
Genome variation discovery with
high-throughput sequencing data
AdrianV. Dalca and Michael Brudno
Submitted: 22nd September 2009; Received (in revised form): 1st November 2009

Abstract
The advent of high-throughput sequencing (HTS) technologies is enabling sequencing of human genomes at a signifi-
cantly lower cost. The availability of these genomes is hoped to enable novel medical diagnostics and treatment,
specific to the individual, thus launching the era of personalized medicine. The data currently generated by HTS
machines require extensive computational analysis in order to identify genomic variants present in the sequenced
individual. In this paper, we overview HTS technologies and discuss several of the plethora of algorithms and tools
designed to analyze HTS data, including algorithms for read mapping, as well as methods for identification of
single-nucleotide polymorphisms, insertions/deletions and large-scale structural variants and copy-number variants
from these mappings.
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INTRODUCTION
High-throughput sequencing (HTS) technologies,

such as Illumina/Solexa and AB SOLiD, are able

to sequence a full human genome per week at a

cost 200-fold less than previous methods. The result-

ing data consist of pieces—reads—about 35–120 nt

long, from unknown locations in the genome.

Analysis of these data sets poses an unprecedented

informatics challenge, both because of the sheer

number of reads that a single run of an HTS machine

can produce, and because the reads are significantly

shorter than previously available [1–3]. Methods for

the analysis of short-read data sets have started to

become available over the last 2 years, and while

some of the problems are close to being solved

with reliable tools freely available to the scientific

community, there are still many algorithmic and

informatics challenges remaining.

Perhaps the main reason that the informatics

challenges presented by HTS data have not been

solved is the versatility of the underlying platforms,

which generate many kinds of sequence data. For

example, they are used to sequence novel genomes

(de novo sequencing) [4–7], resequence individuals

when a reference genome exists (variation discovery)

[8, 9], sequence messenger and noncoding RNA

to discover novel transcripts and quantify their

expression levels in various tissues (RNA-Seq)

[10, 11], and to understand the regulation of genes

by sequencing chromatin immunoprecipitation

products (ChIP-Seq) [12]. While the bioinformatics

community has made some inroads along all of these

fronts, covering all of these areas in a single review

paper is not feasible. Here, we describe the data

generated by HTS technologies, and concentrate

on the algorithms and tools that have been devel-

oped for discovery of genomic variants from these

datasets.

Methods for variation discovery typically require

the existence of a high-quality genome of some

representative of the species (the reference), while

an HTS technology is used to sequence reads from

the genome of another representative (the donor).

If it were possible to assemble the donor’s genome

from the reads, finding the differences between the

two genomes would be relatively straight forward

[13]. However, de novo assembly of the human
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genome from HTS reads can only generate short

pieces (contigs) [7], as the presence of repeats

makes it difficult or impossible to assemble longer

pieces. Instead, the reads are compared to the refer-

ence genome, and variants are identified via analysis

of the mapped reads. In the following sections, we

first provide a brief overview of the reads generated

by HTS technologies, and then describe how these

are analyzed to discover genomic variants.

SEQUENCINGTECHNOLOGIES
The currently available HTS technologies are

Illumina Genome Analyzer (GA), Applied Bio-

system’s (ABI) SOLiD and Helicos’ Heliscope

sequencing machines. All of these can sequence

millions of reads in parallel, achieving throughput

of tens of gigabases per week. The other second-

generation (post-Sanger) sequencing technology,

454/Roche, has much longer read lengths and

lower throughput. While some of the methods for

454 data analysis are very similar to those for HTS

platforms, the data themselves are significantly differ-

ent, and we will not discuss 454 explicitly in this

review. Illumina and SOLiD both rely on the poly-

merase chain reaction (PCR) technique to amplify

DNA in order to increase the signal-to-noise ratio.

In contrast, single-molecule sequencing (SMS)

machines, of which only the Helicos Heliscope

[14] is commercially available, skip the PCR step.

SMS technologies, while not as mature as Illumina

GA or ABI SOLiD, are expected to become more

prominent in the near future [15].

Illumina
The Illumina GA (also sometimes called Solexa

sequencer) was the first of the HTS platforms, and

is the most widely available technology. The sequen-

cing process starts with input DNA sheared into

smaller segments, which are attached to a slide, and

PCR is utilized to create many copies of the segment

at each slide location. All of the molecules on the

slide are sequenced in parallel, using sequencing by

hybridization, with each nucleotide producing a

specific color as it is sequenced. The colors for all

of the positions on the slide are recorded through

imaging techniques, and are then converted into base

calls. The Illumina sequencer is able to achieve

relatively low error rates (�1%), and 100 bp reads

are readily available (with longer ones expected in

the near future). Almost all of the sequencing errors

are substitution errors, where an incorrect base is

read at a location, while insertion/deletion errors

are much less common.

ABI SOLiD
The other widely used sequencing platform is the

ABI SOLiD. While the overall sequencing method-

ology of this technology is similar to Illumina, there

are also important differences. The most prominent

of these is that while the Illumina system reads the

DNA sequences directly—generating a string of A’s,

C’s, G’s and T’s, the SOLiD system introduced a

di-base sequencing technique where two nucleotides

are read (via sequencing by ligation) at every step of

the sequencing process. However only four dyes are

used for the 16 possible di-bases, so sets of four

di-bases are all represented by a single color. The

colors are typically referred to by numbers 0–3.

Each base is interrogated twice: first as the right

nucleotide of a pair, and then as the left one, as

the machine moves along the read. Dibase encoding

can be understood as a finite state automaton: each

color is the emission corresponding to a shift from

one letter (state) to the next. Even though only

four colors are emitted, it is possible to derive each

subsequent letter if we know the previous one

(Figure 1). In addition, a letter specifies the last

nucleotide of the molecule that connects to the

DNA (the linker), enabling the translation of the

whole read from color-space into letter-space.

However it is important to note that if one of the

colors in a read is misidentified (e.g. due to a sequen-

cing error), this will change all of the subsequent

letters in the translation (Figure 1B). While this

may, at first, seem like a detriment, it can be advan-

tageous when one needs to decide if a particular

difference between the read and the reference

genome is due to an underlying change in DNA

or a sequencing error, as will be illustrated subse-

quently. The reads generated by the latest

SOLiD machines are 50–75 bp long, and the raw

‘per-color’ error rate of the ABI SOLiD technology

is �2–4%.

Single-molecule sequencing
While the origins of SMS date back to 1989 [16],

SMS is only now becoming a practical sequencing

approach. The Heliscope sequencer, sold by Helicos,

is the first commercial product that allows for the

sequencing of DNA with SMS. The key advantage
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of the SMS methods over other HTS technologies is

the direct sequencing of DNA, without the need for

the PCR step. PCR has variable success rates for

different DNA molecules and may introduce

changes into the sequence as the DNA is replicated.

In addition, the direct sequencing of DNA via SMS

significantly simplifies the preparation of DNA

libraries. SMS methods are expected to lead to

more accurate estimates of the quantity of sequenced

DNA, which should significantly improve the quan-

tification of gene expression levels via sequencing.

Current SMS technologies [14, 17] have very differ-

ent error distributions than PCR-based methods:

because only one physical piece of DNA is

sequenced at a time, the sequencing signal is much

weaker, leading to a large number of ‘dark bases’.

These are nucleotides that are skipped during

the sequencing process and appear as deletion

errors in the data. While a nucleotide could also be

misread (substitution error) or inserted, these errors

are much less frequent. In the near future, several

other companies, including Pacific Biosciences, are

expected to make available sequencing machines that

use SMS to generate much longer reads than are

currently possible with SOLiD or Illumina [17].

There has been relatively little work developing

informatics solutions for SMS data, and this is a

very promising field for future algorithm develop-

ment, as large SMS data sets are becoming

available [18].

Paired-end and matepair sequencing
Most of the HTS technologies allow for the gener-

ation of paired-end or matepair data. While two dif-

ferent methods are used for matepair and pair-end

sequencing (see ref. [19] for an explanation of the

distinction), from a computational perspective the

data generated are similar: paired reads are two

sequences, generated at an approximately known

distance from each other in the genome (the insert

size). Pair reads are invaluable for short-read data

analysis, as a large fraction of short reads are difficult

to map uniquely to the genome, and the second read

of a pair can be used to find the correct location (it is

said that the first read is ‘rescued’ by the second).

Mate pairs are also typically used to discover struc-

tural variants (SVs)—regions of the genome that

have undergone large-scale mutations, such as inver-

sions and large insertions and deletions, as will be

discussed lower.

READMAPPING
The fundamental first step in the discovery of

variants in the genome of a newly sequenced indi-

vidual (the donor) is the mapping of reads to a

finished (reference) genome. In the last few years,

there have been many tools written for read align-

ment, utilizing a variety of approaches (see refs

[20–31], among many others; for a relatively com-

plete, and up-to-date list we point the interested

Figure 1: Mapping color-space reads.The finite state automaton representation of AB SOLiD color-space data, with
edges labeled with the observed color (0^3), and nodes corresponding to the actual basepairs of the underlying
genome. (A^E) Various mutation and error events, and their effects on the color-code readouts. The reference
genome is labeled G and the read R. A perfect alignment (A); In case of a sequencing error (the 2 should have
been read as a 0) the rest of the read no longer matches the genome in letter-space (B); In case of a SNP two
adjacent colors do not match the genome, but all subsequent letters do match (C). However, only three of the
nine possible two-color changes represent valid SNPs (D); The rules for deciding which insertion and deletion
events are valid are even more complex, as indels can also change adjacent color readouts [Figure adapted from
Rumble et al. (30)].
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reader to: http://lh3lh3.users.sourceforge.net/NGS

align.shtml). Most of these tools utilize the ‘seed

and extend’ model used in classical alignment tools

[32]. In this approach, seeds (exact or nearly exact

substring matches between the read and the genome)

are used to rapidly isolate the potential locations

where the read could match, and then a sensitive,

full alignment phase, often with the Smith–

Waterman [33] algorithm, is used to confirm the

similarity. In the following subsections, we first dis-

cuss the classical seeding paradigm and then the use

of spaced seeds, a popular variant of these techniques.

Finally, we overview one algorithmic development

that is currently used only for short-read alignment

(though it could be applicable in other contexts): the

use of the Burrows–Wheeler Transform (BWT) to

build memory-efficient indices for fast exact string

lookup.

Seed and extend methods
To find seeds, one typically indexes either the reads

or the genome in a data structure, linking specific

DNA words to their locations. Substrings of the

other sequence are then used to search the data struc-

ture for exact, or nearly exact matches. Perhaps

the simplest way to index a sequence is the lookup

table technique: all k-long words (k-mers) of one

sequence are indexed in a table with an entry for

every possible k-mer. The k-mers of the other

sequence are used to retrieve from the lookup

table the locations at which that particular k-mer is

present in the indexed sequence. If a match is

located, it is extended in both directions to complete

the alignment. This approach, with certain speedups,

is used in several short-read alignment tools, includ-

ing mrFAST [31], PASS [23] and Mosaik (Stromberg

et al., in preparation; http://bioinformatics.bc.edu/

marthlab/Mosaik). While these approaches have

the advantages of simple implementation and fast

lookup times, they do not allow for the use of

long k-mer matches. There are 4k possible DNA

words of length k, so the memory complexity of

storing the lookup table grows exponentially, and

becomes impractical for k>�14. In order to allow

larger k-mers to be indexed it is necessary to use

alternate lookup structures, such as hash tables or

suffix arrays [34] instead.

Spaced seed-based approaches
A popular variant of these techniques is to use ‘spaced’

seeds, initially implemented in PatternHunter [35].

These seeds allow certain prespecified positions to

not match. For example, a 110101 seed requires

4 (specifically, the 1st, 2nd, 4th and 6th) out of

6 positions to match, while the other two positions

may differ. This is referred to as a (4,6) spaced seed:

the weight is 4, as four characters are required to

match, while the span is 6. As the positions of the

matching characters are known ahead of time, it is

possible to use just a single index to look up all such

words. As explained in ref. [35], spaced seeds are

more sensitive than regular k-mers because two

adjacent overlapping k-mers will no longer share

k – 1 positions (due to the spaces), thus reducing

the correlation between them. While in the case of

exact matching seeds, it is sufficient to introduce

a mutation every k position in order to prevent

any matching seed, for the (9,15) spaced seed

111001010011011, for example, it is necessary to

have a mutation at least every 7 bp to prevent any

seed from being found.

While finding a single matching seed between

a read and a certain location of the reference is a

strong indication that there is sequence similarity,

if one is aligning very long sequences, such as the

3 gigabase long human genome against gigabases of

short-read data, many seeds will match by chance.

Consequently, several tools, for example Zoom [20],

MAQ [21] SHRiMP [30] and Corona Light [36],

require multiple different spaced seeds to match

before a thorough alignment is attempted. While

some tools use seeds generated at every location in

the read, others use spaced seeds that completely span

the read. For example, Zoom utilizes a combination

of spanning seeds which are guaranteed to match any

genomic location with up to a given number of

mismatches (Figure 2A). The disadvantage of this

approach is that reads even with a single insertion/

deletion (indel) cannot be matched. Consequently

other tools, such as SHRiMP and BFAST [37], use

shorter seeds to increase sensitivity, at the expense of

runtime. It is notable that tools such as SOAP [22]

and MAQ [21], which require two of the four ‘quar-

ters’ of the read to match exactly, can also be thought

to use multiple spaced seeds: the four subparts of a

8-long read correspond to spaced seeds 11110000,

11001100, 11000011, 00111100, 0110011 and

00001111.

Suffix array and BWT-based approaches
One of the key disadvantages of the seed-based

approaches described above is their memory
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inefficiency, due to the use of direct lookup tables.

One alternative index structure is a suffix array

[34], which is simply the sorted list of all of the

suffixes (or, alternatively, k-mers) in the genome.

While using suffix arrays reduces the memory

requirements by not storing k-mers absent from

the genome, a full pointer (4 bytes) of memory is

still required for every letter of the genome, thus

requiring up to 12 GB to index the entire human

genome. The memory requirements will be propor-

tionally higher if multiple spaced seeds were used,

and may quickly become too large for a single

machine. One solution to this, implemented in the

Slider tool [27], is to use external memory (i.e. disk)

for all data, and sort all of the k-mers of the genome

and reads in external memory. As many reads may

have sequencing errors, Slider uses the original image

intensity values for each base to consider not just the

most likely, but all plausible bases at each position in

a read, and generates the full list of plausible reads.

For any read that does not exactly match the

genome, all alternatives with a single mismatch are

generated, and are checked against the genome, thus

building a list of locations with putative single-

nucleotide polymorphisms (SNPs). The advantage

of the Slider tool is that by considering suboptimal

base calls it is able to reduce the number of sequen-

cing errors significantly, thus simplifying SNP calling

(see below). The downside is that it is unable to map

reads that overlap several SNPs or indels.

Another alternative to lookup tables and suffix

arrays is the Burrows–Wheeler Transform [38], a

technique previously used for compression. The

BWT string is built by sorting all of the circular

shifts of a string, and concatenating the last characters

of each circular shift (Figure 2B). The key feature of

the BWT is the last-first property, in that the kth
occurrence of a character in the BWT string corre-

sponds to its kth occurrence in the list of sorted

circular shifts. The BWT string, in conjunction

with its sorted counterpart, can be used as an index

[39] with fast search times and lower memory

requirements (Figure 2C). In the BWT index, only

a fraction of the pointers must be precomputed and

saved, while the rest are reconstructed on demand.

This allows one to trade time for memory, and create

indices of the human genome that are as small as

1 GB. The BWT has the additional advantage of

being able to count the number of maximal matches

of a string in time linear in its length, and reconstruct

the locations of the matches with a small amount of

overhead. BWT-based indexing has allowed for the

creation of three extremely fast methods for read

mapping—BowTie [24], BWA [25] and Soap2

(28). Of these, BowTie and BWA utilize heuristic
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Figure 2: Methods for fast read matching. The multi-
ple spaced seeds approach as utilized in Zoom (A). The
four spaced seeds of weight 13 each span the 33bp
read, and guarantee that every location with at most
two mismatches is found (adapted from Lin et al.,
2008). The Burrows^Wheeler Transform [BWT, (B)]
builds the BWT string ‘GC$AAAC’ from the input
string ‘ACAACG$’ by sorting all of the circular shifts
of the input (the ‘$’ represents the end of the text).
From the BWT string it is possible to reconstruct the
original input string, as well as to efficiently search for
occurrences of substrings in the input text (C). The
key to this is the last-first property, in that the kth
occurrence of a character in the BWT string corre-
sponds to its kth occurrence in the sorted list of all
characters. To search for the string ‘AAC’, we start
with the last character (the ‘C’), identify its locations in
the sorted list, and get the corresponding letters of
the BWT string (2nd and 3rd ‘As). We then find these
in the sorted string, and match against the next-to-last
character (‘A’). The corresponding characters of the
BWT string are ‘$’ and the first ‘A’, of which only the
latter matches the first letter of the query string.
Thus, there is a single occurrence of the string ‘AAC’
in the input string, and it occurs right after the first
‘C’: the search ended at the first ‘C’ in the BWT string
(adapted from Langmead et al., 2009).
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algorithms to search for non-exact matches in the

BWT-based index, if exact matches cannot be

located. Soap2, on the other hand, splits the read

into a number of sub-portions, and looks for exact

matches in a sufficient number of them (e.g. two of

the four quarters of the read must match exactly).

Final alignment
Once the requisite number of spaced seeds are

found, or sufficiently long suffixes matched in a

given window, the final stage is to confirm the accu-

racy of the alignment via a thorough comparison

of the read and the genome. While some tools per-

form a full Smith–Waterman alignment (BFAST,

SHRiMP and Mosaik), or an alignment within a lim-

ited band around the seed (mrFAST), others perform

only a gapless linear scan (BowTie, Soap). This

approach, while faster, fails to align reads with

indel polymorphisms. The MAQ tool, along with

several others (e.g. Corona Light Pipeline), has

adapted a hybrid approach: while reads are initially

matched using ungapped alignment, if a certain read

matches uniquely while its pair end does not, a full,

gapped alignment is performed for the second read in

proximity to the location of the first. This allows for

detection of indels and keeps the computational

complexity of gapped alignment limited to a small

subset of the reads, but only works if the other end of

the mate pair can be confidently mapped.

Color space alignment
Alignment of SOLiD ‘color-space’ sequences against

a reference genome introduces several additional

complications. Because of the nature of the encod-

ing, a single misread color results in all subsequent

letters being wrong, if one simply translates the read

into letter-space (Figure 1B). The obvious solution is

to translate the reference genome into color-space,

and align the underlying colors. This approach also

demonstrates a key advantage of the color-space

encoding. When one compares a regular, letter-

space read to a known DNA sequence, it is difficult

to determine if a discrepancy is due to a true differ-

ence between the two genomes, or to a sequencing

error. In color-space, we can usually separate the two

explanations: if the difference is due to an SNP

between the genomes, this will lead to two adjacent

color-space changes, as both of the colors that inter-

rogated the nucleotide will change (Figure 1C).

On the other hand, a sequencing error will only

affect one color, and therefore can be differentiated

from a SNP.

However, not all two-color changes correspond

to SNPs. While there are 16 possible two-color

combinations, there are only 4 nucleotides

(Figure 1D). The other 12 combinations are

‘invalid’, that is, they do not correspond to an

SNP, but in fact will change the translation of the

subsequent portion of the read, similar in behavior to

a sequencing error. While it is possible to generate

simple rules about ‘valid’ and ‘invalid’ color pairs,

these do not easily generalize to two adjacent

SNPs, which can lead to two distinct color-space

similarity patterns (three adjacent mismatches, or

two mismatches separated by a match), and the

rules for indels are even more complicated (Figure

1E). Instead, it is possible to generalize the standard

Smith–Waterman algorithm for direct alignment of

color-space reads, as was independently identified in

two recent papers [30, 37]. To align color-space

reads to a reference genome, notice that while a

sequencing error will change all of the subsequent

letters, the correct letters will be present in one of the

other four ‘translations’ of the read (Figure 3A). The

intuition behind the color-space Smith–Waterman

algorithm is that one aligns the reference to all four

possible translations, allowing the alignment to

change translations (referred to as a ‘cross-over’),

while paying a penalty (Figure 3B). This algorithm

is intuitively similar to alignment of a transcript to a

protein, while allowing for out-of-frame sequencing

errors.

SNPANDMICRO-INDEL
DISCOVERY
Compared to the multitude of mapping tools

emerging for HTS platforms, there have only been

a handful of toolsets for SNP and small (1–5 bp) indel

discovery. The greatest computational challenge for

this task lies in judging the likelihood that a position

is a heterozygous or homozygous variant given the

error rates of the various platforms, the probability of

bad mappings, and the amount of support or cover-

age. Therefore, most of the tools include a detailed

data preparation step in which they filter, realign

and often re-score reads, followed by a nucleotide

or heterozygosity calling step done under a Bayesian

framework. In this section, we begin by describing

the common approaches used for small indel and

SNP discovery, illustrate the differences between
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the various frameworks and finally address the chal-

lenges introduced by color-space data from the AB

SOLiD platform.

Data preparation and Bayesian
approaches
Since the mapping of a read is only a prediction of its

true location, most SNP callers will include a data

preparation step in which read mappings are evalu-

ated and filtered. Reads that may be mapping

to paralogs or repeat sequences are discarded, or

considered only when other reads offer supporting

evidence [22, 29, 40]. Quality values may also be

(re)assigned to the reads based on the base traces or

various statistics. A re-alignment step [41] may also

be employed to better align small indels, if they are

present in the mappings.

In general, a Bayesian approach is applied to the

filtered, aligned reads to infer genotypes. These

approaches compute the conditional likelihood of

the nucleotides at each position using the Bayes rule:

PðGjRÞ ¼
PðRjGÞPðGÞ

PðRÞ
:

This equation states that one can get the probability

of a certain genotype G given the data R (posterior)

if one has the overall probability of that genotype

(prior) and the probability of observing the given

data from this genotype (likelihood). The denomi-

nator can be understood as a normalization factor.

Most often, the prior P(G) will be represented by

the probability of the variant—for example, the

widely used MAQ toolset [21] uses the probability

of heterozygosity. The probability of observing

the prepared reads P(R|G) is then estimated for

each possible donor genotype. Continuing with the

example of MAQ, this probability is computed with

a binomial distribution if errors are assumed indepen-

dent and identical for each base in the read, or oth-

erwise with a weighted product of the observed

errors. Finally, a posterior probability P(G|R) is

computed, which either estimates the donor nucleo-

tide themselves given the data or the probability of

an SNP given the data. Applying a threshold to this

probability for SNP discovery offers a sensitivity/

specificity tradeoff.

Differences and indels
Although most methods use a Bayesian approach to

SNP discovery, they vary widely in the details, use

different interpretation of statistics, and have diverse

approaches for small indel discovery. While all of

PolyBayes [40], SOAPsnp [29] and MAQ assume

some prior probability that a site is polymorphic,

the rest of the model is different in its implementa-

tion. In order to assign a posterior, MAQ estimates

a probability of observing the given read errors for

each genotype prior via a binomial distribution if

errors are correlated, or a similarly estimating func-

tion if they are not. SOAPsnp computes the like-

lihood based on various features of the reads.

PolyBayes assumes knowledge of a probability of

error via quality values and uses the product of

these to compute the posterior directly.

Two alternative methods to the Bayesian

approaches, described above, have been recently

proposed. The Slider tool [27] considers not just

the most likely base at every position of a read, but

also other possible bases. If the most likely base

matches the reference allele, the match is considered
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Figure 3: Full Smith^Waterman alignment of color-space reads. (A) The four possible translations of the color
space read 012033102. While the read is known to start with a T, thus specifying the translation, if one of the
positions was misread (for example, the red zero should have been a two), the true letter-space sequence will
appear in one of the other translations. To align a read while taking into account possible errors, one compares all
four possible translations of the read to the genome simultaneously [we show only two of the four in (B)], and
allows the dynamic programming algorithm to switch from one matrix to another, while paying a penalty.
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nonvariant. If the reference allele is not the most

likely base, but is above some probability, the base

is considered possibly variable, while if the reference

allele is unlikely, the base is considered a candidate

SNP. The counts of these three cases are combined

into a single value, based on which SNPs are called.

Hoberman et al. [42] developed a machine-learning-

based SNP discovery algorithm with a generally dif-

ferent approach. Site-specific, as well as more general

features are generated from read mappings, and this

information is used to train a classifier. This classifier

is then used to score the heterozygosity at each

position.

Most methods for small indel discovery re-align

reads with potential indels [29] in order to prevent

misalignments (gaps close to the end of a read may

appear as mismatches, and lead to false SNP signals),

and treating gaps in the alignment (putative indels)

as a fifth symbol, they apply the standard Bayesian

rules. In contrast, PolyScan [43] reevaluated de novo
signatures, followed by a segment alignment algo-

rithm that is very sensitive to small indels. A statistical

model is then presented, but instead of analyzing

each column in the multiple alignment, it considers

the amount of shift within clusters of realigned reads

in order to detect small indels.

SNP calling in color-space
AB SOLiD’s di-base sequencing, discussed above,

has several properties that present unique challenges

for SNP and indel identification. Some tools map the

reads by translating the reference and mapping in

color-space, but in order to call SNPs they translate

the multiple alignment back to nucleotide space

(while correcting likely sequencing errors) and call

SNPs as described in the above sections [20–22,

25,26,28,29]. McKernan et al. [36] describe Corona

Lite, a consensus technique where each valid pair of

read colors votes for an overall base call. The

DiBayes tool implements a Bayesian algorithm that

works solely in color-space. Here, the posterior

probability is computed for a particular combination

of color pairs (dicolors), the prior is based on the

expected polymorphism rate, and the likelihood is

the probability of seeing a certain dicolor given

the error rates. McKernan et al. [36] describe this

algorithm as similar to PolyBayes [40], which was

discussed in the previous subsections; however,

a detailed description has not yet been published.

Another pipeline, VARiD (Dalca et al., in prepara-

tion; http://compbio.cs.toronto.edu/varid) allows

for the discovery of SNPs and small indels from

color-space and letter-space data simultaneously.

Both the colors and letters are considered to be the

emissions from a Hidden Markov Model, with the

sequence of hidden states corresponding to the

genotypes. VARiD utilizes the forward–backward

algorithm to compute the posterior probability for

all nucleotides at every position of the genome, and

identifies homozygous and heterozygous SNPs, as

well as small indels, based on this posterior.

IDENTIFICATIONOF
STRUCTURALVARIATION
While SNPs and small indels can be located by

analyzing the mappings of unpaired reads, the iden-

tification of structural variants (SVs), where the

genome is drastically altered, is more difficult with

short reads. For example, a large deletion in the

donor’s genome (i.e. a segment of the reference

not present in the donor) may create split-reads

that cover the location of the deletion (the break-

point), and map to the reference with their two

halves on opposite sides of the deleted segment.

These reads are very difficult to identify, as statistical

confidence in the mapping drops proportionally to

the size of the insertion. Accordingly, the discovery

of SVs in a genome is typically based on pair-end

sequencing approaches [19]. The two reads are

mapped to the reference genome, with the distance

between them referred to as ‘mapped distance’. This

mapped distance and the relative orientations of the

mapping are then compared to the expected insert

size: if the distance is similar and the orientations are

unchanged, the matepair is termed ‘concordant’, and

is thought to be unlikely to overlap an SV. If, on the

other hand, one of these is different or changed (the

mate pair is called ‘discordant’), it likely overlaps a

variant, such as an insertion (the mapped distance

will be smaller than expected insert size), deletion

(it will be larger) or inversion (the orientation of

one of the two mappings will be opposite from the

expected). These variants are illustrated in Figure

4A–C. A single matepair is typically not sufficient

to predict an SV due to several reasons—the true

insert size is not known perfectly, mis-aligned mate

pairs create the appearance of SVs, and a small frac-

tion of all mate pairs is chimeric (containing DNA

from nonadjacent sections of the genome). Instead,

mate pairs are clustered, with multiple mate pairs

required to support each putative event. In addition,
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in the case of inversions, one expects to see two

clusters at the two opposite ends of the inversion.

Similar rules, more formally laid out in Lee et al.
[44], have been used as the basis for several algo-

rithms for SV detection. These methods typically

differ on how they identify clusters and the

types of variants they identify. For example,

PEMer [45, 46] selects only those discordant mate-

pairs that map to a unique location in the reference.

Hormozdiari et al. [47] also only use discordant

matepairs, but also utilize mate pairs without

unique mappings. MoDIL [48] uses both concordant

and discordant matepairs, and identifies the variant

via analysis of the distribution of the mapped dis-

tances at every location in the genome. If a large

proportion of the matepairs differ from the expected

size, even by a small amount, MoDIL uses the

Kolmogorov–Smirnov (KS) statistic to identify puta-

tive indels as small as 20 bp from Illumina pair-end

data, and the Central Limit Theorem to compute

P-values for all predictions. Finally, other methods,

such as BreakDancer [49] and SOLiD Software

Tools [36], combine several of these approaches.

Methods for SV detection with mate pairs can

identify many, but not all SVs. For example,

insertions (in the donor) larger than the insert size

cannot be discovered by these methods, as no mate-

pair will completely span the insertion event. The

use of pair-end methods also does not allow for

the discovery of the exact borders of various SVs—

an important consideration if the goal is understand-

ing their origins. In order to identify large insertions,

as well as to characterize the exact breakpoints of

various structural rearrangements, methods such as

Pindel [50] and BreakDancer [49] supplant basic

matepair clustering with thorough examination of

hanging matepairs (those with only one end map-

ping to the reference genome).

An alternate method for copy-number variation

(CNV) discovery relies on the ‘depth-of-coverage’

(DOC) signal. If a certain genomic region is present

multiple times in the donor genome, more reads will

likely be generated from it, and consequently the

corresponding region in the reference will have

higher coverage (Figure 4D). An alternate way of

understanding the depth-of-coverage is the arrival

rate—the average distance between the start points

of two adjacent reads. This terminology comes

from the Poisson Arrival Process, which can be

used as an accurate approximation of read spacing.

ref

donor

Insertion Deletion Inversion

Copy Number 
Variant

ref

donor

A B C

D

Figure 4: Illustrations of structural variants.In the case of an insertion in the donor genome (A), the mate pairs
that span the insertion will map too closely in the reference. Conversely, if the donor genome has a deletion (B),
the matepairs will map farther than expected. Note that in both of these cases multiple matepairs that span the
variant will have similar distances between the mapped reads. In the case of an inversion (C), the reads that fall
inside the inversion will change orientation, leading to matepairs where the strand of one of the pairs is anomalous.
We expect to see matepairs spanning both ends of the inversion, and multiple matepairs that span the same break-
point will be centered at the same location, while the distances between the mapped reads will vary. To find copy
number variants (D) several studies utilize the depth-of-coverage. The CNV region, in green, is present twice in
the donor, but only once in the reference, hence twice the expected number of reads map to it.
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By comparing the arrival rates within different

regions of the genome it is possible to find regions

that have undergone changes in copy-number

between the reference and the donor. One con-

founding factor, however, is the sequencing biases

of the underlying platforms. For example, it has

been shown that GC-poor and GC-rich regions

are sequenced at a rate lower than those with

mid-range GC content [51]. In addition,

mis-mapped reads, especially those in repeat-rich

regions, can further complicate CNV discovery

using this approach. Consequently, DOC-based

methods are usually used only to call larger CNVs,

over which the various biases would average-out: for

example, Alkan et al. [31] predicted copy counts of

whole genes. One recent study [52] corrected the

GC sequencing bias explicitly, enabling the identifi-

cation of CNVs as small as 1000 bp. Other studies

determine CNVs not by comparing the copy count

in the donor and the reference, but by directly com-

paring two donor genomes, akin to array-CGH

based methods [53]. In this case, the sequencing

biases will be similar in the donor genomes,

making it possible to identify CNVs by directly com-

paring the DOC signals from the two donors. This

approach was used for identifying somatic CNVs in

tumors, by comparing sequenced cancer cells to a

matched healthy tissue [54, 55].

THEROADAHEAD
While the sections discussed above describe the

tremendous progress achieved over the last several

years in analyzing HTS data, and using it to discover

the plethora of variants in the genomes of humans,

much work remains. Two particular problems that

are likely to attract attention from the scientific com-

munity over the next several years are integrating the

various variants identified via different methods to

reconstruct whole human genotypes and haplotypes,

and identifying the various variants from multiple,

low coverage individuals, such as the data expected

from the 1000 Genomes Project.

Currently, when an HTS technology is used to

sequence an individual (the ‘donor’), the result is a

list of variants between the sequenced genome and a

reference human genome—typically the genome

maintained at NCBI [56]. This reference genome is

haploid, and while it was built as a mosaic of several

individuals, it is missing a number of genomic seg-

ments present in other individuals. By simply

mapping reads to the reference genome, it is impos-

sible to identify these segments, and de novo assembly

methods must be used instead. For example, the

ABySS assembler [7] has been shown to reconstruct

some such regions, while also improving variant

identification in highly variable regions of the

genome. Even when variant annotation is possible,

the variant description may be insufficient to recon-

struct the full donor genotype: this task is simple for

SNPs, but most methods for SV identification report

deletions with approximate boundaries, and inser-

tions without a reconstruction of the inserted seg-

ments. For CNVs, methods typically report the

region that is copy-variable, but not the locations

where the various copies may be present.

Agglomerating all of these data sources in order to

reconstruct full human genotypes from HTS data is

an extremely challenging problem, but a crucial one

if we are to maximize the information that can be

gleaned from personal genomes.

Another significant challenge is analyzing and

interpreting each HTS data set not in isolation, but

in the context of other data sets. For example, most

of the SNP and structural variation detection algo-

rithms require relatively high coverage, typically

>15� on average, to reliably identify variants.

Such high coverage is still expensive to achieve,

and many large-scale sequencing projects, such as

the 1000 Genomes Project, plan to sequence many

individuals at lower, 6–8� coverage. While

GenomeMapper [57] is the first tool to allow for

the simultaneous mapping of HTS reads to multiple

genomes, identifying variants—both SNPs and

SVs—based on many low-coverage individuals is

another important research area, and one which

may prove key to enabling the $1000 genome and

the full promise of personal genomics.

Key Points

� High-throughput sequencing is enabling the low cost discovery
of variation in the human genome.

� The discovery of variation from HTS data is algorithmically and
computationally difficult.

� Multiplemethods alreadyexist formappingHTSreads, aswell as
discovering SNPs and structural variants, though much work
remains.

FUNDING
We would like to thank the National Sciences and

Engineering Research Council of Canada and the

Canadian Institutes for Health Research for funding.

12 Dalca and Brudno
 at U

niversity of T
oronto Library on O

ctober 28, 2010
bib.oxfordjournals.org

D
ow

nloaded from
 

http://bib.oxfordjournals.org/


References
1. Rusk N, Kiermer V. Primer: sequencing – the next

generation. NatMethods 2008;5:15.

2. Shendure J, Ji H. Next-generation DNA sequencing.
Nat Biotechnol 2008;26:1135–45.

3. Ansorge WJ. Next-generation DNA sequencing techni-
ques. New Biotechnol 2009;25:195–203.

4. Zerbino DR, Birney E. Velvet: algorithms for de novo
short read assembly using de Bruijn graphs. Genome Res
2008;18:821–9.

5. Butler J, MacCallum I, Kleber M, et al. ALLPATHS: de
novo assembly of whole-genome shotgun microreads.
Genome Res 2008;18:810–20.

6. Chaisson MJ, Brinza D, Pevzner PA. De novo fragment
assembly with short mate-paired reads: does the read
length matter? Genome Res 2009;19:336–46.

7. Simpson JT, Wong K, Jackman SD, et al. ABySS: aparallel
assembler for short read sequence data. GenomeRes 2009;19:
1117–23.

8. Bentley DR, Balasubramanian S, Swerdlow HP, et al.
Accurate whole human genome sequencing using reversible
terminator chemistry. Nature 2008;456:53–9.

9. Wang J, Wang W, Li R, et al. The diploid genome
sequence of an Asian individual. Nature 2008;456:60–5.

10. Cloonan N, Forrest AR, Kolle G, et al. Stem cell transcrip-
tome profiling via massive-scale mRNA sequencing. Nat
Methods 2008;5:613–9.

11. Mortazavi A, Williams BA, McCue K, et al. Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nat
Methods 2008;5:621–8.

12. Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-
wide mapping of in vivo protein-DNA interactions. Science
2007;316:1497–502.

13. Levy S, Sutton G, Ng PC, et al. The diploid genome
sequence of an individual human. PLoS Biol 2007;5:e254.

14. Harris TD, Buzby PR, Babcock H, et al. Single-molecule
DNA sequencing of a viral genome. Science 2008;320:
106–9.

15. Mardis ER. Next-generation DNA sequencing methods.
Annu RevGenomics HumGenet 2008;9:387–402.

16. Jett JH, Keller RA, Martin JC, et al. High-speed DNA
sequencing: an approach based upon fluorescence detection
of single molecules. J Biomol Struct Dyn 1989;7:301–9.

17. Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing
from single polymerase molecules. Science 2009;323:133–8.

18. Pushkarev D, Neff NF, Quake SR. Single-molecule
sequencing of an individual human genome. Nat Biotechnol
2009;27:847–52.

19. Medvedev P, Stanciu M, Brudno M. Computational meth-
ods for detecting structural variation with next generation
sequencing. NatMethods 2009;6:S13–20.

20. Lin H, Zhang Z, Zhang MQ, et al. ZOOM! Zillions of
oligos mapped. Bioinformatics 2008;24:2431–7.

21. Li H, Ruan J, Durbin R. ‘‘Mapping short DNA sequencing
reads and calling variants using mapping quality scores’’.
Genome Res 2008;18: 1851–8.

22. Li R, Li Y, Kristiansen K, Wang J. ‘‘SOAP: short oligo-
nucleotide alignment program’’. Bioinformatics 2008;24:
713–4.

23. Campagna D, Albiero A, Bilardi A, et al. PASS: a program
to align short sequences. Bioinformatics 2009;25:967–8.

24. Langmead B, Trapnell C, Pop M, Salzberg SL. ‘‘Ultrafast
and memory-efficient alignment of short DNA sequences to
the human genome’’. Genome Biol 2009;10: R25.

25. Li H, Durbin R. Fast and accurate short read alignment
with Burrows–Wheeler Transform. Bioinformatics 2009A;
25:1754–60.

26. Li H, Handsaker B, Wysoker A, et al. The Sequence
Alignment/Map format and SAMtools. Bioinformatics
2009B;25:2078–9.

27. Malhis N, Butterfield YS, Ester M, Jones SJ. Slider–
maximum use of probability information for alignment of
short sequence reads and SNP detection. Bioinformatics
2009;25:6–13.

28. Li R, Li Y, Fang X, et al. SNP detection for massively
parallel whole-genome Resequencing. Gen. Res 2009;19:
1124–1132.

29. Li R, Yu C, Li Y, et al. ‘‘SOAP2: an improved ultrafast tool
for short read alignment’’. Bioinformatics 2009.

30. Rumble SM, Lacroute P, Dalca AV, et al. SHRiMP: accu-
rate mapping of short color-space reads. PLoS Comput Biol
2009;5:5.

31. Alkan C, Kidd JM, Marques-Bonet T, et al. Personalized
copy number and segmental duplication maps using next-
generation sequencing. Nat Genet 2009;41:1061–7.

32. Altschul SF, Gish W, Miller W, et al. Basic local alignment
search tool. JMol Biol 1990;215:403–10.

33. Smith TF, Waterman MS. Identification of common mole-
cular subsequences’’. JMol Biol 1981;147:195–7.

34. Manber U, Myers E. ‘‘Suffix arrays: a new method
for on-line string searches’’. SIAM J Comput 1993;22:
935–48.

35. Ma B, Tromp J, Li M. PatternHunter: faster and
more sensitive homology search. Bioinformatics 2002;18:
440–5.

36. McKernan KJ, Peckham HE, Costa GL, et al. ‘‘Sequence
and structural variation in a human genome uncovered by
short-read, massively parallel ligation sequencing using two
base encoding’’. Genome Res 2009;19:1527–41.

37. Homer N, Merriman B, Nelson SF. Local alignment of
two-base encoded DNA sequence. BMC Bioinformatics
2009;10:175.

38. Burrows M, Wheeler D. Ablock sorting lossless data compression
algorithm, Technical Report 124, Digital Equipment
Corporation, 1994.

39. Ferragina P, Manzini G. Opportunistic data structures with
applications. Proceedings of the 41st Annual Symposium on
Foundations of Computer Science (FOCS). IEEE Computer
Society, 2000.

40. Marth GT, Korf I, Yandell MD, et al. ‘‘A general approach
to single-nucleotide polymorphism discovery’’. Nat Genet
1999;23:452–6.

41. Anson EL, Myers EW. ReAligner: a program for refining
DNA sequence multi-alignments. J Comput Biol 1997;4:
369–83.

42. Hoberman R, Dias J, Bing G, et al. ‘‘A probabilistic
approach for SNP discovery in high-throughput human
resequencing data’’. Genome Res 2009;19:1542–52.

43. Chen K, McLellan MD, Ding L, et al. ‘‘PolyScan: an
automatic indel and SNP detection approach to the

Genome variation discovery 13
 at U

niversity of T
oronto Library on O

ctober 28, 2010
bib.oxfordjournals.org

D
ow

nloaded from
 

http://bib.oxfordjournals.org/


analysis of human resequencing data’’. GenomeRes 2007;17:
659–66.

44. Lee S, Cheran E, Brudno M. A robust framework for
detecting structural variations in a genome. Bioinformatics
2008;24:i59–67.

45. Korbel JO, Urban AE, Affourtit JP, et al. Paired-end
mapping reveals extensive structural variation in the
human genome. Science 2007;318:420–6.

46. Korbel JO, Abyzov A, Mu XJ, et al. PEMer: a computa-
tional framework with simulation-based error models for
inferring genomic structural variants from massive paired-
end sequencing data. Genome Biol 2009;10:R23.

47. Hormozdiari F, Alkan C, Eichler EE, Sahinalp SC.
Combinatorial algorithms for structural variation detection
in high-throughput sequenced genomes. GenomeRes 2009;
19:1270–8.

48. Lee S, Hormozdiari F, Alkan C, Brudno M. MoDIL:
detecting small indels from clone-end sequencing with
mixtures of distributions. NatMethods 2009;6:473–4.

49. Chen K, Wallis JW, McLellan MD, et al. BreakDancer: an
algorithm for high resolution mapping of genomic structural
variation. NatMethods 2009;6:677–681.

50. Ye K, Schulz MH, Long Q, et al. Pindel: a pattern growth
approach to detect breakpoints of large deletions and
medium sized insertions from paired-end short reads.
Bioinformatics 2009;25:2865–2871.

51. Harismendy O, Ng PC, Strausberg RL, et al. Evaluation
of next generation sequencing platforms for
population targeted sequencing studies. Genome Biol 2009;
10:R32.

52. Yoon S, Xuan Z, Makarov V, Ye K, Sebat J. Sensitive and
accurate detection of copy number variants using read depth
of coverage. GenomeRes 2009;19:1586–92.

53. Urban AE, Korbel JO, Selzer R, etal. High-resolution map-
ping of DNA copy alterations in human chromosome 22
using high-density tiling oligonucleotide arrays. Proc Natl
Acad Sci 2006;103:4534–39.

54. Campbell P, Stephens PJ, Pleasance ED, et al. Identification
of somatically acquired rearrangements in cancer using
genome-wide massively parallel paired-end sequencing.
Nat Genet 2008;40: 722–9.

55. Chiang DY, Getz G, Jaffe DB, et al. High-resolution
mapping of copy-number alterations with massively parallel
sequencing. NatMethods 2009;6:99–103.

56. International Human Genome Sequencing Consortium.
Finishing the euchromatic sequence of the human
genome. Nature 2004;431:931–45.

57. Schneeberger K, Hagmann J, Ossowski S, et al.
Simultaneous alignment of short reads against multiple
genomes. Genome Biol 2009;10:R98.

14 Dalca and Brudno
 at U

niversity of T
oronto Library on O

ctober 28, 2010
bib.oxfordjournals.org

D
ow

nloaded from
 

http://bib.oxfordjournals.org/

