjects were asked to form an A-pose or T-pose in two views separated
by 45 degrees; then a capture was performed without the subject in view. This
generates three depth and three color images, with most of the state, except
pose, assumed constant across the two views.

Our variables and observables are as follows:

— Latent variables: lighting parameters Ay, per-vertex albedo A¢, color
camera translation 7', and body parameters B: therefore © = {Ay,, Ac, T, B}.
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— Observables: depth images D1, and color images Iy, ,, n = 3.

Appearance, A, is modeled here as a product of per-vertex albedo, A¢c, and
spherical harmonics parameterized by Ar: A = AcH(AL,V), where H(AL,V)
gives one brightness to each vertex according to the surface normal. Vertices are
generated by a BlendSCAPE model [12], controlled by pose parameters P
(each of n views has a slightly different pose) and shape parameters S (shared
across views) which we concatenate to form B.

To use depth and color together, we must know the precise extrinsic relation-
ship between the sensors; due to manufacturing variance, the camera axes are
not perfectly aligned. Instead of using a pre-calibration step, we pose the camera
translation estimation as part of the optimization, using the human body itself
to find the translation, T, between color and depth cameras.

Our data terms includes a color term E¢, a depth term Ep, and feet-to-floor
contact term Ep. Our regularization terms include a pose prior Ep, a shape
prior Eg (both Gaussian), and smoothness prior Eg on per-vertex albedo:

E=Fc+ Ep+ Erp+ Ep+ Es+ Eg. (1)

The color term accumulates per-pixel error over images

Ec(I,Ar,Ac,T,B) = ZZ | Liw — Liu(ArL, Ac, T, B)|? (2)

where I,; is the simulated pixel intensity of image-space position u for view i.
The depth term is similar but, due to sensor noise, is formulated robustly

Ep(D,T,B) ZZHDW — Din (T, B)|” (3)

where the parameter p is adjusted from 2 to 1 over the course of an optimization.
The floor term Efr minimizes differences between foot vertices of the model

and the ground
B) =>_|Ir(B, Dy, k)|? (4)
k

where (B, Dy, k) indicates the distance between model footpad vertex k and a
mesh D, constructed from the background shot,

The albedo smoothness term Eg penalizes squared differences between the
log albedo of neighboring mesh vertices

Eq = | log(b(e,0)) — log(b(e, 1))|” (5)

where b(e, 0) denotes the albedo of the first vertex on edge e, and b(e, 1) denotes
the albedo of the other vertex on edge e.

Finally, shape and pose parameter priors, Fg(S) and Ep(P), penalize the
squared Mahalanobis distance from the mean body shape and pose learned dur-
ing BlendSCAPE training.
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Fig. 8. Accuracy of measurement prediction for Kinect-based fitting compared to mea-
surements from CAESAR scans or guessing the mean (uninformed). Left: root mean
squared error (RMSE) in cm. Right: percentage of explained variance.

Initialization for the position of the simulated body could be up to a me-
ter away from the real body and still achieve convergence. Without the use of
Gaussian pyramids or background images, initialization would require more pre-
cision (while we did not use it, initialization could be obtained with the pose
information available from the Kinect API).

Male and female body models were each trained from approximately 2000
scans from the CAESAR [28] dataset. This dataset comes with anthropometric
measurements for each subject; similar to [1], we use regularized linear regression
to predict measurements from our underlying body shape parameters. To evalu-
ate accuracy of the recovered body models, we measured RMSE and percentage
of explained variance of our predictions as shown in Fig. 8. For comparison,
Fig. 8 also shows the accuracy of estimating measurements directly from 3803
meshes accurately registered to the CAESAR laser scans. Although these two
settings (23 subjects by Kinect and 3803 subjects by laser scan) differ in both
subjects and method, and we do not expect Kinect scans to be as accurate, Fig. 8
provides an indication of how well the Kinect-based method works.

Figure 9 shows some representative results from our Kinect fitter; see the
supplemental material for more. While foot posture on the male is slightly wrong,
the effects of geometry, lighting and appearance are generally well-estimated.
Obtaining this result was made significantly easier with a platform that includes
a differentiable renderer and a set of building blocks to compose around it.

Each fit took around 7 minutes on a 3.0 GHz 8-core 2013 Mac Pro.

7 Conclusions

Many problems in computer vision have been solved by effectively differentiating
through the rendering process. This is not new. What is new is that we provide
an easy to use framework for both renderer differentiation and objective formu-
lation. This makes it easy in Python to define a forward model and optimize it.
We have demonstrated this with a challenging problem of body shape estimation
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Fig. 9. Reconstruction of two subjects (top and bottom). First column: original
captured images, with faces blurred for anonymity. Second column: simulated images
after convergence. Third column: captured point cloud together with estimated body
model. Fourth column: estimated body shown on background point cloud. More
examples can be found in the supplemental materials.

from image and range data. By releasing the OpenDR with an open-source li-
cense (see http://open-dr.org), we hope to create a community that is using and
contributing to this effort. The hope is that the this will push forward research
on vision as inverse graphics by providing tools to make working on this easier.

Differentiable rendering has its limitations. When using differences between
RGB Gaussian pyramids, the fundamental issue is overlap: if a simulated and
observed object have no overlap in the pyramid, the simulated object will not
record a gradient towards the observed one. One can use functions of the pixels
that have no such overlap restriction (e.g. moments) to address this but the
fundamental limitation is one of visibility: a real observed feature will not pull
on simulated features that are entirely occluded because of the state of the
renderer.

Consequently, differentiable rendering is only one piece of the puzzle: we
believe that informed sampling [15] and probabilistic graphics programming [22]
are also essential to a serious application of inverse rendering. Despite this, we
hope many will benefit from the OpenDR platform.

Future exploration may include increasing image realism by incorporating
global illumination. It may also include more features of modern rendering
pipelines (for example, differentiation through a fragment shader). We are also
interested in the construction of an “integratable renderer” for posterior estima-
tion; although standard sampling methods can be used to approximate such an
integral, there may be graphics-related techniques to integrate in a more direct
fashion within limited domains.
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