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Abstract

We present an integrated framework for using ConvolutionalNetworks for classi-
fication, localization and detection. We show how a multiscale and sliding window
approach can be efficiently implemented within a ConvNet. Wealso introduce a
novel deep learning approach to localization by learning topredict object bound-
aries. Bounding boxes are then accumulated rather than suppressed in order to
increase detection confidence. We show that different taskscan be learned simul-
taneously using a single shared network. This integrated framework is the winner
of the localization task of the ImageNet Large Scale Visual Recognition Challenge
2013 (ILSVRC2013) and obtained very competitive results for the detection and
classifications tasks. In post-competition work, we establish a new state of the art
for the detection task. Finally, we release a feature extractor from our best model
called OverFeat.

1 Introduction

Recognizing the category of the dominant object in an image is a tasks to which Convolutional
Networks (ConvNets) [17] have been applied for many years, whether the objects were handwritten
characters [16], house numbers [24], textureless toys [18], traffic signs [3, 26], objects from the
Caltech-101 dataset [14], or objects from the 1000-category ImageNet dataset [15]. The accuracy
of ConvNets on small datasets such as Caltech-101, while decent, has not been record-breaking.
However, the advent of larger datasets has enabled ConvNetsto significantly advance the state of
the art on datasets such as the 1000-category ImageNet [5].

The main advantage of ConvNets for many such tasks is that theentire system is trainedend to
end, from raw pixels to ultimate categories, thereby alleviating the requirement to manually design
a suitable feature extractor. The main disadvantage is their ravenous appetite for labeled training
samples.

The main point of this paper is to show that training a convolutional network to simultaneously
classify, locate and detect objects in images can boost the classification accuracy and the detection
and localization accuracy of all tasks. The paper proposes anew integrated approach to object
detection, recognition, and localization with a single ConvNet. We also introduce a novel method for
localization and detection by accumulating predicted bounding boxes. We suggest that by combining
many localization predictions, detection can be performedwithout training on background samples
and that it is possible to avoid the time-consuming and complicated bootstrapping training passes.
Not training on background also lets the network focus solely on positive classes for higher accuracy.
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Experiments are conducted on the ImageNet ILSVRC 2012 and 2013 datasets and establish state of
the art results on the ILSVRC 2013 localization and detection tasks.

While images from the ImageNet classification dataset are largely chosen to contain a roughly-
centered object that fills much of the image, objects of interest sometimes vary significantly in size
and position within the image. The first idea in addressing this is to apply a ConvNet at multiple
locations in the image, in a sliding window fashion, and overmultiple scales. Even with this,
however, many viewing windows may contain a perfectly identifiable portion of the object (say,
the head of a dog), but not the entire object, nor even the center of the object. This leads to decent
classification but poor localization and detection. Thus, the second idea is to train the system to not
only produce a distribution over categories for each window, but also to produce a prediction of the
location and size of the bounding box containing the object relative to the window. The third idea is
to accumulate the evidence for each category at each location and size.

Many authors have proposed to use ConvNets for detection andlocalization with a sliding window
over multiple scales, going back to the early 1990’s for multi-character strings [20], faces [30], and
hands [22]. More recently, ConvNets have been shown to yieldstate of the art performance on text
detection in natural images [4], face detection [8, 23] and pedestrian detection [25].

Several authors have also proposed to train ConvNets to directly predict the instantiation parameters
of the objects to be located, such as the position relative tothe viewing window, or the pose of
the object. For example Osadchyet al. [23] describe a ConvNet for simultaneous face detection
and pose estimation. Faces are represented by a 3D manifold in the nine-dimensional output space.
Positions on the manifold indicate the pose (pitch, yaw, androll). When the training image is a
face, the network is trained to produce a point on the manifold at the location of the known pose.
If the image is not a face, the output is pushed away from the manifold. At test time, the distance
to the manifold indicate whether the image contains a face, and the position of the closest point on
the manifold indicates pose. Tayloret al. [27, 28] use a ConvNet to estimate the location of body
parts (hands, head, etc) so as to derive the human body pose. They use a metric learning criterion
to train the network to produce points on a body pose manifold. Hinton et al. have also proposed
to train networks to compute explicit instantiation parameters of features as part of a recognition
process [12].

Other authors have proposed to perform object localizationvia ConvNet-based segmentation. The
simplest approach consists in training the ConvNet to classify the central pixel (or voxel for vol-
umetric images) of its viewing window as a boundary between regions or not [13]. But when the
regions must be categorized, it is preferable to performsemantic segmentation. The main idea is to
train the ConvNet to classify the central pixel of the viewing window with the category of the ob-
ject it belongs to, using the window as context for the decision. Applications range from biological
image analysis [21], to obstacle tagging for mobile robots [10] to tagging of photos [7]. The ad-
vantage of this approach is that the bounding contours need not be rectangles, and the regions need
not be well-circumscribed objects. The disadvantage is that it requires dense pixel-level labels for
training. This segmentation pre-processing or object proposal step has recently gained popularity in
traditional computer vision to reduce the search space of position, scale and aspect ratio for detec-
tion [19, 2, 6, 29]. Hence an expensive classification methodcan be applied at the optimal location
in the search space, thus increasing recognition accuracy.Additionally, [29, 1] suggest that these
methods improve accuracy by drastically reducing unlikelyobject regions, hence reducing potential
false positives. Our dense sliding window method, however,is able to outperform object proposal
methods on the ILSVRC13 detection dataset.

Krizhevskyet al. [15] recently demonstrated impressive classification performance using a large
ConvNet. The authors also entered the ImageNet 2012 competition, winning both the classification
and localization challenges. Although they demonstrated an impressive localization performance,
there has been no published work describing how their approach. Our paper is thus the first to
provide a clear explanation how ConvNets can be used for localization and detection for ImageNet
data.

In this paper we use the terms localization and detection in away that is consistent with their use in
the ImageNet 2013 competition, namely that the only difference is the evaluation criterion used and
both involve predicting the bounding box for each object in the image.
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Figure 1:Localization (top) and detection tasks (bottom).The left images contains our predic-
tions (ordered by decreasing confidence) while the right images show the groundtruth labels. The
detection image (bottom) illustrates the higher difficultyof the detection dataset, which can contain
many small objects while the classification and localization images typically contain a single large
object.

2 Vision Tasks

In this paper, we explore three computer vision tasks in increasing order of difficulty: (i) classi-
fication, (ii ) localization, and (iii ) detection. Each task is a sub-task of the next. While all tasks
are adressed using a single framework and a shared feature learning base, we will describe them
separately in the following sections.

Throughout the paper, we report results on the 2013 ImageNetLarge Scale Visual Recognition Chal-
lenge (ILSVRC2013). In the classification task of this challenge, each image is assigned a single
label corresponding to the main object in the image. Five guesses are allowed to find the correct
answer (this is because images can also contain multiple unlabeled objects). The localization task
is similar in that 5 guesses are allowed per image, but in addition, a bounding box for the predicted
object must be returned with each guess. To be considered correct, the predicted box must match
the groundtruth by at least 50% (using the PASCAL criterion of union over intersection), as well as
be labeled with the correct class (i.e. each prediction is a label and bounding box that are associated
together). The detection task differs from localization inthat there can be any number of objects
in each image (including zero), and false positives are penalized by the mean average precision
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(mAP) measure. The localization task is a convenient intermediate step between classification and
detection, and allows us to evaluate our localization method independently of challenges specific to
detection (such as learning a background class). In Fig. 1, we show examples of images with our
localization/detection predictions as well as corresponding groundtruth. Note that classification and
localization share the same dataset, while detection also has additional data where objects can be
smaller. The detection data also contain a set of images where certain objects are absent. This can
be used for bootstrapping, but we have not made use of it in this work.

3 Classification

Our classification architecture is similar to the best ILSVRC12 architecture by Krizhevskyet al.[15].
However, we improve on the network design and the inference step. Because of time constraints,
some of the training features in Krizhevsky’s model were notexplored, and so we expect our results
can be improved even further. These are discussed in the future work section 6

Figure 2:Layer 1 (top) and layer 2 filters (bottom).

3.1 Model Design and Training

We train the network on the ImageNet 2012 training set (1.2 million images andC = 1000 classes)
[5]. Our model uses the same fixed input size approach proposed by Krizhevskyet al. [15] during
training but turns to multi-scale for classification as described in the next section. Each image is
downsampled so that the smallest dimension is 256 pixels. Wethen extract 5 random crops (and
their horizontal flips) of size 221x221 pixels and present these to the network in mini-batches of
size 128. The weights in the network are initialized randomly with (µ, σ) = (0, 1 × 10−2). They
are then updated by stochastic gradient descent, accompanied by momentum term of0.6 and anℓ2
weight decay of1 × 10−5. The learning rate is initially5 × 10−2 and is successively decreased by
a factor of0.5 after(30, 50, 60, 70, 80) epochs. DropOut [11] with a rate of0.5 is employed on the
fully connected layers (6th and 7th) in the classifier.

We detail the architecture sizes in tables 1 and 3. Note that during training, we treat this architecture
as non-spatial (output maps of size 1x1), as opposed to the inference step, which produces spatial
outputs. Layers 1-5 are similar to Krizhevskyet al. [15], using rectification (“relu”) non-linearities
and max pooling, but with the following differences: (i) no contrast normalization is used; (ii)
pooling regions are non-overlapping and (iii) our model haslarger 1st and 2nd layer feature maps,
thanks to a smaller stride (2 instead of 4). A larger stride isbeneficial for speed but will hurt accuracy.
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Output
Layer 1 2 3 4 5 6 7 8

Stage conv + max conv + max conv conv conv + max full full full
# channels 96 256 512 1024 1024 3072 4096 1000
Filter size 11x11 5x5 3x3 3x3 3x3 - - -
Conv. stride 4x4 1x1 1x1 1x1 1x1 - - -
Pooling size 2x2 2x2 - - 2x2 - - -
Pooling stride 2x2 2x2 - - 2x2 - - -
Zero-Padding size - - 1x1x1x1 1x1x1x1 1x1x1x1 - - -
Spatial input size 231x231 24x24 12x12 12x12 12x12 6x6 1x1 1x1

Table 1: Architecture specifics for fast model. The spatial size of the feature maps depends on
the input image size, which varies during our inference step(see Table 5 in the Appendix). Here
we show training spatial sizes. Layer 5 is the top convolutional layer. Subsequent layers are fully
connected, and applied in sliding window fashion at test time. The fully-connected layers can also
be seen as 1x1 convolutions in a spatial setting. Similar sizes foraccuratemodel can be found in
the Appendix.

In Fig. 2, we show the filter coefficients from the first two convolutional layers. The first layer filters
capture orientated edges, patterns and blobs. In the secondlayer, the filters have a variety of forms,
some diffuse, others with strong line structures or oriented edges.

3.2 Feature Extractor

Along with this paper, we release a feature extractor named “OverFeat”1 in order to provide power-
ful features for computer vision research. Two models are provided, afastandaccurateone. Each
architecture is described in tables 1 and 3. We also compare their sizes in Table 4 in terms of param-
eters and connections. Theaccuratemodel is more accurate than thefastone (14.18% classification
error as opposed to 16.39% in Table 2), however it requires nearly twice as many connections. Using
a committee of 7accuratemodels reaches 13.6% classification error as shown in Fig. 4.

3.3 Multi-Scale Classification

In [15], multi-view voting is used to boost performance: a fixed set of 10 views (4 corners and center,
with horizontal flip) is averaged. However, this approach can ignore many regions of the image, and
is computationally redundant when views overlap. Additionally, it is only applied at a single scale,
which may not be the scale at which the ConvNet will respond with optimal confidence.

Instead, we explore the entire image by densely running the network at each location and at multiple
scales. While the sliding window approach may be computationally prohibitive for certain types
of model, it is inherently efficient in the case of ConvNets (see section 3.5). This approach yields
significantly more views for voting, which increases robustness while remaining efficient. The result
of convolving a ConvNet on an image of arbitrary size is a spatial map ofC-dimensional vectors at
each scale.

However, the total subsampling ratio in the network described above is 2x3x2x3, or 36. Hence
when applied densely, this architecture can only produce a classification vector every 36 pixels in
the input dimension along each axis. This coarse distribution of outputs decreases performance
compared to the 10-view scheme because the network windows are not well aligned with the objects
in the images. The better aligned the network window and the object, the strongest the confidence of
the network response. To circumvent this problem, we take anapproach similar to that introduced
by Giustiet al. [9], and apply the last subsampling operation at every offset. This removes the loss
of resolution from this layer, yielding a total subsamplingratio of x12 instead of x36.

We now explain in detail how the resolution augmentation is performed. We use 6 scales of input
which result in unpooled layer 5 maps of varying resolution (see Table 5 for details). These are then
pooled and presented to the classifier using the following procedure, illustrated in Fig. 3:

(a) For a single image, at a given scale, we start with the unpooled layer 5 feature maps.
1http://cilvr.nyu.edu/doku.php?id=software:overfeat:start
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(b) Each of unpooled maps undergoes a 3x3 max pooling operation (non-overlapping regions),
repeated 3x3 times for(∆x,∆y) pixel offsets of{0, 1, 2}.

(c) This produces a set of pooled feature maps, replicated (3x3) times for different(∆x,∆y) com-
binations.

(d) The classifier (layers 6,7,8) has a fixed input size of 5x5 and produces aC-dimensional output
vector for each location within the pooled maps. The classifier is applied in sliding-window
fashion to the pooled maps, yieldingC-dimensional output maps (for a given(∆x,∆y) combi-
nation).

(e) The output maps for different(∆x,∆y) combinations are reshaped into a single 3D output map
(two spatial dimensions xC classes).

Figure 3: 1D illustration (to scale) of output map computation for classification, usingy-dimension
from scale 2 as an example (see Table 5). (a): 20 pixel unpooled layer 5 feature map. (b): max
pooling over non-overlapping 3 pixel groups, using offsetsof ∆ = {0, 1, 2} pixels (red, green, blue
respectively). (c): The resulting 6 pixel pooled maps, for different∆. (d): 5 pixel classifier (layers
6,7) is applied in sliding window fashion to pooled maps, yielding 2 pixel byC maps for each∆.
(e): reshaped into 6 pixel byC output maps.

These operations can be viewed as shifting the classifier’s viewing window by 1 pixel through pool-
ing layers without subsampling and using skip-kernels in the following layer (where values in the
neighborhood are non-adjacent). Or equivalently, as applying the final pooling layer and fully-
connected stack at every possible offset, and assembling the results by interleaving the outputs.

The procedure above is repeated for the horizontally flippedversion of each image. We then produce
the final classification by (i) taking the spatial max for eachclass, at each scale and flip; (ii) averaging
the resultingC-dimensional vectors from different scales and flips and (iii) taking the top-1 or top-5
elements (depending on the evaluation criterion) from the mean class vector.

At an intuitive level, the two halves of the network — i.e. feature extraction layers (1-5) and classifier
layers (6-output) — are used in opposite ways. In the featureextraction portion, the filters are
convolved across the entire image in one pass. From a computational perspective, this is far more
efficient than sliding a fixed-size feature extractor over the image and then aggregating the results
from different locations2. However, these principles are reversed for the classifier portion of the
network. Here, we want to hunt for a fixed-size representation in the layer 5 feature maps across
different positions and scales. Thus the classifier has a fixed-size 5x5 input and is exhaustively
applied to the layer 5 maps. The exhaustive pooling scheme (with single pixel shifts(∆x,∆y))
ensures that we can obtain fine alignment between the classifier and the representation of the object
in the feature map.

3.4 Results

In Table 2, we experiment with different approaches, and compare them to the single network model
of Krizhevskyet al. [15] for reference. The approach described above, with 6 scales, achieves a
top-5 error rate of 13.6%. As might be expected, using fewer scales hurts performance: the single-
scale model is worse with 16.97% top-5 error. The fine stride technique illustrated in Fig. 3 brings a
relatively small improvement in the single scale regime, but is also of importance for the multi-scale
gains shown here.

2Our network with 6 scales takes around 2 secs on a K20x GPU to process one image
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Top-1 Top-5
Approach error % error %
Krizhevskyet al. [15] 40.7 18.2
OverFeat - 1fastmodel, scale 1, coarse stride 39.28 17.12
OverFeat - 1fastmodel, scale 1, fine stride 39.01 16.97
OverFeat - 1fastmodel, 4 scales (1,2,4,6), fine stride 38.57 16.39
OverFeat - 1fastmodel, 6 scales (1-6), fine stride 38.12 16.27
OverFeat - 1accuratemodel, 4 corners + center + flip 35.60 14.71
OverFeat - 1accuratemodel, 4 scales, fine stride 35.74 14.18
OverFeat - 7fastmodels, 4 scales, fine stride 35.10 13.86
OverFeat - 7accuratemodels, 4 scales, fine stride 33.96 13.24

Table 2:Classification experiments on validation set.Fine/coarse stride refers to the number of
∆ values used when applying the classifier. Fine:∆ = 0, 1, 2; coarse:∆ = 0.

Figure 4: Test set classification results.During the competition, OverFeat yielded 14.2% top 5
error rate using an average of 7 fast models. In post-competition work, OverFeat ranks fifth with
13.6% error using bigger models (more features and more layers).

We report the test set results of the 2013 competition in Fig.4 where our model (OverFeat) obtained
14.2% accuracy by voting of 7 ConvNets (each trained with different initializations) and ranked 5th
out of 18 teams. The best accuracy using only ILSVRC13 data was 11.7%. Pre-training with extra
data from the ImageNet Fall11 dataset improved this number to 11.2%. In post-competition work,
we improve the OverFeat results down to 13.6% error by using bigger models (more features and
more layers). Due to time constraints, these bigger models are not fully trained, more improvements
are expected to appear in time.

3.5 ConvNets and Sliding Window Efficiency

In contrast to many sliding-window approaches that computean entire pipeline for each window of
the input one at a time, ConvNets are inherently efficient when applied in a sliding fashion because
they naturally share computations common to overlapping regions. When applying our network
to larger images at test time, we simply apply each convolution over the extent of the full image.
This extends the output of each layer to cover the new image size, eventually producing a map of
output class predictions, with one spatial location for each “window” (field of view) of input. This
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input 1st stage outputclassifier

convolution pooling conv conv conv

input 1st stage outputclassifier

convolution pooling conv conv conv

Figure 5:The efficiency of ConvNets for detection.During training, a ConvNet produces only a
single spatial output (top). But when applied at test time over a larger image, it produces a spatial
output map, e.g. 2x2 (bottom). Since all layers are applied convolutionally, the extra computa-
tion required for the larger image is limited to the yellow regions. This diagram omits the feature
dimension for simplicity.

is diagrammed in Fig. 5. Convolutions are applied bottom-up, so that the computations common to
neighboring windows need only be done once.

Note that the last layers of our architecture are fully connected linear layers. At test time, these
layers are effectively replaced by convolution operationswith kernels of 1x1 spatial extent. The
entire ConvNet is then simply a sequence of convolutions, max-pooling and thresholding operations
exclusively.

4 Localization

Starting from our classification-trained network, we replace the classifier layers by a regression
network and train it to predict object bounding boxes at eachspatial location and scale. We then
combine the regression predictions together, along with the classification results at each location, as
we now describe.

4.1 Generating Predictions

To generate object bounding box predictions, we simultaneously run the classifier and regressor
networks across all locations and scales. Since these sharethe same feature extraction layers, only
the final regression layers need to be recomputed after computing the classification network. The
output of the final softmax layer for a classc at each location provides a score of confidence that
an object of classc is present (though not necessarily fully contained) in the corresponding field of
view. Thus we can assign a confidence to each bounding box.

4.2 Regressor Training

The regression network takes as input the pooled feature maps from layer 5. It has 2 fully-connected
hidden layers of size 4096 and 1024 channels, respectively.The final output layer has 4 units which
specify the coordinates for the bounding box edges. As with classification, there are (3x3) copies
throughout, resulting from the∆x,∆y shifts. The architecture is shown in Fig. 8.
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Figure 6: Localization/Detection pipeline. The raw classifier/detector outputs a class and a con-
fidence for each location (1st diagram). The resolution of these predictions can be increased using
the method described in section 3.3 (2nd diagram). The regression then predicts the location scale
of the object with respect to each window (3rd diagram). These bounding boxes are then merge and
accumulated to a small number of objects (4th diagram).
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Figure 7:Examples of bounding boxes produced by the regression network , before being com-
bined into final predictions. The examples shown here are at asingle scale. Predictions may be
more optimal at other scales depending on the objects. Here,most of the bounding boxes which are
initially organized as a grid, converge to a single locationand scale. This indicates that the network
is very confident in the location of the object, as opposed to being spread out randomly. The top left
image shows that it can also correctly identify multiple location if several objects are present. The
various aspect ratios of the predicted bounding boxes showsthat the network is able to cope with
various object poses.

We fix the feature extraction layers (1-5) from the classification network and train the regression
network using anℓ2 loss between the predicted and true bounding box for each example. The final
regressor layer is class-specific, having 1000 different versions, one for each class. We train this
network using the same set of scales as described in Section 3. We compare the prediction of the
regressor net at each spatial location with the ground-truth bounding box, shifted into the frame of
reference of the regressor’s translation offset within theconvolution (see Fig. 8). However, we do
not train the regressor on bounding boxes with less than 50% overlap with the input field of view:
since the object is mostly outside of these locations, it will be better handled by regression windows
that do contain the object.

Training the regressors in a multi-scale manner is important for the across-scale prediction combi-
nation. Training on a single scale will perform well on that scale and still perform reasonably on
other scales. However training multi-scale will make predictions match correctly across scales and
exponentially increase the confidence of the merged predictions. In turn, this allows us to perform
well with a few scales only, rather than many scales as is typically the case in detection. The typical
ratio from one scale to another in pedestrian detection [25]is about 1.05 to 1.1, here however we use
a large ratio of approximately 1.4 (this number differs for each scale since dimensions are adjusted
to fit exactly the stride of our network) which allows us to runour system faster.

4.3 Combining Predictions

We combine the individual predictions (see Fig. 7) via a greedy merge strategy applied to the regres-
sor bounding boxes, using the following algorithm.

(a) Assign toCs the set of classes in the topk for each scales ∈ 1 . . . 6, found by taking the
maximum detection class outputs across spatial locations for that scale.

(b) Assign toBs the set of bounding boxes predicted by the regressor networkfor each class inCs,
across all spatial locations at scales.
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Figure 8: Application of the regression network to layer 5 features, at scale 2, for example. (a)
The input to the regressor at this scale are 6x7 pixels spatially by 256 channels for each of the
(3x3)∆x,∆y shifts. (b) Each unit in the 1st layer of the regression net isconnected to a 5x5 spatial
neighborhood in the layer 5 maps, as well as all 256 channels.Shifting the 5x5 neighborhood around
results in a map of 2x3 spatial extent, for each of the 4096 channels in the layer, and for each of
the (3x3)∆x,∆y shifts. (c) The 2nd regression layer has 1024 units and is fully connected (i.e. the
purple element only connects to the purple element in (b), across all 4096 channels). (d) The output
of the regression network is a 4-vector (specifying the edges of the bounding box) for each location
in the 2x3 map, and for each of the (3x3)∆x,∆y shifts.

(c) AssignB ←
⋃

s Bs

(d) Repeat merging until done:

(e) (b∗
1
, b∗

2
) = argminb1 6=b2∈Bmatch score(b1, b2)

(f) If match score(b∗
1
, b∗

2
) > t , stop.

(g) Otherwise, setB ← B\{b∗
1
, b∗

2
} ∪ box merge(b∗

1
, b∗

2
)

In the above, we computematch score using the sum of the distance between centers of the two
bounding boxes and the intersection area of the boxes.box merge compute the average of the
bounding boxes’ coordinates.

The final prediction is given by taking the merged bounding boxes with maximum class scores. This
is computed by cumulatively adding the detection class outputs associated with the input windows
from which each bounding box was predicted. See Fig. 6 for an example of bounding boxes merged
into a single high-confidence bounding box. In that example,someturtle andwhalebounding boxes
appear in the intermediate multi-scale steps, but disappear in the final detection image. Not only do
these bounding boxes have low classification confidence (at most 0.11 and 0.12 respectively), their
collection is not as coherent as thebearbounding boxes to get a significant confidence boost. The
bear boxes have a strong confidence (approximately 0.5 on averageper scale) and high matching
scores. Hence after merging, manybearbounding boxes are fused into a single very high confidence
box, while false positives disappear below the detection threshold due their lack of bounding box
coherence and confidence. This analysis suggest that our approach is naturally more robust to false
positives coming from the pure-classification model than traditional non-maximum suppression, by
rewarding bounding box coherence.
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Figure 9:Localization experiments on ILSVRC12 validation set.We experiment with different
number of scales and with the use of single-class regression(SCR) or per-class regression (PCR).

4.4 Experiments

We apply our network to the Imagenet 2012 validation set using the localization criterion specified
for the competition. The results for this are shown in Fig. 9.Fig. 10 shows the results of the 2012
and 2013 localization competitions (the train and test dataare the same for both of these years). Our
method is the winner of the 2013 competition with 29.9% error.

Our multiscale and multi-view approach was critical to obtaining good performance, as can be seen
in Fig. 9: Using only a single centered crop, our regressor network achieves an error rate of 40%. By
combining regressor predictions from all spatial locations at two scales, we achieve a vastly better
error rate of 31.5%. Adding a third and fourth scale further improves performance to 30.0% error.

Using a different top layer for each class in the regressor network for each class (Per-Class Regres-
sor (PCR) in Fig. 9) surprisingly did not outperform using only a single network shared among all
classes (44.1% vs. 31.3%). This may be because there are relatively few examples per class an-
notated with bounding boxes in the training set, while the network has 1000 times more top-layer
parameters, resulting in insufficient training. It is possible this approach may be improved by shar-
ing parameters only among similar classes (e.g. training one network for all classes of dogs, another
for vehicles, etc.).

5 Detection

Detection training is similar to classification training but in a spatial manner. Multiple location of
an image may be trained simultaneously. Since the model is convolutional, all weights are shared
among all locations. The main difference with the localization task, is the necessity to predict a
background class when no object is present. Traditionally,negative examples are initially taken at
random for training. Then the most offending negative errors are added to the training set in boot-
strapping passes. Independent bootstrapping passes render training complicated and risk potential
mismatches between the negative examples collection and training times. Additionally, the size of
bootstrapping passes needs to be tuned to make sure trainingdoes not overfit on a small set. To cir-
cumvent all these problems, we perform negative training onthe fly, by selecting a few interesting
negative examples per image such as random ones or most offending ones. This approach is more
computationally expensive, but renders the procedure muchsimpler. And since the feature extraction
is initially trained with the classification task, the detection fine-tuning is not as long anyway.

In Fig. 11, we report the results of the ILSVRC 2013 competition where our detection system ranked
3rd with 19.4% mean average precision (mAP). We later established a new detection state of the art
with 24.3% mAP. Note that there is a large gap between the top 3methods and other teams (the 4th
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Figure 10:ILSVRC12 and ILSVRC13 competitions results (test set).Our entry is the winner of
the ILSVRC13 localization competition with 29.9% error (top 5). Note that training and testing data
is the same for both years. The OverFeat entry uses 4 scales and a single-class regression approach.

Figure 11:ILSVRC13 test set Detection results.During the competition, UvA ranked first with
22.6% mAP. In post competition work, we establish a new stateof the art with 24.3% mAP. Systems
marked with * were pre-trained with the ILSVRC12 classification data.

method yields 11.5% mAP). Additionally, our approach is considerably different from the top 2 other
systems which use an initial segmentation step to reduce candidate windows from approximately
200,000 to 2,000. This technique speeds up inference and substantially reduces the number of
potential false positives. [29, 1] suggest that detection accuracy drops when using dense sliding
window as opposed to selective search which discards unlikely object locations hence reducing
false positives. Combined with our method, we may observe similar improvements as seen here
between traditional dense methods and segmentation based methods. It should also be noted that
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we did not fine tune on the detection validation set as NEC and UvA did. The validation and test
set distributions differ significantly enough from the training set that this alone improves results by
approximately 1 point. The improvement between the two OverFeat results in Fig. 11 are due to
longer training times and the use of context, i.e. each scalealso uses lower resolution scales as
input.

6 Discussion

We have presented a multi-scale, sliding window approach that can be used for classification, lo-
calization and detection. We applied it to the ILSVRC 2013 datasets, and it currently ranks 4th in
classification, 1st in localization and 1st in detection. A second important contribution of our paper
is explaining how ConvNets can be effectively used for detection and localization tasks. These were
never addressed in [15] and thus we are the first to explain howthis can be done in the context of Im-
ageNet 2012. The scheme we propose involves substantial modifications to networks designed for
classification, but clearly demonstrate that ConvNets are capable of these more challenging tasks.
Our localization approach won the 2013 ILSVRC competition and significantly outperformed all
2012 and 2013 approaches. The detection model was among the top performers during the compe-
tition, and ranks first in post-competition results. We haveproposed an integrated pipeline that can
perform different tasks while sharing a common feature extraction base, entirely learned directly
from the pixels.

Our approach might still be improved in several ways. (i) Forlocalization, we are not currently
back-propping through the whole network; doing so is likelyto improve performance. (ii) We are
usingℓ2 loss, rather than directly optimizing the intersection-over-union (IOU) criterion on which
performance is measured. Swapping the loss to this should bepossible since IOU is still differen-
tiable, provided there is some overlap. (iii) Alternate parameterizations of the bounding box may
help to decorrelate the outputs, which will aid network training.
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Appendix: Additional Model Details

Output
Layer 1 2 3 4 5 6 7 8 9

Stage conv + max conv + max conv conv conv conv + max full full full
# channels 96 256 512 512 1024 1024 4096 4096 1000
Filter size 7x7 7x7 3x3 3x3 3x3 3x3 - - -
Conv. stride 2x2 1x1 1x1 1x1 1x1 1x1 - - -
Pooling size 3x3 2x2 - - - 3x3 - - -
Pooling stride 3x3 2x2 - - - 3x3 - - -
Zero-Padding size - - 1x1x1x1 1x1x1x1 1x1x1x1 1x1x1x1 - - -
Spatial input size 221x221 36x36 15x15 15x15 15x15 15x15 5x5 1x1 1x1

Table 3: Architecture specifics for accurate model. It differs from thefast model mainly in the
stride of the first convolution, the number of stages and the number of feature maps.

model # parameters (in millions) # connections (in millions)
Krizhevsky 60 -

fast 145 2810
accurate 144 5369

Table 4:Number of parameters and connectionsfor different models.

Input Layer 5 Layer 5 Classifier Classifier
Scale size pre-pool post-pool map (pre-reshape) map size

1 245x245 17x17 (5x5)x(3x3) (1x1)x(3x3)xC 3x3xC
2 281x317 20x23 (6x7)x(3x3) (2x3)x(3x3)xC 6x9xC
3 317x389 23x29 (7x9)x(3x3) (3x5)x(3x3)xC 9x15xC
4 389x461 29x35 (9x11)x(3x3) (5x7)x(3x3)xC 15x21xC
5 425x497 32x35 (10x11)x(3x3) (6x7)x(3x3)xC 18x24xC
6 461x569 35x44 (11x14)x(3x3) (7x10)x(3x3)xC 21x30xC

Table 5: Spatial dimensions of our multi-scale approach. 6 different sizes of input images are
used, resulting in layer 5 unpooled feature maps of differing spatial resolution (although not indi-
cated in the table, all have 256 feature channels). The (3x3)results from our dense pooling operation
with (∆x,∆y) = {0, 1, 2}. See text and Fig. 3 for details for how these are converted into output
maps.
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