
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS61B P. N. Hilfinger

Fall 1999

A Model for Memory, Names, and Types∗

1 Programming Models

One way to find your way around a program-
ming language is to learn individual answers to
numerous questions of the form “How do I get
it to do X?”. One can gain a certain amount of
proficiency by mastering the answers to a very
large body of such questions, but it is far better
to find a more efficient way, preferably one that
will serve to help you find your way around nu-
merous other programming languages as well.

When I started programming, I first learned
a couple of machine languages (for the
IBM 1620 and the IBM 1401, and later for
the IBM/360, if you are curious). This ap-
proach had various advantages. I could un-
derstand constructs in higher-level program-
ming languages (which to me at the time meant
FORTRAN, Basic, and Algol 60) by informally
translating them into corresponding machine
code. The reasons for certain peculiarities in
the design of programming languages (such as
why integers had limited range) became appar-
ent. The relative speeds of alternative codings
of a program fragment became more easily pre-
dictable. The weird effects of certain bugs in
my programs became less surprising. In short,
I adopted a model for the execution of pro-

∗Copyright c© 1998, 1999 by Paul N. Hilfinger. All
rights reserved.

grams and used it to explain, understand, and
predict my programs’ behavior. This model
was by no means precise—I didn’t actually
view my FORTRAN programs as assembly lan-
guage programs—but it gave me conceptual
signposts to guide my understanding.

Unfortunately, this machine model of pro-
grams has its drawbacks. It’s a pretty sub-
stantial jump from some of the constructs used
in modern programming languages to their
machine-code realizations. Many of the details
of how a computer does things are largely irrel-
evant to understanding a program. For exam-
ple, one usually makes no use of the fact that a
pointer to a pair in Scheme is actually a num-
ber. Another example is that most machines
have a finite set of variables known as registers,

which must be used for certain operations, but
which are typically invisible in high-level pro-
gramming languages. Accordingly, nowadays I
usually find myself using a more abstract con-
ceptual model for most purposes. In this Note,
I will present a model suitable for Scheme,
Java, C, C++, and, in fact, most modern pro-
gramming languages. You will find many sim-
ilarities to what you learned in CS 61A (espe-
cially the environment models discussed there),
and you may wish to review the textbook and
handouts for that course.

1



2 P. N. Hilfinger

2 Overview of the Model

The model presented here consists of the fol-
lowing components:

Values are “what data are made of.” They in-
clude, among other things, integers, char-
acters, booleans (true and false), and
pointers (see below). Values, as I use the
term, are immutable; they never change.

Containers contain values and other contain-
ers. Their contents (or state) can vary
over time as a result of the execution of
a program. Among other things, I use the
term to include what are elsewhere called
variables and objects. Containers may be
simple, meaning that they contain a sin-
gle value, or structured, meaning that they
contain other containers, which are iden-
tified by names or indices. A container is
named if there is some label or identifier a
program can use to refer to it; otherwise
it is anonymous. In Java, for example,
local variables, parameters, and fields are
named, while objects created by new are
anonymous.

Types are, in effect, tags that are stuck on
values and containers like Post-ittm notes.
Every value has such a type, and in Java,
so does every container. Types on con-
tainers determine the sorts of values they
may contain.

Environments are special containers used by
the programming language for its local
and global variables.

The rest of this Note provides detail.

3 Values

One of the first things you’ll find in an offi-
cial specification of a programming language

is a description of the primitive values sup-
ported by that language. In Java, for example,
you’ll find seven kinds of number (types byte,
char, short, int, long, float, and double),
booleans, and pointers. In C and C++, you
will also find functions (there are functions in
Java, too, but the language doesn’t treat them
as it does other values), and in Scheme, you
will find rational numbers and symbols.

Values vs. containers. The common fea-
tures of all values in our model are that they
have types (see §5) and they are immutable;
that is, they are changeless quantities. We
may loosely speak of “changing the value of
x” when we do an assignment such as ‘x = 42’
(or ‘(set! x 42)’) but under our model what
really happens here is that x denotes a con-

tainer, and these assignments remove the pre-
vious value from the container and deposit a
new one. At first, this may seem to be a confus-
ing, pedantic distinction, but you should come
to see its importance, especially when dealing
with pointers.

Pointers. A pointer (also known as a refer-

ence1) is a value that designates a container.
When I draw diagrams of data structures, I will
use rectangular boxes to represent containers
and arrows to represent pointers. Two pointer
values are the same if they point to the same
container. For example, all of the arrows in
Figure 1a represent equal pointer values. As
shown there, we indicate that a container con-
tains a certain pointer value by drawing the
pointer’s tail inside the container. The oper-
ation of following a pointer value to the con-

1For some reason, numerous Java enthusiasts are un-
der the impression that there is some well-defined dis-
tinction between “references” and “pointers” and actu-
ally attempt to write helpful explanations for newcom-
ers in which they assume that sentences like “Java has
references, not pointers” actually convey some useful
meaning. They don’t. The terms are synonyms.



Model for Memory, Names, and Types 3

tainer at its head (i.e., its point) in order to
extract or store a value is called dereferencing

the pointer, and the pointed-to container is the
referent of the pointer.

Certain pointer values are known as null

pointers, and point at nothing. In diagrams, I
will represent them with the electrical symbol
for ground, or use a box with a diagonal line
through it to indicate a container whose value
is a null pointer. Figure 1b illustrates these
conventions with a “free-floating” null pointer
value and two containers with a null pointer
value. Null pointers have no referents; derefer-
encing null pointers is undefined, and generally
erroneous.

Invisible pointers. I use the term invisible

pointer to denote special kind of ‘pointer’ that
the programmer never sees. It is typically used
to model situations where one name serves as
an alias for another. I will draw invisible point-
ers with dashed arrows. The effect of fetching
from or storing into a container that contains
an invisible pointer is to fetch from or store
into the invisibly pointed-to container. Invisi-
ble pointers, in other words, are automatically

dereferenced (therefore, a null invisible pointer
is always erroneous). Since any ordinary at-
tempt by the programmer to set a container
holding an invisible pointer instead sets the ref-
erent of that pointer, containers with invisible
pointers tend to be constant once created. The
motivation for these beasts may seem obscure
to you, since they are not needed to describe
Java; however, they are needed for C++ and
numerous other languages.

4 Containers and names

A container is something that can contain val-
ues and other containers. Any container may
either be labeled (or named) – that is, have a
some kind of name or label attached to it –

or anonymous. A container may be simple or
structured. A simple container, represented in
my diagrams as a plain rectangular box, con-
tains a single value. A structured container

contains other containers, each with some kind
of label; it is represented in diagrams by nested
boxes, with various abbreviations. The full
diagrammatic form of a structured container
consists of a large container box containing
zero or more smaller containers2, each with a
label or name, as in Figure 2a. Figures 2b–
d show various alternative depictions that I’ll
also use. The inner containers are known as
components, elements (chiefly in arrays), fields,

or members.

An array is a kind of container in which the
labels on the elements are themselves values in
the programming language—typically integers
or tuples of integers. Figure 3 shows various
alternative depictions of a sample array whose
elements are labeled by integers and whose el-
ements contain numbers.

Value or Object? Sometimes, it is not en-
tirely clear how best to apply the model to a
certain programming language. For example,
we model a pair in Scheme as an object con-
taining two components (car and cdr). The
components of the pair have values, but does
the pair as a whole have a value? Likewise,
can we talk about the value in the arrays in
Figure 3, or only about the values in the in-
dividual elements? The answer is a firm “that
depends.” We are free to say that the container
in Figure 3a has the value <2.7, 0.18, 2.8>,
and that assigning, say, 0 to the first element
of the array replaces its entire contents with
the value <0, 0.18, 2.8>. In a programming
language with a lot of functions that deal with
entire arrays, this would be useful. To describe
Java, however, we don’t happen to need the

2The case of a structured container with no contain-
ers inside it is a bit unusual, I admit, but it does occur.



4 P. N. Hilfinger

X:

Y:

(a) All visible pointers here are equal. Y’s value is an invisible pointer, so
fetching it also gets the same value as fetching X.

(b) Null pointers.

Figure 1: Diagrammatic representations of pointers.

4N:

prev:

next:

(a)

4N:

prev:

next:

(b)

4

(c)

4

(d)

Figure 2: A structured container, depicted in several different ways. Diagrams (c) and (d) assume that the labels

are known from context.



Model for Memory, Names, and Types 5

2.7

.18

2.8

0:

1:

2:

(a)

2.7

.18

2.8

0

1

2

(b)

2.7

.18

2.8

(c)

2.7 .18 2.8

0 1 2

(d)

2.7 .18 2.8

0 1 2

(e)

2.7 .18 2.8

(f)

Figure 3: Various depictions of one-dimensional array objects. The full diagram, (a), is included for completeness;

it is generally not used for arrays. The diagrams without indices, (c) and (f), assume that the indices are known

from context or are unimportant.

concept of “the value of an array object.”

5 Types

The term “type” has numerous meanings. One
may say that a type is a set of values (e.g., “the
type int is the set of all values between −231

and 231 − 1, inclusive.”) Or we may say that
a type is a programming language construct
that defines a set of values and the operations
on them. For the purposes of this model, how-
ever, I’m just going to assume that a type is
a sort of “tag” that is attached to values and
(possibly) containers. Every value has a unique
type. This does not necessarily reflect reality
directly. For example, in typical Java imple-
mentations, the value representing the charac-
ter ’A’ is indistinguishable from the integer
value 65 of type short. These implementa-
tions actually use other means to distinguish
the two than putting some kind of marker on
the values. For us programmers, however, this
is an invisible detail.

Any given programming language provides
some particular set of these type tags. Most

provide a way for the programmer to introduce
new ones. Few programming languages, how-
ever, provide a direct way to look at the tag on
a value (for various reasons, among them the
fact that it might not really be there!).

When containers have tags (they don’t have
to; in Scheme, for example, they generally
don’t), these tags generally determine the pos-
sible values that may be contained. In the sim-
plest case, a container labeled with type T may
only contain values of type T. In Java (and C,
C++, FORTRAN, and numerous other lan-
guages), this is the case for all the numeric
types. If you want to store a value of type
short into a container of type int, then you
must first coerce (a technical term, meaning
convert) the short into an int. As it happens,
that particular operation is often merely no-
tional; it doesn’t require any machine instruc-
tions to perform, but we can still talk that way.

In more complex cases, the type tag on a
container may indicate that the values it con-
tains may be one of a whole set of possible
types. In this case, we say that the allowable
types on values are subtypes of the container’s



6 P. N. Hilfinger

type. In Java, for example, if the definition of
class Q contains the clause “extends P,” then
Q is a subtype of P; a container tagged to con-
tain pointers to objects of type P may contain
pointers to objects of type Q. As a special case,
any type is a subtype of itself; we say that one
type is a proper subtype of another to mean
that it is an unequal subtype.

If type C is a subtype of type P , and V is a
value whose type tag is C, we say that “V is a

P” or “V is an instance of P .” Unfortunately,
this terminology makes it a little difficult to
say that V “really is a” a P and not one of its
proper subtypes, so in this class I’ll say that
“the type of V is exactly P” when I want to
say that.

Important Aside on Java. In Java, all ob-
jects created by new are anonymous. If P is a
class, then the declaration

P x;

does not mean that “x contains objects of type
P,” but rather that “x contains (null or) point-

ers to objects of type P.” If Q is a subtype of P,
furthermore, then the type “pointer to Q” is a
subtype of “pointer to P.” However, because it
is extremely burdensome always to be saying
“x contains a pointer to P,” the universal prac-
tice is just to say “x is a P.” After this section,
I’ll do that, too, but until it becomes auto-
matic, I suggest that you consciously translate
all such shorthand phrases into their full equiv-
alents. End of Aside.

All this discussion should make it clear that
the tag on a value can differ from the tag on
a container that holds that value. This pos-
sibility causes endless confusion, because of
the rather loose terminology that arose in the
days before object-oriented programming (it is
object-oriented programming that gives rise to
cases where the confusion occurs). For exam-
ple, the following Java program fragment in-
troduces a variable (container) called x; says

that the container’s type is (pointer to) P; and
directs that a value of type (pointer to) Q be
placed in x:

P x = new Q ();

Programmers are accustomed to speak of “the
type of x.” But what does this mean: the type
of the value contained in x (i.e., pointer to Q),
or the type of the container itself (i.e., pointer
to P)?

We will use the phrase “the static type of
x” to mean the type of the container (pointer
to P in the example above), and the phrase
“the dynamic type of x” to mean the type of
the value contained in x (pointer to Q). This
is an extremely important distinction! Object-
oriented programming in C++ or Java will be
a source of unending confusion to you until you
understand it completely.

6 Environments

In order to direct a computer to manipulate
something, you have to be able to mention
that thing in your program. Programming
languages therefore provide various ways to
denote values (literal constants, such as 42

or ’Q’) and to denote (or name) containers.
Within our model, we can imagine that at any
given time, there is a set of containers, which
I will call the current environment, that allows
the program to get at anything it is supposed
to be able to reach. In Java (and in most
other languages as well) the current environ-
ment cannot itself be named or manipulated
directly by a program; it’s just used whenever
the program mentions the name of something
that is supposed to be a container. The con-
tainers in this set are called frames. The named
component containers inside them are what we
usually call local variables, parameters, and so
forth. You have already seen this concept in
CS 61A, and might want to review the mate-
rial from that course.



Model for Memory, Names, and Types 7

When we have to talk about environments,
I’ll just use the same container notation used
in previous sections. Occasionally, I will make
use of “free-floating” labeled containers, such
as

42X:

to indicate that X is a variable, but that it is
not important to the discussion what frame it
sits in.

7 Applying the model to Java

As modern languages in the Algol family go,
Java is fairly simple3. Nevertheless, there is
quite a bit to explain. Here is a summary of
how Java looks, as described in the terminology
of our model. We’ll get into the details of what
it all means in a later note.

• All simple containers contain either nu-
meric values, booleans, or pointers (known
as references in Java). (There are
also functions, but the manipulation of
function-valued containers is highly re-
stricted, and not entirely accessible to pro-
grammers. We say no more about them
here.)

• All simple containers are named and only
simple containers are named. The names
are either identifiers (variables, parame-
ters, or fields) or non-negative integers (ar-
ray elements).

• All simple containers have well-defined
initial values: 0 for numerics, false for
booleans, and null for pointers.

3Algol 60 (ALGOrithmic Language) was the first
widely used language with the kind free-format syn-
tax familiar to C, C++, and Java users. It has, in fact,
been called “a marked improvement on its successors.”

• The referents of pointers are always
anonymous structured containers (called
objects in Java).

• Aside from environments, objects are cre-
ated by means of the new expression,
which returns a pointer (initially the only
one) to a new object.

• Each container has a static type, restrict-
ing the values it may contain. A con-
tainer’s type may be primitive – which in
Java terminology means that it may one
of the numeric types or boolean – or it
may be a reference type, meaning that it
contains pointers to objects (including ar-
rays). If a container’s static type is prim-
itive, it is the same as its dynamic type
(that is, the type of the container equals
the type of the value). If a container has
a reference type, then its dynamic type is
a subtype of the container’s type.

• Named containers comprise local vari-
ables, parameters, instance variables, and
class variables. Every function call cre-
ates a subprogram frame, (or procedure

frame, or call frame), which contains pa-
rameters and local variables. The new

operator creates class objects and array

objects, which contain instance variables
(also called fields in the case of class ob-
jects and elements in the case of arrays).
The type of a class object is called, ap-
propriately enough, a class. Each class
has associated with it a frame that (for
lack of a standard term) I will call a class

frame, which contains the class variables
(also called static variables) of the class.

8 Important Concepts

This Note summarizes quite a few rather im-
portant concepts. Early on in a program-
ming course, this may all seem rather abstract



8 P. N. Hilfinger

and vague. Therefore, you will do well to
review the concepts in this Note from time
to time throughout the semester. See if you
can “attach” them to programming languages
you already know and look out for their ap-
pearance while learning Java. Be particularly
sure to understand the following terms and
phrases: value, container, simple container,
structured container, named and anonymous
containers, component (element), pointer (ref-
erence), invisible pointer, type, static type, dy-
namic type, subtype, proper subtype, “V is a
T ,” “type of a value,” “ type of a container,”
coercion, environment, and frame.


	Programming Models
	Overview of the Model
	Values
	Containers and names
	Types
	Environments
	Applying the model to Java
	Important Concepts

