
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS61B P. N. Hilfinger

Fall 1999

Simple Use of GDB

A debugger is a program that runs other programs, allowing its user to exercise some
degree of control over these programs, and to examine them when things go amiss. In this
course, we will be using GDB, the GNU debugger1. GDB is dauntingly chock-full of useful
features, but for our purposes, a small set of its features will suffice. This document describes
them. Relatively complete documentation of gdb is available on-line in Emacs (use C-h i

and select the “GDB” menu option).

Basic functions of a debugger

When you are executing a program containing errors that manifest themselves during execu-
tion, there are several things you might want to do or know.

• What statement or expression was the program executing at the time of a fatal error?

• If a fatal error occurs while executing a function, what line of the program contains the
call to that function?

• What are the values of program variables (including parameters) at a particular point
during execution of the program?

• What is the result of evaluating a particular expression at some point in the program?

• What is the sequence of statements actually executed in a program?

These functions require that the user of a debugger be able to examine program data, to
obtain a traceback—a list of function calls that are currently executing sorted by who called
whom—, to set breakpoints where execution of the program is suspended to allow its data to
be examined, and to step through the statements of a program to see what actually happens.
GDB provides all these functions. It is a symbolic or source-level debugger, creating the
fiction that you are executing the C++ statements in your source program rather than the
machine code they have actually been translated into.

1The recursive acronym GNU means “GNU’s Not Unix” and refers to a larger project to provide free

software tools.

41

42 P. N. Hilfinger

Starting GDB

In this course, we use a system that compiles (translates) C++ programs into executable
files containing machine code. This process generally loses information about the original
C++ statements that were translated. A single C++ statement usually translates to several
machine statements, and most local variable names are simply eliminated. Information about
actual variable names and about the original C++ statements in your source program is
unnecessary for simply executing your program. Therefore, for a source-level debugger to
work properly, the compiler must put back this superfluous information (superfluous, that is,
for execution). A standard way to do so is to add it into the information normally used by
the linker in the executable file.

To indicate to our compiler (gcc) that you intend to debug your program, and therefore
need this extra information, add the -g switch during both compilation and linking. For
example, if your program comprises the two files main.cc and utils.cc, you might compile
with

gcc -c -g -Wall main.cc

gcc -c -g -Wall utils.cc

gcc -g -o myprog main.o utils.o

or all in one step with

gcc -g -Wall -o myprog main.o utils.o

Both of the sample command sequences above produce an executable program myprog.
To run this under control of gdb, you can type

gdb myprog

in a shell. You will be rewarded with the GDB command prompt:

(gdb)

This provides a clumsy but effective text interface to the debugger. I don’t actually recom-
mend that you do this; it’s much better to use the Emacs facilities described below. However,
the text interface will do for describing the commands.

GDB commands

When GDB starts, your program is not actually running; it won’t until you tell GDB to start
it. Whenever the program is stopped during execution, GDB is looking at a particular line
of the source program in a particular function call (or stack frame)—either the point in the
program where it actually stopped, or the line containing the call to the function in which it
stopped, or the line containing the call to that function, etc. In the following, I’ll just use the
term current frame to refer to whatever point this is.

Whenever the command prompt appears, you have available the following commands.
Actually, you can abbreviate most of them with a sufficiently long prefix. For example, p is
short for print, and b is short for break.

Simple Use of GDB 43

help command

Provide a brief description of a GDB command or topic. Plain help lists the possible
topics.

run command-line-arguments

Starts your program as if you had typed

myprog {\it command-line-arguments}

to a Unix shell. GDB remembers the arguments you pass, and plain run thereafter will
restart your program from the top with those arguments.

where

Produce a backtrace—the chain of function calls that brought the program to its current
place. The commands bt and backtrace are synonyms.

up

Move the current frame that GDB is examining to the caller of that frame. Very often,
your program will blow up in a library function—one for which there is no source code
available, such as one of the I/O routines. You will need to do several ups to get to the
last point in your program that was actually executing. Emacs (see below) provides the
shorthand C-c< (Control-C followed by less-than).

down

Undoes the effect of up. Emacs provides the shorthand C-c>.

print E

prints the value of E in the current frame in the program, where E is a C++ expression
(usually just a variable). Each time you use this command, GDB numbers its response
for future reference. For example,

(gdb) print A[i]

$2 = -16

(gdb) print $2 + ML

$3 = -9

telling us that the value of A[i] in the current frame is -16 and that when this value is
added to ML, it gives -9.

quit

Leave GDB.

The commands to this point give you enough to pinpoint where your program blows up, and
usually to find the offending bad pointer or array index that is the immediate cause of the
problem (of course, the actual error probably occurred much earlier in the program; that’s
why debugging is not completely automatic.) Personally, I usually don’t need more than this;
once I know where my program goes wrong, I often have enough clues to narrow down my

44 P. N. Hilfinger

search for the error. You should at least establish the place of a catastrophic error before
seeking someone else’s assistance.

The remaining commands allow you to actively stop a program during normal operation.

C-c (Control-C)
When a program is run from a Unix shell, C-c will permanently halt its execution
(usually). In GDB, however, the program is merely suspended while you poke around
at it. In Emacs, use C-c C-c.

break place

Establishes a breakpoint; the program will halt when it gets there. The easiest break-
points to set are at the beginnings of functions, as in

(gdb) break MungeData

Breakpoint 1 at 0x22a4: file main.cc, line 16.

The command break main stops at the beginning of execution. You may also set
breakpoints at particular lines in a source file:

(gdb) break 19

Breakpoint 2 at 0x2290: file main.cc, line 19.

(gdb) break utils.cc:55

Breakpoint 3 at 0x3778: file utils.cc, line 55.

When you run your program and it hits a breakpoint, you’ll get a message and prompt
like this.

Breakpoint 1, MungeData (A=0x6110, N=7)

at main.cc:16

(gdb)

In Emacs, you may also use C-c C-b to set a breakpoint at the current point in the
program (the line you have stepped to, for example) or you may move the point to the
line at which you wish to set a breakpoint, and type C-x SPC (Control-X followed by a
space) or C-x C-a C-b (which is actually the “official” command).

delete N

Removes breakpoint number N . Leave off N to remove all breakpoints. In Emacs,
C-c C-d deletes the breakpoint you just stopped at.

cont or continue
Continues regular execution of the program. In Emacs, you may use C-c C-r.

step

Executes the current line of the program and stops on the next statement to be executed.
In Emacs, you may use C-c C-s.

Simple Use of GDB 45

next

Like step, however if the current line of the program contains a function call (so that
step would stop at the beginning of that function), does not stop in that function. In
Emacs, you may use C-c C-n.

finish

Keeps doing nexts, without stopping, until reaching the end of the current function. In
Emacs, you may use C-c C-f.

GDB use in Emacs

While one can use gdb from a shell, nobody in his right mind would want to do so. Emacs

provides a much better interface that saves an enormous amount of typing, mouse-moving,
and general confusion. Executing the Emacs command M-x gdb starts up a new window
running gdb, and enables all the Emacs shorthands described in the command descriptions
above. Furthermore, Emacs intercepts output from gdb and interprets it for you. When you
stop at a breakpoint, Emacs will take the file and line number reported by gdb, and display
the file contents, with the point of the breakpoint (or error) marked. As you step through a
program, likewise, Emacs will follow your progress in the source file. Finally, the command
M-x SPC will place a breakpoint at the current point in a file you are visiting.

