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Numbers

1 Integers

The Scheme language has a notion of integer data type that is particularly convenient for
the programmer: Scheme integers correspond directly to mathematical integers and there are
standard functions that correspond to the standard arithmetic operations on mathematical
integers. While convenient for the programmer, this causes headaches for those who have
to implement the language. Computer hardware has no built-in data type that corresponds
directly to the mathematical integers, and the language implementor must build such a type
out of more primitive components.

Historically, therefore, most “traditional” programming languages don’t provide full math-
ematical integers either, but instead give programmers something that corresponds to the
hardware’s built-in data types. As a result, what passes for integer arithmetic in these lan-
guages is at least quite fast. What I call “traditional” languages include FORTRAN, the
Algol dialects, Pascal, C, C++, Java, Basic, and many others. Here, I will discuss the integer
types provided by Java, which is in many ways typical.

2 Modular arithmetic

The integral values in Java differ from the ordinary mathematical integers in that they come
from a finite set (or domain). Specifically, the five integer types have the ranges shown in
Table 1. With a limited range, the question that naturally arises is what happens when
an arithmetic result falls outside this range (overflows). For example, what is the result of
1000000*10000, in which the two operands are both of type int?

Computer hardware, in fact, answers this question in various ways, and as a result, tradi-
tional languages prior to Java tended to finesse this question, saying that operations producing
an out-of-range result were “erroneous,” or had “undefined” or “implementation-dependent”
results. In fact, they also tended to finesse the question of the range of various integer types;
in standard C, for example, the type int has at least the range of Java’s type short, but may
have more. To do otherwise than this could make programs slower on some machines than
they would be if the language allowed compilers more choice in what results to produce. The
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Type Modulus Minimum Maximum

long 264 −263 263 − 1
(−9223372036854775808) (9223372036854775807)

int 232 −231 231 − 1
(−2147483648) (2147483647)

short 216 −215 215 − 1
(−32768) (32767)

byte 28 −27 27 − 1
(−128) (127)

char 216 0 216 − 1
0 (65535)

Table 1: Ranges of values of Java integral types. Values of a type represented with n bits are computed

modulo 2n (the “Modulus” column).

designers of Java, however, decided to ignore any possible speed penalty in order to avoid
the substantial hassles caused by differences in the behavior of integers from one machine to
another.

Java solves the overflow question by saying that integer arithmetic is modular. In math-
ematics, we say that two numbers are identical “modulo N” if they differ by a multiple of
N :

a ≡ b mod N iff there is an integer, k, such that a − b = kN.

The numeric types in Java are all computed modulo some power of 2. Thus, the type byte is
computed modulo 256 (28). Any attempt to convert an integral value, x, to type byte gives
a value that is equal to x modulo 256. There is an infinity of such values; the one chosen is
the one that lies between −27 (−128) and 27 − 1 (127), inclusive. For example, converting
the values 127, 0, and −128 to type byte simply gives 127, 0, and −128, while converting 128
to type byte gives −128 (because 128− (−128) = 28 = 256) and converting 513 to type byte

gives 1 (because 1 − 513 = −2 · 28).

It may occur to you from this last example that converting x to type byte looks like taking
the remainder of x when divided by 256 (or, as it would be written in Java, ‘x % 256’). This
is almost true. In Java, division of integers, as in x / y, is defined to yield the result of the
mathematical division with the remainder discarded. Thus, in Java, 11/3 = −11/ − 3 = 3
and −11/3 = 11/ − 3 = −3. Remainder on integer operands is then defined by the equation

x%y = x - (x/y)*y

where ‘/’ means Java-style division of integers. Thus, in Java, 11% 3 = 11% − 3 = 2 and
−11% 3 = −11% − 3 = −2. However, to use an example from above, 128%256 is just 128
back again, and one has to subtract 256 to get the right byte value. It is correct to say that
converting x to type byte is like taking the remainder from dividing by 28, subtracting 28 if
the result is ≥ 27, and adding 28 if the result is < −27.
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For addition, subtraction, and multiplication, it doesn’t matter at what point you perform
a conversion to the type of result you are after. This is an extremely important property of
modular arithmetic. For example, consider the computation 527 * 1000 + 600, where the
final result is supposed to be a byte. Doing the conversion at the last moment gives

527 · 1000 + 600 = 527600 ≡ −16 mod 256;

or we can first convert all the numerals to bytes:

15 · −24 + 88 = −272 ≡ −16 mod 256;

or we can convert the result of the multiplication first:

527000 + 600 ≡ 152 + 600 = 752 ≡ −16 mod 256.

We always get the same result in the end.
Unfortunately, this happy property breaks down for division. For example, the result of

converting 256/7 to a byte (36) is not the same as that of converting 0/7 to a byte (0), even
though both 256 and 0 are equivalent as bytes (i.e., modulo 256). Therefore, we have to
be a little bit specific about exactly when conversions happen during the computation of an
expression involving integer quantities. The rule is:

To compute x ⊕ y, where ⊕ is any of the Java operations +, -, *, /, or %, and
x and y are integer quantities (of type long, int, short, char, or byte),

• If either operand has type long, compute the mathematical result converted
to type long.

• Otherwise, compute the mathematical result converted to type int.

By “mathematical result,” I mean the result as in normal arithmetic, where ‘/’ is understood
to throw away any remainder. For example, consider

short x = 32767;

byte y = (byte) (x * x * x / 15);

The notation ‘(T) V ’ is called a cast; it means “V converted to type T.” The cast construct
has higher precedence than arithmetic operations, so that (byte)x*x*x would have meant
((byte)x)*x*x. According to the rules, y is computed as

short x = 32767;

byte y = (byte) ((int) ((int) (x*x) * x) / 15);

The computation proceeds:

x*x --> 1073676289

(int) 1073676289 --> 1073676289

1073676289 * x --> 35181150961663

(int) 35181150961663 --> 1073840127

1073840127 / 15 --> 71589341

(byte) 71589341 --> -35
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If instead I had written

byte y = (byte) ((long) x * x * x / 15);

it would have been evaluated as

byte y = (byte) ((long) ((long) ((long) x * x) * x) / 15);

which would proceed:

(long) x --> 32767

32767L * x --> 1073676289

(long) 1073676289L --> 1073676289

1073676289L * x --> 35181150961663

(long) 35181150961663L --> 35181150961663

35181150961663L / 15 --> 2345410064110

(byte) 2345410064110L --> -18

(The L notation on the Java numerals to the left of the --> marks indicates numerals of type
long.)

3 Why this way?

All these remainders seem rather tedious to us humans, but because of the way our machines
represent integer quantities, they are quite easy for the hardware. Let’s take the type byte

as an example. Typical hardware represents a byte x as a number in the range 0–255 that
is equivalent to x modulo 256, encoded as an 8-digit number in the binary number system
(whose digits – called bits – are 0 and 1). Thus,

0 --> 000000002

1 --> 000000012

2 --> 000000102

5 --> 000001012

127 --> 011111112

-128 --> 100000002 (≡ 128 mod 256)
-1 --> 111111112 (≡ 255 mod 256)

As you can see, all the numbers whose top bit (representing 128) is 1 represent negative
numbers; this bit is therefore called the sign bit . As it turns out, with this representation,
taking the remainder modulo 256 is extremely easy. The largest number representable with
eight bits is 255. The ninth bit position (1000000002) represents 256 itself, and all higher bit
positions represent multiples of 256. That is, every multiple of 256 has the form

b0 · · · bn 00000000
︸ ︷︷ ︸

8

,

which means that to compute a result modulo 256 in binary, one simply throws away all but
the last eight bits.
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Be careful in this notation about converting to a number format that has more bits. This
may seem odd advice, since when converting (say) bytes (eight bits) to ints (32 bits), the
value does not change. However, the byte representation of -3 is 253, or in binary 111111012 ,
whereas the int representation of -3 is

111111111111111111111111111111012 = 4294967293.

In converting from a byte to an int, therefore, we duplicate the sign bit to fill in the extra
bit positions (a process called sign extension). Why is this the right thing to do? Well, the
negative quantity −x as a byte is represented by 28 − x, since 28 − x ≡ −x mod 28. As an
int, it is represented by 232 − x, and

232 − x = (232 − 28) + (28 − x) = 111111111111111111111111000000002 + (28 − x).

4 Manipulating bits

One can look at a number as a bunch of bits, as shown in the last section. Java (like C and
C++) provides operators for treating numbers as bits. The bitwise operators – &, |, ^,

and ~ – all operate by lining up their operands and then performing some operation on each
bit or pair of corresponding bits, according to the following tables:

Operand Bits (L,R)
Operation (0, 0) (0, 1) (1, 0) (1, 1)

& (and) 0 0 0 1
| (or) 0 1 1 1
^ (xor) 0 1 1 0

Operand Bit
Operation 0 1

~ (not) 1 0

The “xor” (exclusive or) operation also serves the purpose of a “not equal” operation: it is 1
if and only if its operands are not equal.

In addition, the operation x<<N produces the result of multiplying x by 2N (or shifting N
0’s in on the right). x>>>N produces the result of shifting N 0’s in on the left, throwing away
bits on the right. Finally, x>>N shifts N copies of the sign bit in on the left, throwing away
bits on the right. This has the effect of dividing by 2N and rounding down (toward −∞).
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For example,

int x = 42; // == 0...0101010 base 2

int y = 7; // == 0...0000111

x & y == 2 // == 0...0000010 | x << 2 == 168 // == 0...10101000

x | y == 47 // == 0...0101111 | x >> 2 == 10 // == 0...00001010

x ^ y == 45 // == 0...0101101 | ~y << 2 == -32 // == 1...11100000

~y == -8 // == 11...111000 | ~y >> 2 == -2 // == 1...11111110

| ~y >>> 2 == 230 − 2
| // == 00111...1110

| (-y) >> 1 == -4

As you can see, even though these operators manipulate bits, whereas ints are supposed
to be numbers, no conversions are necessary to “turn ints into bits.” This isn’t surprising,
given that the internal representation of an int actually is a collection of bits, and always has
been; these are operations that have been carried over from the world of machine-language
programming into higher-level languages. They have numerous uses; some examples follow.

4.1 Masking

One common use for the bitwise-and operator is to mask off (set to 0) selected bits in the
representation of a number. For example, to zero out all but the least significant 4 bits of x,
one can write

x = x & 0xf; // or x &= 0xf;

To turn off the sign bit (if x is an int):

x &= 0x7fffffff;

To turn off all but the sign bit:

x &= 0x80000000;

In general, if the expression x&~N masks off exactly the bits that x&N does not.
If n ≥ 0 is less than the word length of an integer type (32 for int, 64 for long), then the

operation of masking off all but the least-significant n bits of a number of that type is (as
we’ve seen), the same as computing an equivalent number modulo 2n that is in the range 0
to 2n − 1. One way to form the mask for this purpose is with an expression like this:

/** Mask to remove all but the N least-significant bits, 0<=N<32. */

int MASK = (1<<n) - 1;

[Why does this work?] With the same value of MASK, the statement

xt = x & ~MASK;

has the interesting effect of truncating x to the next smaller multiple of 2n [Why?], while



Numbers 15

xr = (x + ((1 << n) >>> 1)) & ~MASK;

// or

xr = (x + ((~MASK>1) & MASK)) & ~MASK;

// or, if n > 0, just:

xr = (x + (1 << (n-1))) & ~MASK;

rounds x to the nearest multiple of 2n [Why?]

4.2 Packing

Sometimes one wants to save space by packing several small numbers into a single int. For
example, I might know that w, x, and y are each between 0 and 29 − 1. I can pack them into
a single int with

z = (w<<18) + (x<<9) + y;

or

z = (w<<18) | (x<<9) | y;

From this z, I can extract w, x, and y with

w = z >>> 18; x = (z >>> 9) & 0x1ff; y = z & 0x1ff;

(In this case, the >> operator would work just as well.) The hexadecimal value 0x1ff (or
1111111112 in binary) is used here as a mask ; it suppresses (masks out) bits other than the
nine that interest us. Alternatively, you can perform the masking operation first, extracting
x with

x = (z & 0x3fe00) >>> 9;

In order to change just one of the three values packed into z, we essentially have to take
it apart and reconstruct it. So, to set the x part of z to 42, we could use the following
assignment:

z = (z & ~0x3fe00) | (42 << 9);

The mask ~0x3fe00 is the complement of the mask that extracts the value of x; therefore
z&~0x3fe00 extracts everything but x from z and leaves the x part 0. The right operand is
simply the new value, 42, shifted over into the correct position for the x component (I could
have written 378 instead, but the explicit shift is clearer and less prone to error, and compilers
will generally do the computation for you so that it does not have to be re-computed when
the program runs). Likewise, to add 1 to the value of x, if we know the result won’t overflow
9 bits, we could perform the following assignment:

z = (z & ~0x3fe00) | ((((z & 0x3fe00) >>> 9) + 1) << 9);

Actually, in this particular case, I could also just write

z += 1 << 9;

[Why?]
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Packed arrays. We can extend the same idea to arrays. This is especially helpful when
one must store an array of boolean values; since there are only two possible boolean values,
one bit each ought to suffice. If one is forced instead to store each boolean value in a byte,
one wastes 87.5% of the storage space. Suppose that we wish to store a vector of 220 one-bit
values, b0, . . . , b1048575. We can store these in an array, B of 217 bytes by storing the values
b8k, b8k+1, . . . , b8k+7 in byte B[k], where 0 ≤ k < 217. We represent b8k by the units (least-
significant) bit of B[k], and b8k+7 by the 128s (most-signficant) bit. To retrieve the value bj ,
therefore, we can use the expression

(B[j/8] >> (j%8)) & 1

[Does it matter whether we use >> or >>> here? Why?] To set bj to a value x (0 or 1), we
could use1:

B[j/8] &= ~(1 << (j%8)); // Mask off the bit containing bj

B[j/8] |= x << (j%8); // Shift x to the correct position

// and place it in bj.

On some machines, it is probably better to work in units of 32-bit words instead, so that
B is an array of 215 int values. With this representation,

(B[j/32] >> (j%32)) & 1

retrieves bj, and

B[j/32] &= ~(1 << (j%8));

B[j/32] |= x << (j%32);

stores into it.
I’ll leave to the reader the modifications needed to handle quantities containing more than

one bit.

4.3 Flags

A trick you will sometimes see in C and C++ programs is that of passing a bunch of boolean
quantities in a single argument (where they are usually known as flags). For example, you
might have some kind of formatting function that takes a number of yes/no options (is the
argument hexadecimal, is it signed, is it left or right justified, etc.). If you define these flags
as powers of two:

final static int HEX = 1, DEC = 2, OCT = 4, UNSIGNED = 8, ...;

...

/** Return a printable rendition of X, formatted according to

* FLAGS. */

String formatNumber(int x, int flags) ...

1To be honest, the code in this section makes some demands on one’s optimizing compiler. I assume, for
example, that j%8 and j/8 are computed just once each, and that the compiler uses the most efficient means
to do so. Hard-core bit hackers will prefer to introduce temporary variables instead and to use j>>3 and j&7

rather than j/8 and j%8.



Numbers 17

then the user can write

formatNumber(z, HEX | UNSIGNED);

to indicate that z is supposed to be formatted into an unsigned, hexadecimal number. Inside
formatNumber, you can test for the presence of these flags with conditions like this:

if ((flags & UNSIGNED) != 0) ...

5 Unsigned numbers

The C and C++ languages have explicitly unsigned types corresponding to the signed types
int, short, etc. For simplicity, Java does not. This is because the rules of modular arithmetic
give you the effect of having unsigned numbers, as long as you are careful about a few things:
specifically, conversions, division, comparison, input, and output.

Here, I’ll stick to bytes to keep the numbers small, but the same applies to all the signed
integer types. The byte value −1 has the internal representation 111111112 , which can also
be read as 255. So consider, for example, the sum (byte) -1 - (byte) 5. This gives −6,
as you expect, whose representation is 11111010, which may also be read as 250. Or consider
the product (byte) 13 * (byte) 10. When converted to a byte quantity, this gives -126, whose
internal representation is 10000010, which happens also to be 130.

Conversion. If you wish to treat a byte quantity as unsigned, then converting it to a larger
format (one with more bits) requires care. For example, as the discussion above implies, after

byte b = (byte) 250;

int i = b;

the variable i will contain -6, which, if treated as an unsigned int quantity is 232 − 6, rather
than 250. Therefore, the assignment to i requires a masking operation:

int i = b & 0xff;

The same holds for conversions from byte to the other numeric types, when the quantities
are intended as unsigned, as well conversions from short to int or long, and from int to
long. The type char in Java is already unsigned.

Comparison. For the signed integer types (byte, short, int, and long), the comparison
operators perform signed comparisons. For example, even if you think of the contents of a
byte variable b as being 250, it will still compare less than 1, since Java treats its value as
−6. When comparing numeric types with fewer bits than int, you can use masking to get
rid of the sign bits, as in

(b & 0xff) >= 1 /* For byte b, or */

(s & 0xffff) >= 1 /* for short s */

Likewise, for ints that are supposed to be unsigned, you can use long:
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(i & 0xffffffffL) >= 1

Alas, this approach does not work for unsigned longs, which require some fancy footwork2.
Frankly, it would be a great deal better here for Java to have unsigned integer types and
unsigned comparisons, as do C and C++, but we can still get the same effect. Let’s take the
unsigned comparison L0<L1 as a general example. Consider the cases:

• If both quantities are positive, then their signed values (i.e., their official Java values)
are the same as the unsigned numbers they represent. In this case, the sign of L0-L1
will be negative iff L0<L1.

• If both quantities are negative, then their signed values (i.e., their official Java values)
are 264 less than the unsigned numbers they represent. In this case, the sign of L0-L1
will still be negative iff L0<L1 as unsigned numbers.

• If L0 is positive and L1 is negative, then as unsigned numbers L0 is less than 263 and
L1 is at least 263, so the unsigned comparison L0<L1 must be true.

• If L0 is negative and L1 is positive, then as unsigned numbers L1 is less than 263 and
L0 is at least 263, so the unsigned comparison L0<L1 must be false.

In other words,

• If the sign bits of L0 and L1 are equal, then Java’s normal signed comparison L0<L1

gives the same value as would unsigned comparison.

• Otherwise, the unsigned comparison L0<L1 is true iff L1 is negative and L0 is non-
negative, so that the normal signed comparison is false.

Or, in still other words:

• The unsigned comparison L0<L1 is true iff the normal signed comparison L0<L1 yields
the same truth value as comparing the signs of L0 and L1 for equality.

This yields the following surprising two formulae for the unsigned comparison L0<L1:

(L0 < L1) == ((L0^L1) >= 0)

((L0-L1) ^ L0 ^ L1) < 0

You will greatly improve your understanding of numeric representations and Java’s operators
if you take the trouble to thoroughly understand why these two expressions work.

Divison. As usual, unsigned division is tricky. For dividing unsigned ints, you can convert
to type long and divide:

((long) x & 0xffffffff) / ((long) y & 0xffffffff)

// What would happen without the "& 0xff..." parts?

but division of long quantities interpreted as unsigned is tricky indeed. I’ll leave that to you.

2The following material on unsigned comparison of Java long values is of little practical importance. Per-
sonally, I’ve never had to do this sort of comparison of unsigned 64-bit quantities. I include it here as a
useful exercise of your understanding of integer number representations and of bit manipulation. Make sure,
therefore, that you understand everything here, even if you can’t see where you’d ever need it.
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Input and Output. Java’s standard library does not include any routines for treating
numbers as unsigned, and that includes input and output of unsigned quantities. That is,
nothing directly prints the int value −1 as 4294967295, although you can fake it in this case
by converting −1 to an unsigned long value. Our ucb.io.FormatOutputStream class allows
you to output numbers as unsigned. Format codes %u, %o, and %x all interpret numbers as
unsigned (%u is unsigned decimal).

6 Floating-Point Numbers

Just as it provides general integers, Scheme also provides rational numbers—quotients of two
integers. Just as the manipulation of arbitrarily large integers has performance problems, so
too does the manipulation of what are essentially pairs of arbitrarily large integers. It isn’t
necessary, furthermore, to have large rational numbers to have large integer numerators and
denominators. For example, (8/7)30 is a number approximately equal to 55, but its numerator
has 28 digits and its denominator has 27. For most of the results we are after, on the
other hand, we need considerably fewer significant digits, and the precision afforded by large
numerators and denominators is largely wasted, and comes at great cost in computational
speed.

Therefore, standard computer systems provide some form of limited-precision rational
arithmetic known as floating-point arithmetic. This may be provided either directly by the
hardware (as on Pentiums, for example), or by means of standard software (as on the older
8086 processors, for example).

Java has adopted what is called IEEE Standard Binary Floating-Point Arithmetic. The
basic idea behind a floating-point type is to represent only numbers having the form

±b0.b1 · · · bn−1 × 2e,

where n is a fixed number, e is an integer in some fixed range (the exponent), and the bi are
binary digits (0 or 1), so that b0.b1 · · · bn−1 is a fractional binary number (the significand)3

In Java, there are two floating-point types:

• float: n = 24 and −127 < e < 128;

• double: n = 53 and −1023 < e < 1024.

In addition to these numbers, both float and double contain some additional special values.
Here they are for type double (The type float has similar definitions):

• ±∞: the results of dividing a non-zero number by 0. This is also used to approximate
values that would require an exponent (e) value larger than 127 (for type float) or 1023
(for type double) to represent them (see above). There are no special literals to repre-
sent infinite values, but you can use the Java constants Double.NEGATIVE_INFINITY and
Double.POSITIVE_INFINITY. To test x to see if it is infinite, use Double.isInfinite(x).

3The normal conventions of scientific notation require that b0 be non-zero, except when representing the
number 0 itself. Indeed, most computer floating-point hardware attempts to maintain this property (called
normalization) internally. Here, however, I am just describing the mathematical properties of these numbers,
not the computer’s representation, and it is important to allow b0 to be 0.
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• NaN (Not a Number). There are actually several of these. They represent the results of
expressions that have no defined numeric value (even infinite), such as 0/0, ∞−∞, or
any arithmetic operation on NaNs. One checks a value x to see if it is not a number with
Double.isNaN(x) (you can’t use == for this test because a NaN has the odd property
that it is not equal, greater than, or less than any other value, including itself!) Because
of these NaN values, every floating-point expression can be given a reasonable value.

• -0.0. Mathematically, 0 = −0. However, in IEEE floating point, this value is distinct
from 0 (except, confusingly, that 0.0==-0.0). The difference shows up in the fact that
1/-0.0 is negative infinity. Used properly, it turns out to be a convenient “trick” for
giving functions desired values at discontinuities. Take a course in numerical analysis if
you are curious.

In what follows, I am going to talk only about the type double. This is the default type
for floating-point literals, and in the type commonly used for computation. The type float is
entirely analogous, but since it is not as often used, I will avoid redundancy and not mention
it further. The type float is useful in places where space is at a premium and the necessary
precision is not too high.

The result of any arithmetic operation involving floating-point quantities is rounded to the
nearest representable floating-point number (or to ±∞ if out of range). In case of ties, where
the unrounded result is exactly halfway between two floating-point numbers, one chooses the
one that has a last binary digit of 0 (the rule of round to even.) The only exception to this
rule is that conversions of floating-point to integer types, using a cast such as (int) x, always
truncate—that is, round to the number nearest to 0, throwing the fractional part away4.

The justifications for the round-to-even rule are subtle. In computations involving many
floating-point operations, it can help avoid biasing the arithmetic error in any particular
direction. It also has the very interesting property of preventing drift in certain computations.
Suppose, for example, that a certain loop has the effect of computing

x = (x + y) - y;

on each of many iterations (you wouldn’t do this explicitly, of course, but it may happen to
one of your variables for certain particular values of the input data). The round-to-even rule
guarantees that the value of x here will change at most once, and then drift no further (a
remarkably hard thing to prove, I’m told, but feel free to try).

In principle, I’ve now said all that needs to be said. However, there are many subtle
consequences of these rules. You’ll have to take a course in numerical analysis to learn all of
them, but for now, here are a few important points to remember.

6.1 Binary vs. decimal

Computers use binary arithmetic because it leads to simple hardware (i.e., cheaper than using
decimal arithmetic). There is, however, a cost to our intuitions to doing this: although any

4The handling of rounding to integer types is not the IEEE convention; Java inherited it from C and C++.
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fractional binary number can be represented as a decimal fraction, the reverse is not true.
For example, the nearest double value to the decimal fraction 0.1 is

0.1000000000000000055511151231257827021181583404541015625

so when you write the literal 0.1, or when you compute 1.0/10.0, you actually get the
number above. You’ll see this sometimes when you print things out with a little too much
precision. For example, the nearest double number to 0.123 is

0.12299999999999999822364316 . . .

so that if you print this number with the %24.17e format from our library, you’ll see that
bunch of 9s. Fortunately, less precision will get rounded to something reasonable.

6.2 Round-off

For two reasons, the loop

double x; int k

for (x = 0.1, k = 1; x <= N; x += 0.1, k += 1)

{ ... }

(where 10N < 231) will not necessarily execute 10N times. For example, when N is 2, 3,
4, or 20, the loop executes 10N − 1 times, whereas it executes 10N times for other values
in the range 1–20. The first reason is the one mentioned above: 0.1 is only approximately
representable. The second is that each addition of this approximation of 0.1 to x may round.
The rounding is sometimes up and sometimes down, but eventually the combined effects of
these two sources of error will cause x to drift away from the mathematical value of 0.1k that
the loop naively suggests. To get the effect that was probably intended for the loop above,
you need something like this:

for (int kx = 1; kx <= 10*N; k += 1) {

double x = kx * 0.1;

// or double x = (double) kx / 10.0;

(The division is more accurate, but slower). With this loop, the values of x involve only one
or two rounding errors, rather than an ever-increasing number. Still, IEEE arithmetic can be
surprisingly robust; for example, computing 20*0.1 rounds to exactly 2 (a single multiplication
is more accurate than repeated additions).

On the other hand, since integers up to 253 − 1 (about 9 × 1015) are represented exactly,
the loop

for (x = 1.0, k = 1; x <= N; x += 1.0, k += 1) { ... }

will execute exactly N times (if N < 253) and x and k will always have the same mathematical
value. In general, operations on integers in this range (except, of course, division) give exact
results. If you were doing a computation involving integers having 10–15 decimal digits, and
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you were trying to squeeze seconds, floating-point might be the way to go, since for operations
like multiplication and division, it can be faster than integer arithmetic on long values.

In fact, with care, you might even use floating-point for financial computations, computed
to the penny (it has been done). I say “with care,” since 0.01 is not exactly representable
in binary. Nevertheless, if you represent quantities in pennies instead of in dollars, you can
be sure of the results of additions, subtractions, and (integer) multiplications, at least up to
$9,999,999,999,999.99.

When the exponents of results exceed the largest one representable (overflow), the results
are approximated by the appropriate infinity. When the exponents get too small to represent
at all (underflow), the result will be 0. In IEEE (and Java) arithmetic, there is an intermediate
stage called gradual underflow , which occurs when the exponent (e in the formula above) is
at its minimum, and the first significand bit (b0) is 0.

We often describe the rounding properties of IEEE floating-point by saying that results
are correct “to 1/2 unit in the last place (ulp),” because rounding off changes the result by
at most that much. Another, looser characterization is to talk about relative error. The
relative-error bound is pessimistic, but has intuitive advantages. If x and y are two double

quantities, then (in the absence of overflow or any kind of underflow) the computed result,
x*y, is related to the mathematical result, x · y, by

x*y = x · y · (1 + ε), where |ε| ≤ 2−53.

and we say that ε is the relative error (it’s bound is a little larger than 10−16, so you often
hear it said that double-precision floating point gives you something over 15 significant digits).
Division has essentially the same rule.

Addition and subtraction also obey the same form of relative-error rule, but with an
interesting twist: adding two numbers with opposite signs and similar magnitudes (meaning
within a factor of 2 of each other) always gives an exact answer. For example, in the expression
0.1-0.09, the subtraction itself does not cause any round-off error (why?), but since the two
operands are themselves rounded off, the result is not exactly equal to 0.01. The subtraction
of nearly equal quantities tends to leave behind just the “noise” in the operands (but it gets
that noise absolutely right!).

6.3 Spacing

Unlike integers, floating-point numbers are not evenly spaced throughout their range. Figure 1
illustrates the spacing of simple floating-point numbers near 0 in which the significand has 3
bits rather than Java’s 24 or 53. Because the numbers get farther apart as their magnitude
increases, the absolute value of any round-off error also increases.

There are numerous pitfalls associated with this fact. For example, many numerical
algorithms require that we repeat some computation until our result is “close enough” to
some desired result. For example, we can compute the square root of a real number y by the
recurrence

xi+1 = xi +
y − x2

i

2xi
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Figure 1: Non-negative 3-bit floating-point numbers near 0, showing how the spacing expands as the

numbers get bigger. Each tick mark represents a floating-point number. Assume that the minimum exponent

is −4, so that the most closely spaced tick marks are 2−6 = 1/64 apart.

where xi is the ith approximation to
√

y. We could decide to stop when the error |y − x2
i |

become small enough5. If we decided that “small enough” meant, say, “within 0.001,” then
for values of y less than 1 we would get very few significant digits of precision and for values
of y greater than 1013, we’ll never stop. This is one reason relative error, introduced in the
last section, is useful; no matter where you are on the floating-point scale, round off always
produces the same relative error.

6.4 Equality

Some textbooks incorrectly tell you never to compare floating-point numbers for equality,
but rather to check to see whether they are “close” to each other. This is highly misleading
advice (that’s more diplomatic than “wrong,” isn’t it?). It is true that naive uses of == can
get you into trouble; for example, you should not expect that after setting x to 0.0001,
x*10000==1.0. That simply follows from the behavior of round off, as we’ve discussed.

However, one doesn’t have to be naive. First, we’ve seen that (up to a point) double

integers work like ints or longs. Second, IEEE standard arithmetic is designed to behave
very well around many singularities in one’s formulas. For example, suppose that f(x) ap-
proaches 0 as x approaches 1—for concreteness, suppose that f(x) approximates lnx—and
that we want to compute f(x)/(1 − x), giving it the value 1 when x = 1. We can write the
following computation in Java:

if (x == 1.0)

return 1.0;

else

return f(x) / (1.0 - x);

and it will return a normal number (neither NaN nor infinity) whenever x is close to 1.0.
Despite rounding errors, IEEE arithmetic guarantees that 1.0-x will evaluate to 0 if and
only if x==1.0.

6.5 Closing Words

You will find that on the subject of floating-point arithmetic in general, programmers are
rather superstitious (that is a slightly more diplomatic word than ignorant, isn’t it?). I’d
bet that many would be doubtful about some of the properties I described above (see how

5In actual practice, by the way, this convergence test isn’t necessary, since the error in x2

i as a function of
i is easily predictable for this particular formula.



24 P. N. Hilfinger

many of your “experienced” acquaintances believe that subtraction of nearly equal quantities
introduces no additional round-off error). To some extent, their superstition may be explained
by the fact that historically, different machines have produced different results given the
same operands. Some rounded their results; others chopped (rounded towards 0); others
produced results for some operations that were off by more than a unit in the last digit; some
actually produced results that could differ from run to run; some had infinities; some threw
exceptions on overflow; and so forth. This all led to the common notion that floating-point
values are mysterious, rather fuzzy quantities with unpredictable behaviors. Although for
many calculations, this rather cavalier approach makes little difference, there are numerous
examples where a little more specificity is very useful. That was a prime motivation for the
IEEE standard.


	Integers
	Modular arithmetic
	Why this way?
	Manipulating bits
	Masking
	Packing
	Flags

	Unsigned numbers
	Floating-Point Numbers
	Binary vs. decimal
	Round-off
	Spacing
	Equality
	Closing Words


