
CSC	2547:	Machine	Learning	
	for	Vision	as	Inverse	Graphics	

Anthony	Bonner	
www.cs.toronto.edu/~bonner	

Paper	Presentations	

•  Each	week	will	focus	on	one	topic,	as	listed	on	
the	course	web	page	(soon).	

•  You	can	vote	for	your	choice	of	topic/week	
(soon).	

•  I	will	assign	you	to	a	week	(soon).	
•  Papers	on	each	topic	will	be	listed	on	the	
course	web	page.	

•  If	you	have	a	particular	paper	you	would	like	
to	add	to	the	list,	please	let	me	know.	

Paper	Presentations	

•  Goal:	high	quality,	accessible	tutorials.	
•  7	weeks	and	44	students	=	6	or	7	students	per	
week	and	about	15	minutes	per	student.	

•  2-week	planning	cycle:	
– 2	weeks	before	your	presentation,	meet	me	
after	class	to	discuss	and	assign	papers.	
– The	following	week,	meet	the	TA	for	a	
practice	presentation	(required).	
– Present	in	class	under	strict	time	constraints.	

	

Team	Presentatations	

•  Papers	may	be	presented	in	teams	of	two	or	more	
with	longer	presentations	(15	minutes	per	team	
member).	

•  Unless	a	paper	is	particularly	difficult	or	long,	a	team	
will	be	expected	to	cover	more	than	one	paper	(one	
paper	per	team	member).		

•  A	team	may	cover	one	of	the	listed	papers	and	one	
or	more	of	its	references	(but	see	me	first).	

Tentative	Topics	

•  Discriminative	approaches.	
•  Generative	approaches.	
•  Differentiable	rendering.	
•  Capsule	networks	
•  Group	symmetries	and	equivariance	
•  Visual	attention	mechanisms	
•  Adversarial	methods	

Project	Ideas	

•  Improve	upon	the	work	in	a	paper	
– Even	a	small	improvement	is	OK	

•  For	example,	
– Make	a	generative	model	conditional	
– Disentangle	(some)	latent	variables	
– Adapt	a	method	to	new	circumstances	

•  Different	kinds	of	data	
•  Missing	or	noisy	data	

– Make	a	supervised	method	semi-supervised	

Project	Ideas	

•  Examples	(continued)	
– Modify	the	cost	function	

•  Introduce	learnable	parameters	into	a	cost	function	
•  Use	an	adversarial	cost	
•  Try	a	variation	on	KL	divergence	

– Modify	the	latent	priors	
•  Make	the	prior	learnable	
•  Do	not	assume	Gaussianity	

– Modify	the	variational	assumptions	
•  Do	not	assume	complete	independence	
•  Do	not	assume	Gaussianity	

Project	Ideas	

•  Implement	and	compare	different	methods	
for	the	same	problem	(e.g.,	different	methods	
for	inferring	3D	structure)	
– Clearly	and	succinctly	describe	each	method	
– Clearly	articulate	their	differences	
– Describe	their	strengths	and	weaknesses	
–  Ideally,	include	experiments	highlighting	the	
differences	between	the	methods	on	realistic	
problems.	

Project	Considerations	
	

•  Is	your	idea	sensible?	
•  Can	you	download	all	the	necessary	data?	
•  Do	you	have	the	computational	resources	
(GPUs)?	

•  Do	you	have	time	to	complete	it?	
•  Start	by	duplicating	the	results	in	the	paper	
(if	the	paper	gives	enough	details).	

Project	Dates	

•  Proposal	due	February	18	
– about	2	pages	
–  include	preliminary	literature	search	

•  Project	presentations:	March	24	and	31	
– about	5	minutes	per	student	(like	“spotlight	
presentations”	at	a	conference)	

•  Project	due:	April	12	
– project	report	(4-8	pages)	and	code		

Generative	Approaches	

•  Given	a	scene,	s,	a	graphics	program,	G,	
produces	an	image,	G(s).	

•  Given	an	image,	x,	find	s	such	that	G(s)	≈	x	
•  More	generally,	find	P(s|x),.	
•  P(s|x)	is	high	when	G(s)	is	close	to	x.	

Variational	Approximations	

•  Finding	P(s|x)	is	intractable	in	general.	
•  Use	variational	approximations.	
•  Variational	auto-encoders	work	very	well.	
•  G	can	be	a	neural	net	that	we	learn	
(unsupervised).	

•  Computationally	intensive.	

Variational	Autoencoders	

5x5 conv
5x5 conv

5x5 conv

64x64x3
32x32x64

16x16x128
8x8x256

Volume Generator Perspective Transformer

 1x1x 512

 latent unit 1x1x1024

1x32x32x32

6x6x6 conv

 4x4
transformation

1x32x32

Encoder Decoder

1x1x1024
512x3x3x3

256x6x6x6 96x15x15x15

4x4x4 conv
5x5x5 conv

Τθ(G)

 Grid generator

Sampler

1x32x32x32

Input image

Target projection

Figure 2: Illustration of network architecture.

(convolution layers have 64, 128 and 256 channels with fixed filter size of 5 ⇥ 5; the three fully-
connected layers have 1024, 1024 and 512 neurons, respectively). The 3D convolutional decoder
consists of one fully-connected layer, followed by 3 convolution layers (the fully-connected layer
have 3 ⇥ 3 ⇥ 3 ⇥ 512 neurons; convolution layers have 256, 96 and 1 channels with filter size of
4 ⇥ 4 ⇥ 4, 5 ⇥ 5 ⇥ 5 and 6 ⇥ 6 ⇥ 6). For perspective transformer networks, we used perspective
transformation to project 3D volume to 2D silhouette where the transformation matrix is parametrized
by 16 variables and sampling grid is set to 32⇥ 32⇥ 32. We use the same network architecture for
all the experiments.

Implementation Details. We used the ADAM [7] solver for stochastic optimization in all the
experiments. During the pre-training stage (for encoder), we used mini-batch of size 32, 32, 8, 4,
3 and 2 for training the RNN-1, RNN-2, RNN-4, RNN-8, RNN-12 and RNN-16 as used in Yang
et al. [23]. We used the learning rate 10�4 for RNN-1, and 10�5 for the rest of recurrent neural
networks. During the fine-tuning stage (for volume decoder), we used mini-batch of size 6 and
learning rate 10�4. For each object in a mini-batch, we include projections from all 24 views as
supervision. The models including the perspective transformer nets are implemented using Torch [3].
To download the code, please refer to the project webpage: http://goo.gl/YEJ2H6.

Experimental Design. As mentioned in the formulation, there are several variants of the model
depending on the hyper-parameters of learning objectives �proj and �vol. In the experimental section,
we denote the model trained with projection loss only, volume loss only, and combined loss as
PTN-Proj (PR), CNN-Vol (VO), and PTN-Comb (CO), respectively.

In the experiments, we address the following questions: (1) Will the model trained with combined
loss achieve better single-view 3D reconstruction performance over model trained on volume loss
only (PTN-Comb vs. CNN-Vol)? (2) What is the performance gap between the models with and
without ground-truth volumes (PTN-Comb vs. PTN-Proj)? (3) How do the three models generalize
to instances from unseen categories which are not present in the training set? To answer the questions,
we trained the three models under two experimental settings: single category and multiple categories.

4.1 Training on a single category
We select chair category as the training set for single category experiment. For model comparisons,
we first conduct quantitative evaluations on the generated 3D volumes from the test set single-view
images. For each instance in the test set, we generate one volume per view image (24 volumes
generated in total). Given a pair of ground-truth volume and our generated volume (threshold is 0.5),
we computed its intersection-over-union (IU) score and the average IU score is calculated over 24
volumes of all the instances in the test set. In addition, we provide a baseline method based on nearest
neighbor (NN) search. Specifically, for each of the test image, we extract VGG feature from fc6

layer (4096-dim vector) [17] and retrieve the nearest training example using Euclidean distance in the

Table 1: Prediction IU using the models trained on chair category. Below, “chair" corresponds to
the setting where each object is observable with full azimuth angles, while “chair-N" corresponds
to the setting where each object is only observable with a narrow range (subset) of azimuth angles.

Method / Evaluation Set chair chair-N
training test training test

PTN-Proj:single (no vol. supervision) 0.5712 0.5027 0.4882 0.4583
PTN-Comb:single (vol. supervision) 0.6435 0.5067 0.5564 0.4429
CNN-Vol:single (vol. supervision) 0.6390 0.4983 0.5518 0.4380
NN search (vol. supervision) — 0.3557 — 0.3073

5

From	Yan	et	al,	Perspective	Transformer	Nets,	arXiv	2017	

Disentangled	Representations	

z
(h

an
dw

rit
in

g
sty

le)
y (digit label)

Disentangled RepresentationStochastic Computation Graph for VAE

ε z

p

q λ

η

φ n

θ

z

p

q λ

η

φ n

θ

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�

�
z,y | xi

�
.129

L
�
✓,�;xi

�
= Eq�(z,y|xi)

"
log

p✓

�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓,�z;x

i,yi
�

= Eq�z (z|xi,yi)

"
log

p✓

�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)

q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓,�;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓

�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�

�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

p

λ

y

η

ε

z p

λ

q

ηφ

φ

x (data) y (partial labels)

p

ηθ

q

Recognition Model

z x

y

Generative Model

z x
ε

y

x

Figure 1: Semi-supervised learning in structured variational autoencoders, illustrated on MNIST
digits. Top-Left: Generative model. Bottom-Left: Recognition model. Middle: Stochastic com-
putation graph, showing expansion of each node to its corresponding sub-graph. Generative-model
dependencies are shown in blue and recognition-model dependencies are shown in orange. See
Section 2.2 for a detailed explanation. Right: learned representation.

2 Framework and Formulation

VAEs [17, 28] are a class of deep generative models that simultaneously train both a probabilistic
encoder and decoder for a elements of a data set D = {x1, . . .xN}. The central analogy is that
an encoding z can be considered a latent variable, casting the decoder as a conditional probability
density p✓(x|z). The parameters ⌘✓(z) of this distribution are the output of a deterministic neural
network with parameters ✓ (most commonly MLPs or CNNs) which takes z as input. By placing a
weak prior over z, the decoder defines a posterior and joint distribution p✓(z | x) / p✓(x | z)p(z).

xn

zn ✓�

N

Inference in VAEs can be performed using a variational method that approximates the
posterior distribution p✓(z | x) using an encoder q�(z | x), whose parameters ��(x) are
the output of a network (with parameters �) that is referred to as an “inference network”
or a “recognition network”. The generative and inference networks, denoted by solid
and dashed lines respectively in the graphical model, are trained jointly by performing
stochastic gradient ascent on the evidence lower bound (ELBO) L(�, ✓; D)  log p✓(D),

L(�, ✓; D) =
NX

n=1

L(�, ✓;xn) =
NX

n=1

Eq�(z|xn)[log p✓(x
n | z) + log p(z) � log q�(z|xn)]. (1)

Typically, the first term Eq�(z|xn)[log p✓(xn | z)] is approximated by a Monte Carlo estimate and the
remaining two terms are expressed as a divergence �KL(q�(z|xn)kp(z)), which can be computed
analytically when the encoder model and prior are Gaussian.

In this paper, we will consider models in which both the generative model p✓(x,y, z) and the
approximate posterior q�(y, z | x) can have arbitrary conditional dependency structures involving
random variables defined over a number of different distribution types. We are interested in defining
VAE architectures in which a subset of variables y are interpretable. For these variables, we assume
that supervision labels are available for some fraction of the data. The VAE will additionally retain
some set of variables z for which inference is performed in a fully unsupervised manner. This is in
keeping with our central goal of defining and learning in partially-specified models. In the running
example for MNIST, y corresponds to the classification label, whereas z captures all other implicit
features, such as the pen type and handwriting style.

This class of models is more general than the models in the work by Kingma et al. [18], who consider
three model designs with a specific conditional dependence structure. We also do not require p(y, z)
to be a conjugate exponential family model, as in the work by Johnson et al. [15]. To perform
semi-supervised learning in this class of models, we need to i) define an objective that is suitable to
general dependency graphs, and ii) define a method for constructing a stochastic computation graph
[30] that incorporates both the conditional dependence structure in the generative model and that of
the recognition model into this objective.

3

From	Siddharth	et	al,	Semi-supervised	Deep	Generative	Models,	NIPS	2017	

Disentangled	Representations	

Learning to Disentangle Factors of Variation with Manifold Interaction

Scott Reed REEDSCOT@UMICH.EDU
Kihyuk Sohn KIHYUKS@UMICH.EDU
Yuting Zhang YUTINGZH@UMICH.EDU
Honglak Lee HONGLAK@UMICH.EDU

Dept. of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA

Abstract

Many latent factors of variation interact to gen-
erate sensory data; for example, pose, morphol-
ogy and expression in face images. In this work,
we propose to learn manifold coordinates for the
relevant factors of variation and to model their
joint interaction. Many existing feature learning
algorithms focus on a single task and extract fea-
tures that are sensitive to the task-relevant factors
and invariant to all others. However, models that
just extract a single set of invariant features do
not exploit the relationships among the latent fac-
tors. To address this, we propose a higher-order
Boltzmann machine that incorporates multiplica-
tive interactions among groups of hidden units
that each learn to encode a distinct factor of vari-
ation. Furthermore, we propose correspondence-
based training strategies that allow effective dis-
entangling. Our model achieves state-of-the-art
emotion recognition and face verification perfor-
mance on the Toronto Face Database. We also
demonstrate disentangled features learned on the
CMU Multi-PIE dataset.

1. Introduction

A key challenge in understanding sensory data (e.g., image
and audio) is to tease apart many factors of variation that
combine to generate the observations (Bengio, 2009). For
example, pose, shape and illumination combine to generate
3D object images; morphology and expression combine to
generate face images. Many factors of variation exist for
other modalities, but here we focus on modeling images.

Most previous work focused on building (Lowe, 1999) or
learning (Kavukcuoglu et al., 2009; Ranzato et al., 2007;
Lee et al., 2011; Le et al., 2011; Huang et al., 2012b;a;
Sohn & Lee, 2012) invariant features that are unaffected

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

Pose manifold
coordinates

Identity manifold
coordinates

Input

Input
images

Fixed ID

Fixed Pose

Learning

Figure 1. Illustration of our approach for modeling pose and iden-
tity variations in face images. When fixing identity, traversing
along the corresponding “fiber” (denoted in red ellipse) changes
the pose. When fixing pose, traversing across the vertical cross-
section (shaded in blue rectangle) changes the identity. Our model
captures this via multiplicative interactions between pose and
identity coordinates to generate the image.

by nuisance information for the task at hand. However, we
argue that image understanding can benefit from retaining
information about all underlying factors of variation, be-
cause in many cases knowledge about one factor can im-
prove our estimates about the others. For example, a good
pose estimate may help to accurately infer the face mor-
phology, and vice versa. From a generative perspective,
this approach also supports additional queries involving la-
tent factors; e.g. “what is the most likely face image as
pose or expression vary given a fixed identity?”

When the input images are generated from multiple factors
of variation, they tend to lie on a complicated manifold,
which makes learning useful representations very challeng-
ing. We approach this problem by viewing each factor of
variation as forming a sub-manifold by itself, and modeling
the joint interaction among factors. For example, given face
images with different identities and viewpoints, we can en-
vision one sub-manifold for identity and another for view-

From	Reed	et	al,	Learning	to	Disentangle	Factors	of	Variation,	ICML	2014	

Learning	3D	Shape	
Input GT (310) GT (130) PR (310) PR (130) CO (310) CO (130) VO (310) VO (130)

Figure 3: Single-class results. GT: ground truth, PR: PTN-Proj, CO: PTN-Comb, VO: CNN-Vol
(Best viewed in digital version. Zoom in for the 3D shape details). The angles are shown in the
parenthesis. Please also see more examples and video animations on the project webpage.

feature space. The ground-truth 3D volume corresponds to the nearest training example is naturally
regarded as the retrieval result.

As shown in Table 1, the model trained without volume supervision (projection loss) performs as
good as model trained with volume supervision (volume loss) on the chair category (testing set). In
addition to the comparisons of overall IU, we measured the view-dependent IU for each model. As
shown in Figure 4, the average prediction error (mean IU) changes as we gradually move from the
first view to the last view (15� to 360�). For visual comparisons, we provide a side-by-side analysis
for each of the three models we trained. As shown in Figure 3, each row shows an independent
comparison. The first column is the 2D image we used as input of the model. The second and
third column show the ground-truth 3D volume (same volume rendered from two views for better
visualization purpose). Similarly, we list the model trained with projection loss only (PTN-Proj),

0 50 100 250 300 350150 200

Azimuth (degree)

0.44

0.42

0.4

0.46

0.48

0.52

0.5

M
ea

n
IU PTN-Proj

PTN-Comb
CNN-Vol

Figure 4: View-dependent IU. For example, 3D reconstruction from 0� is more difficult than from
30� due to self-occlusion.

6

From	Yan	et	al,	Perspective	Transformer	Nets,	arXiv	2017	

Learning	3D	Structure	

Im2Struct: Recovering 3D Shape Structure from a Single RGB Image

Chengjie Niu Jun Li Kai Xu*

National University of Defense Technology

Abstract

We propose to recover 3D shape structures from single
RGB images, where structure refers to shape parts repre-
sented by cuboids and part relations encompassing connec-
tivity and symmetry. Given a single 2D image with an ob-
ject depicted, our goal is automatically recover a cuboid
structure of the object parts as well as their mutual rela-
tions. We develop a convolutional-recursive auto-encoder
comprised of structure parsing of a 2D image followed by
structure recovering of a cuboid hierarchy. The encoder
is achieved by a multi-scale convolutional network trained
with the task of shape contour estimation, thereby learn-
ing to discern object structures in various forms and scales.
The decoder fuses the features of the structure parsing net-
work and the original image, and recursively decodes a hi-
erarchy of cuboids. Since the decoder network is learned
to recover part relations including connectivity and symme-
try explicitly, the plausibility and generality of part struc-
ture recovery can be ensured. The two networks are jointly
trained using the training data of contour-mask and cuboid-
structure pairs. Such pairs are generated by rendering
stock 3D CAD models coming with part segmentation. Our
method achieves unprecedentedly faithful and detailed re-
covery of diverse 3D part structures from single-view 2D
images. We demonstrate two applications of our method in-
cluding structure-guided completion of 3D volumes recon-
structed from single-view images and structure-aware inter-
active editing of 2D images.

1. Introduction
The last few years have witnessed a continued interest in

single-view image-based 3D modeling [2, 4, 5]. The perfor-
mance of this task has been dramatically boosted, due to the
tremendous success of deep convolutional neural networks
(CNN) on image-based learning tasks [10]. The existing
deep models, however, have so far been mainly targeting
the output of volumetric representation of 3D shapes [2].
Such models are essentially learned to map an input 2D im-
age to a 3D image (voxel occupancy of a 3D shape in a 3D

*Corresponding author: kevin.kai.xu@gmail.com

Figure 1: 3D shape structures (2nd column) recovered from
photos of household objects (1st column). Top row: The
inferred 3D shape structure can be used to complete and
refine the volumetric shape estimated from the image using
existing methods [22]. Bottom row: The structure is used
to assist structure-aware image editing, where our cuboid
structure is used as an editing proxy [25].

volume). Some compelling results have been demonstrated.
While enjoying the high capacity of deep models in

learning the image-to-image mapping, the 3D volumes re-
constructed by these methods lose an important informa-
tion of 3D shapes – shape topology or part structure. Once
a 3D shape is converted into a volumetric representation,
it would be hard to recover its topology and structure, es-
pecially when there exist topological defects in the recon-
structed volume. Shape structure, encompassing part com-
position and part relations, has been found highly important
to semantic 3D shape understanding and editing [15]. In-
ferring a part segmentation for a 3D shape (surface or vol-
umetric model) is known to be difficult [8]. Even if a seg-
mentation is given, it is still challenging to reason about part
relations such as connection, symmetry, parallelism, etc.

We advocate learning a deep neural network that directly
recovers 3D shape structure of an object, from a single RGB
image. The extracted structure can be used for enhancing
the volumetric reconstruction obtained by existing methods,
facilitating structure-aware editing of the reconstructed 3D
shapes, and even enabling high-level editing of the input
images (see Fig. 1). However, directly mapping an image

ar
X

iv
:1

80
4.

05
46

9v
1

 [c
s.C

V
]

16
 A

pr
 2

01
8

From	Niu	et	al,	Im2Struct:	recovering	3D	Shape	Structure,	CVPR	2018			

Scene	Understanding	

Neural Scene De-rendering

Jiajun Wu
MIT CSAIL

Joshua B. Tenenbaum
MIT CSAIL

Pushmeet Kohli
Microsoft Research

Abstract

We study the problem of holistic scene understanding. We

would like to obtain a compact, expressive, and interpretable

representation of scenes that encodes information such as

the number of objects and their categories, poses, positions,

etc. Such a representation would allow us to reason about

and even reconstruct or manipulate elements of the scene.

Previous works have used encoder-decoder based neural

architectures to learn image representations; however, repre-

sentations obtained in this way are typically uninterpretable,

or only explain a single object in the scene.

In this work, we propose a new approach to learn an

interpretable distributed representation of scenes. Our ap-

proach employs a deterministic rendering function as the

decoder, mapping a naturally structured and disentangled

scene description, which we named scene XML, to an image.

By doing so, the encoder is forced to perform the inverse of

the rendering operation (a.k.a. de-rendering) to transform

an input image to the structured scene XML that the decoder

used to produce the image. We use a object proposal based

encoder that is trained by minimizing both the supervised

prediction and the unsupervised reconstruction errors. Ex-

periments demonstrate that our approach works well on

scene de-rendering with two different graphics engines, and

our learned representation can be easily adapted for a wide

range of applications like image editing, inpainting, visual

analogy-making, and image captioning.

1. Introduction

What properties are desirable in an image representation
for visual understanding? We argue that the representation
needs to be compact, expressive, and interpretable. Com-
pactness makes it possible to store and exploit large amounts
of data. Expressiveness allows it to capture the variations
in the number, category, appearance, and pose of objects in
an image. Lastly, an interpretable and disentangled repre-
sentation enables us to reason about and even reconstruct or
manipulate elements of an image.

Image representations learned by neural networks are
often compact and expressive, but are hard to interpret. Re-
cently, researchers studied how to obtain interpretable repre-
sentations [4, 21, 35]. They mostly employed an encoding-

Figure 1: Our goal is to interpret an image in a holistic way. As-

suming an image is rendered by a graphics engine on an indefinite

length input, we aim to recover the input so that the the exact image

can be reconstructed and manipulated. Here we show a simplified

version of the XML we use.

decoding framework, using neural nets for both inference
and approximate rendering. However, these methods typi-
cally assume each input image contains only a single, cen-
tered object in front of a clean background. Consequently,
they are not robust and powerful enough for practical applica-
tions, where we often see images with an indefinite number
of objects, heavy occlusions, and a cluttered background.

In contrast to neural decoders like the ones used in [8,
21], the deterministic rendering functions used in graphics
engines naturally take a structured and disentangled input
to generate images. From this perspective, if we assume a
given image is rendered by a generic graphics engine, we
can aim to recover the structured representation required by
renderer to reconstruct the exact image (a.k.a. de-rendering).
By learning an image representation this way, we achieve
interpretability for free, and we will also be able to apply the
representation to a range of applications like image editing.

This image de-rendering problem, however, is very chal-
lenging for multiple reasons. First, as we are no longer
assuming a localized object, and the number of objects in an
image is unknown, our representation should be extensible
to an arbitrary number of objects in different positions. This
cannot be achieved in a straightforward way with traditional
convolutional networks that learn image representations of
a fixed dimension. Previous works discussed the use of re-
current networks like LSTM [14] in these cases. However,

1699

From	Wu	et	al,	Neural	Scene	De-rendering,	CVPR	2017	

Scene	Understanding	

Workshop track - ICLR 2016

EFFICIENT INFERENCE IN OCCLUSION-AWARE GENER-
ATIVE MODELS OF IMAGES

Jonathan Huang & Kevin Murphy

Google Research
1600 Amphitheatre Parkway
Mountain View, CA 94043, USA
{jonathanhuang, kpmurphy}@google.com

ABSTRACT

We present a generative model of images based on layering, in which image lay-
ers are individually generated, then composited from front to back. We are thus
able to factor the appearance of an image into the appearance of individual objects
within the image — and additionally for each individual object, we can factor con-
tent from pose. Unlike prior work on layered models, we learn a shape prior for
each object/layer, allowing the model to tease out which object is in front by look-
ing for a consistent shape, without needing access to motion cues or any labeled
data. We show that ordinary stochastic gradient variational bayes (SGVB), which
optimizes our fully differentiable lower-bound on the log-likelihood, is sufficient
to learn an interpretable representation of images. Finally we present experiments
demonstrating the effectiveness of the model for inferring foreground and back-
ground objects in images.

1 INTRODUCTION

Recently computer vision has made great progress by training deep feedforward neural networks on
large labeled datasets. However, acquiring labeled training data for all of the problems that we care
about is expensive. Furthermore, some problems require top-down inference as well as bottom-up
inference in order to handle ambiguity. For example, consider the problem of object detection and
instance segmentation in the presence of clutter/occlusion., as illustrated in Figure 1. In this case,
the foreground object may obscure almost all of the background object, yet people are still able to
detect that there are two objects present, to correctly segment out both of them, and even to amodally
complete the hidden parts of the occluded object (cf., Kar et al. (2015)).

Figure 1: Illustration of occlusion.

One way to tackle this problem is to use generative mod-
els. In particular, we can imagine the following generative
process for an image: (1) Choose an object (or texture) of
interest, by sampling a “content vector” representing its
class label, style, etc; (2) Choose where to place the ob-
ject in the 2d image plane, by sampling a “pose vector”,
representing location, scale, etc. (3) Render an image of
the object onto a hidden canvas or layer;1 (4) Repeat this
process for N objects (we assume in this work that N is
fixed); (5) Finally, generate the observed image by com-
positing the layers in order.2

There have been several previous attempts to use layered generative models to perform scene parsing
and object detection in clutter (see Section 2 for a review of related work). However, such methods
usually run into computational bottlenecks, since inverting such generative models is intractable. In

1 We use “layer” in this paper mainly to refer to image layers, however in the evaluation section (Section 4)
“layer” will also be used to refer to neural network layers where the meaning will be clear from context.

2 There are many ways to composite multiple layers in computer graphics (Porter & Duff, 1984). In our
experiments, we use the classic over operator, which reduces to a simple ↵-weighted convex combination of
foreground and background pixels, in the two-layer setting. See Section 3 for more details.

1

From	Huang	et	al,	Occlusion	Aware	Generative	Models,	ICLR	2016		

Conditional	Image	Generation	
ground
-truth

NN

CVAE

Figure 3: Visualization of generated samples with (left) 1 quadrant and (right) 2 quadrants for an
input. We show in each row the input and the ground truth output overlaid with gray color (first),
samples generated by the baseline NNs (second), and samples drawn from the CVAEs (rest).

For qualitative analysis, we visualize the generated output samples in Figure 3. As we can see, the
baseline NNs can only make a single deterministic prediction, and as a result the output looks blurry
and doesn’t look realistic in many cases. In contrast, the samples generated by the CVAE models
are more realistic and diverse in shape; sometimes they can even change their identity (digit labels),
such as from 3 to 5 or from 4 to 9, and vice versa.

We also provide a quantitative evidence by estimating the conditional log-likelihoods (CLLs) in Ta-
ble 1. The CLLs of the proposed models are estimated in two ways as described in Section 4.1. For
the MC estimation, we draw 10, 000 samples per example to get an accurate estimate. For the im-
portance sampling, however, 100 samples per example were enough to obtain an accurate estimation
of the CLL. We observed that the estimated CLLs of the CVAE significantly outperforms the base-
line NN. Moreover, as measured by the per pixel performance gap, the performance improvement
becomes more significant as we use smaller number of quadrants for an input, which is expected as
the input-output mapping becomes more diverse.

5.2 Visual Object Segmentation and Labeling
Caltech-UCSD Birds (CUB) database [36] includes 6, 033 images of birds from 200 species with
annotations such as a bounding box of birds and a segmentation mask. Later, Yang et al. [37]
annotated these images with more fine-grained segmentation masks by cropping the bird patches
using the bounding boxes and resized them into 128 ⇥ 128 pixels. The training/test split proposed
in [36] was used in our experiment, and for validation purpose, we partition the training set into 10
folds and cross-validated with the mean intersection over union (IoU) score over the folds. The final
prediction on the test set was made by averaging the posterior from ensemble of 10 networks that are
trained on each of the 10 folds separately. We increase the number of training examples via “data
augmentation” by horizontally flipping the input and output images.

We extensively evaluate the variations of our proposed methods, such as CVAE, GSNN, and the
hybrid model, and provide a summary results on segmentation mask prediction task in Table 2.
Specifically, we report the performance of the models with different network architectures and train-
ing methods (e.g., multi-scale prediction or noise-injection training).

First, we note that the baseline CNN already beat the previous state-of-the-art that is obtained by
the max-margin Boltzmann machine (MMBM; pixel accuracy: 90.42, IoU: 75.92 with GraphCut
for post-processing) [37] even without post-processing. On top of that, we observed significant per-
formance improvement with our proposed deep CGMs.5 In terms of prediction accuracy, the GSNN
performed the best among our proposed models, and performed even better when it is trained with
hybrid objective function. In addition, the noise-injection training (Section 4.3) further improves
the performance. Compared to the baseline CNN, the proposed deep CGMs significantly reduce the
prediction error, e.g., 21% reduction in test pixel-level accuracy at the expense of 60% more time
for inference.6 Finally, the performance of our two winning entries (GSNN and hybrid) on the vali-
dation sets are both significantly better than their deterministic counterparts (GDNN) with p-values
less than 0.05, which suggests the benefit of stochastic latent variables.

5As in the case of baseline CNNs, we found that using the multi-scale prediction was consistently better
than the single-scale counterpart for all our models. So, we used the multi-scale prediction by default.

6Mean inference time per image: 2.32 (ms) for CNN and 3.69 (ms) for deep CGMs, measured using
GeForce GTX TITAN X card with MatConvNet; we provide more information in the supplementary material.

6

From	Sohn	et	al,	Deep	Conditional	Generative	Models,	NIPS	2015		

Conditional	Image	Generation	

From	Ivanov	et	al,	Variational	Autoencoder	with	Arbitrary	Conditioning,	ICLR	2019	

Published as a conference paper at ICLR 2019

Figure 1: MNIST inpaintings. Figure 2: Omniglot inpaintings.

Figure 3: CelebA inpaintings. Figure 4: CelebA inpaintings with masks from (Yeh
et al., 2017).

Left: input. The gray pixels are unobserved. Middle: samples from VAEAC. Right: ground truth.

9

Attribute	Conditioned	Image	Generation	
2 Xinchen Yan, Jimei Yang, Kihyuk Sohn and Honglak Lee

age: young
gender: female
hair color: brown
expression: smile

0.9
1.3
-0.4
0.8

?
?
?
?

viewpoint
background
lighting
…

a young girl with brown
hair is smiling.

Attribute-conditioned Image Generation

?

Fig. 1. An example that demonstrates the problem of conditioned image generation
from visual attributes. We assume a vector of visual attributes is extracted from a
natural language description, and then this attribute vector is combined with learned
latent factors to generate diverse image samples.

young) and (expression: smile). Based on this assumption, we propose to learn
an attribute-conditioned generative model.

Indeed, image generation is a complex process that involves many factors.
Other than enlisted attributes, there are many unknown or latent factors. It has
been shown that those latent factors are supposed to be interpretable accord-
ing to their semantic or physical meanings [17,4,27]. Inspired by layered image
models [38,23], we disentangle the latent factors into two groups: one related
to uncertain properties of foreground object and the other related to the back-
ground, and model the generation process as layered composition. In particular,
the foreground is overlaid on the background so that the background visibility
depends on the foreground shape and position. Therefore, we propose a novel
layered image generative model with disentangled foreground and background
latent variables. The entire background is first generated from background vari-
ables, then the foreground variables are combined with given attributes to gener-
ate object layer and its shape map determining the visibility of background and
finally the image is composed by the summation of object layer and the back-
ground layer gated by its visibility map. We learn this layered generative model
in an end-to-end deep neural network using a variational auto-encoder [15] (Sec-
tion 3). Our variational auto-encoder includes two encoders or recognition models
for approximating the posterior distributions of foreground and background la-
tent variables respectively, and two decoders for generating a foreground image
and a full image by composition. Assuming the latent variables are Gaussian,
the whole network can be trained end-to-end by back-propagation using the
reparametrization trick.

Generating realistic samples is certainly an important goal of deep generative
models. Moreover, generative models can be also used to perform Bayesian in-
ference on novel images. Since the true posterior distribution of latent variables

From	Yan	et	al,	Attribute2Image:	Conditional	Image	Generation,	arXiv	2016	

Making	Visual	Analogies	

•  Given	images	A,	B,	C,	generate	image	D	so	
that	D	is	to	C	as	B	is	to	A.	
	
	
	

Deep Visual Analogy-Making

Scott Reed Yi Zhang Yuting Zhang Honglak Lee

University of Michigan, Ann Arbor, MI 48109, USA
{reedscot,yeezhang,yutingzh,honglak}@umich.edu

Abstract

In addition to identifying the content within a single image, relating images and
generating related images are critical tasks for image understanding. Recently,
deep convolutional networks have yielded breakthroughs in predicting image la-
bels, annotations and captions, but have only just begun to be used for generat-
ing high-quality images. In this paper we develop a novel deep network trained
end-to-end to perform visual analogy making, which is the task of transforming a
query image according to an example pair of related images. Solving this problem
requires both accurately recognizing a visual relationship and generating a trans-
formed query image accordingly. Inspired by recent advances in language mod-
eling, we propose to solve visual analogies by learning to map images to a neural
embedding in which analogical reasoning is simple, such as by vector subtraction
and addition. In experiments, our model effectively models visual analogies on
several datasets: 2D shapes, animated video game sprites, and 3D car models.

1 Introduction

Humans are good at considering “what-if?” questions about objects in their environment. What if
this chair were rotated 30 degrees clockwise? What if I dyed my hair blue? We can easily imagine
roughly how objects would look according to various hypothetical questions. However, current
generative models of images struggle to perform this kind of task without encoding significant prior
knowledge about the environment and restricting the allowed transformations.

Infer Relationship Transform query

Figure 1: Visual analogy making concept. We learn
an encoder function f mapping images into a space
in which analogies can be performed, and a decoder
g mapping back to the image space.

Often, these visual hypothetical questions
can be effectively answered by analogi-
cal reasoning.1 Having observed many
similar objects rotating, one could learn
to mentally rotate new objects. Having
observed objects with different colors (or
textures), one could learn to mentally re-
color (or re-texture) new objects.

Solving the analogy problem requires the
ability to identify relationships among im-
ages and transform query images accord-
ingly. In this paper, we propose to solve the problem by directly training on visual analogy comple-
tion; that is, to generate the transformed image output. Note that we do not make any claim about
how humans solve the problem, but we show that in many cases thinking by analogy is enough to
solve it, without exhaustively encoding first principles into a complex model.

We denote a valid analogy as a 4-tuple A : B :: C : D, often spoken as “A is to B as C is to D”. Given
such an analogy, there are several questions one might ask:

• A ? B :: C ? D - What is the common relationship?

• A : B ? C : D - Are A and B related in the same way that C and D are related?

• A : B :: C : ? - What is the result of applying the transformation A : B to C?

1See [2] for a deeper philosophical discussion of analogical reasoning.

1

From	Reed	et	al,	Deep	Visual	Analogy-Making,	NIPS	2015	

