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Abstract 
Obtaining an accurate multiple alignment of protein 
sequences is a difficult computational problem for which 
many heuristic techniques sacrifice optimality to achieve 
reasonable running times.  The most commonly used 
heuristic is progressive alignment, which merges sequences 
into a multiple alignment by pairwise comparisons along 
the nodes of a guide tree.  To improve accuracy, 
consistency-based methods take advantage of conservation 
across many sequences to provide a stronger signal for 
pairwise comparisons.  In this paper, we introduce the 
concept of probabilistic consistency for multiple sequence 
alignments.  We also present PROBCONS, an HMM-based 
protein multiple sequence aligner, based on an 
approximation of the probabilistic consistency objective 
function.  On the BAliBASE benchmark alignment 
database, PROBCONS demonstrates a statistically significant 
improvement in accuracy compared to several leading 
alignment programs while maintaining practical running 
times.  Source code and program updates are freely 
available under the GNU Public License at 
http://probcons.stanford.edu/. 

1   Introduction  
Protein multiple alignments display patterns of sequence 
conservation by organizing homologous amino acids 
across different protein sequences in columns (see Figure 
1).  As sequence similarity often implies functional 
similarity, protein sequence comparisons have been crucial 
in many bioinformatics applications, including structure 
prediction (Jones 1999), phylogenetic analysis (Phillips et 
al. 2000), identification of conserved domains (Attwood 
2002), and characterization of protein families 
(Sonnhammer et al. 1998).  However, when the proportion 
of identities among amino acid matches falls below 30%, 
called the ‘twilight zone’ of protein alignments, the 
accuracies of most automatic sequence alignment methods 
drop considerably (Rost 1999, Thompson et al. 1999b).  
As a result, alignment quality is often the limiting factor in 
comparative modeling studies (Jaroszewski et al. 2002). 
 Progressive alignment approaches, which assemble 
complete multiple alignments by successive hierarchical 
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pairwise steps, are commonly used for reasons of 
algorithmic efficiency (Feng and Doolittle 1987).  
Unfortunately, such strategies are highly prone to errors at 
early stages of the alignment.  To combat this, consistency-
based alignment techniques use shared homology with 
outgroup sequences to distinguish between evolutionary 
and coincidental sequence similarity, thus improving the 
quality of pairwise comparisons (Gotoh 1990, Morgenstern 
et al. 1998, Notredame et al. 2000). 
 In this paper, we present PROBCONS, a protein multiple 
alignment tool that performs consistency-based 
progressive alignment while accounting for all suboptimal 
alignments with posterior-probability–based scoring.  
Other features of the program include the use of double 
affine insertion penalties, guide tree calculation via semi-
probabilistic hierarchical clustering, optional iterative 
refinement, and unsupervised Expectation-Maximization 
(EM) training of gap parameters.  On the BAliBASE 
(Thompson et al. 1999a) reference dataset, PROBCONS 
gives statistically significant improvements in alignment 
quality when compared to several leading alignment tools, 
including CLUSTALW (Thompson et al. 1994), 
DIALIGN (Morgenstern et al. 1998), and T-Coffee  
(Notredame et al. 2000), while maintaining comparable 
running times.  Source code and updates for our system are 
publicly available under the GNU Public License at 
http://probcons.stanford.edu/. 

1.1   Pair-HMMs and alignment 
Given two sequences x = x1…x|x| and y = y1…y|y|, a 
pairwise alignment indicates positions of each sequence 
that are considered to be functionally or evolutionarily 
related.  Traditional edit-distance–based methods score an 
alignment as the sum of similarity values for aligned 
residues and length-dependent gap penalties for unaligned 
positions (Needleman and Wunsch 1970, Smith and 

---NAYCDEECKKG---AESGKCWY 
-YDNAYCDKLCKDK--KADSGYCYW 
-TAAGYCNTECTLK--KGSSGYCAW 
LGKNDYCNRECRMKHRGGSYGYCYG 
--GNEGCNKECKSY--GGSYGYCWT 

 
Figure 1: A five-sequence multiple alignment example. 
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Waterman 1981).  The similarity of specific residue pairs 
may be quantified with log-odds scores (Henikoff and 
Henikoff 1992), and affine gap parameters are generally 
estimated empirically (Vingron and Waterman 1994).  For 
two sequences of length L, an optimal alignment may be 
computed in O(L2) time (Gotoh 1982) and O(L) space 
(Myers and Miller 1988) via dynamic programming. 

Pair hidden Markov models (HMMs) provide a natural 
probabilistic interpretation of alignment as a stochastic 
process in which two sequences are jointly generated 
according to a first-order Markov process.  Typical pair-
HMMs for alignment contain three states, including one 
match state that emits letters from x and y simultaneously 
according to a joint distribution for residue pairs, and two 
insert states that emit letters from one sequence at a time 
(Allison et al. 1992).  A sequence of states that generates x 
and y corresponds uniquely to an alignment.  Finally, the 
highest probability alignment can be computed with the 
Viterbi algorithm (Durbin et al. 1998). 
 Modeling an alignment as a pair-HMM confers several 
advantages.  The alignment parameters obtain an intuitive 
probabilistic interpretation and can be trained using 
standard supervised or unsupervised maximum likelihood 
methods.  Pair-HMMs, moreover, allow one to compute 
the posterior probability, P(xi ~ yj | x, y), that particular 
positions xi and yj of the two sequences x and y, 
respectively, will be matched in the final alignment. 

1.2   Consistency-based alignment 
Scoring a multiple alignment in a probabilistically rigorous 
and biologically motivated manner, and finding the 
optimal alignment once a scoring scheme has been 
specified, are not straightforward tasks.  In practice, the ad 
hoc sum-of-pairs measure, which combines the projected 
pairwise scores for aligning all pairs of sequences (Carrillo 
and Lipman 1988), and its weighted variants (Altschul et 
al. 1989) are commonly used for scoring.  Direct 
application of dynamic programming is too inefficient in 
the multiple sequence case, so many heuristic strategies 
use progressive alignment based on an evolutionary tree 
(Feng and Doolittle 1987), or iterative approaches 
including genetic algorithms (Notredame and Higgins 
1996), simulated annealing (Kim et al. 1994), alignment to 
a profile HMM (Eddy 1995), or greedy assemblage of 
multiple segment-to-segment comparisons (Morgenstern et 
al. 1996).  Progressive methods such as CLUSTALW are 
the most popular but are prone to errors in early stages of 
alignment.  To combat this, post-processing steps such as 
iterative refinement (Gotoh 1996) may be applied. 

Consistency-based schemes take the alternative view 
that “prevention is the best medicine.”  Note that for any 
multiple alignment, the induced pairwise alignments are 
necessarily consistent—i.e., given a multiple alignment of 
x, y, and z, if position xi aligns with position zk and position 
zk aligns with yj in the projected x-z and z-y alignments, 
then xi must align with yj in the projected x-y alignment.  
Consistency-based techniques apply this principle in 

reverse, using alignments to intermediate sequences as 
evidence to guide the pairwise alignment of x and y. 

Gotoh (1990) first introduced consistency to identify 
anchor points for reducing the search space of a multiple 
alignment.  A mathematically elegant reformulation of 
consistency in terms of boolean matrix multiplication was 
later given by Vingron and Argos (1991) and implemented 
in the program MALI, which builds multiple alignments 
from dot matrices (Vingron and Argos 1989).  An 
alternative formulation of consistency was employed in the 
DIALIGN tool, which finds ungapped local alignments via 
segment-to-segment comparisons, determines new weights 
for these alignments using consistency, and assembles 
them into a multiple alignment by a greedy selection 
procedure (Morgenstern et al. 1996). 
 More recently, Notredame et al. (1998), introduced 
COFFEE, a new consistency-based objective function for 
scoring residue pairs in a pairwise alignment.  In this 
approach, an alignment library is computed by merging 
consistent CLUSTALW global and LALIGN (Huang and 
Miller 1991) local pairwise alignments to form three-way 
alignments, which are assigned weights by percent 
identity.  The score for aligning xi to yj is calculated by 
summing the weights of all alignments in the library 
containing that aligned residue pair.  The program T-
Coffee, which implements this objective function using 
progressive alignment based on pairwise maximum weight 
trace computations (Kececioglu 1993), has demonstrated 
superior accuracy on the BAliBASE test suite over 
competing methods, including CLUSTALW, DIALIGN, 
and PRRP (Gotoh 1996). 

2   Computing pairwise alignments 
To score an alignment between two sequences by using 
evidence from a third sequence, existing consistency-based 
methods rely on various heuristics for weighting 
consistency-derived information.  DIALIGN uses the 
weight of the overlap shared between two consistent 
diagonals as a measure of consistency strength; T-Coffee 
uses alignment percent identity to determine weights for 
each residue pairing from two consistent alignments.  No 
existing consistency-based alignment methods, however, 
use pair-HMM posterior probabilities, which give a per-
position measure of alignment reliability that takes into 
account the effect of all possible suboptimal alignments.  
The combination of consistency and posterior-derived 
weights is the basis for probabilistic consistency. 

In this section, we introduce the concept of probabilistic 
consistency with respect to calculation of two sequence 
alignments and describe an exact O(L3) method for 
computing an objective function based on this concept 
using triple-HMMs, where L is the total length of the input 
sequences.  As this method is computationally expensive 
in practice, we present an efficient O(L2) approximation of 
our objective function.  In Section 3, we extend this 
approximation to the calculation of multiple alignments. 
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2.1   Definitions 
As before, let x and y be two proteins represented as 
character strings in which xi is the ith amino acid of x.  
Given a pair-HMM, M, such as the one described in 
Section 1.1, each possible sequence of states for generating 
the sequences x and y corresponds to a pairwise global 
alignment.  For an alignment a of x and y, we say (i, j) ∈ a 
if positions xi and yj are aligned to each other in a. 

Let Ax,y denote the set of all possible pairwise global 
alignments of two sequences x and y, and let P(Ax,y) be a 
probability distribution over all possible alignments, as 
specified by M.  We denote the correct or true alignment of 
x and y (in an evolutionary or functional sense) as a*.  In 
the algorithms which follow, we assume that such an 
alignment a* exists and that a* was drawn from the 
distribution P(Ax,y). 

Most alignment schemes build an “optimal” pairwise 
alignment by finding the highest probability alignment 
using the Viterbi algorithm.  The resulting alignment 
reflects a global maximum of the probability distribution 
P(Ax,y) and may be highly sensitive to the exact parameters 
used in computing the alignment.  In this work, we explore 
an alternative strategy that maximizes not the probability 
of an alignment but rather its accuracy, defined as 

where the indicator notation 1{condition} is equal to 1 if 
condition is true and 0 otherwise. 

In general, however, a* is not known, so we instead 
maximize the expected accuracy of the reported alignment.  
To do this, we define the posterior probability of a match 
between xi and yj occurring in the true alignment as 

Note that under the assumption that the true alignment a* 
is drawn from the distribution P(Ax,y), the posterior 
probability may be considered the expectation value that a 
particular residue pairing is correct.  
Theorem 2.1: The expected accuracy of an alignment may 
be computed as 

The proof of the theorem follows easily by applying 
linearity of expectations to the definition of accuracy.  

We note that in many applications of HMMs, Viterbi is 
a superior choice to maximizing expected accuracy, 
because the resulting parse from the latter approach may 
fail to respect the relationships between highly correlated 
states in the HMM topology.  In such a case, the highest 
expected accuracy parse will optimize local accuracy while 
creating a globally inconsistent parse.  In the case of 
alignment, however, this is not the case as dependencies 

between states are not as prevalent; thus, per-position 
accuracy is a reasonable quantity to maximize. 

2.2   Probabilistic consistency 
In the process described above, computing the optimal 
expected accuracy involves finding the alignment for 
which the sum of the P(xi ~ yj | x, y)’s is maximal.  
Intuitively, the P(xi ~ yj | x, y)’s provide a quality score for 
determining the desirability of various position matches. 

When a third homologous sequence z is available, 
however, consistency provides a means for obtaining a 
better estimate for the quality of aligning xi and yj.  Given 
P(Ax,y,z), a joint distribution over all three sequence 
alignments of sequences x, y, and z, rather than using P(xi 
~ yj | x, y) values as quality scores, one may use the 
marginalized probabilities P(xi ~ yj | x, y, z).  We refer to 
the re-estimation of pairwise alignment probabilities based 
on three-sequence information as probabilistic consistency.   

Note that the above computation may performed using a 
three-sequence HMM, for which evaluating posterior 
probabilities involves an O(L3) calculation using the 
forward and backward algorithms.  For most sequences, 
however, a cubic running time is unacceptable.  Thus, we 
employ the following heuristic “factorization”: 

Admittedly, the independence assumptions required for 
such a transformation are in principle unjustified and do 
not account for alignments of xi and yj to gaps in z.  
Nevertheless, the transformation works well in practice, as 
seen in Section 4.  From a computational perspective, the 
running time is reduced to approximately O(L2)—
normally, a position xi will align to only a few positions zk, 
so the P(xi ~ zk | x, z) values may be represented as a sparse 
matrix (and similarly for P(zk ~ yj | z, y)); thus, computing 
each P(xi ~ yj | x, y, z) takes approximately constant time. 

3   Computing multiple alignments 
Thus far, we have described how to use pair-HMM–
derived posterior probabilities to compute pairwise 
alignments of two sequences that maximize expected 
accuracy.  Furthermore, we have introduced a heuristic 
approximation for obtaining consistency-based quality 
scores for aligning particular residue pairs when a third 
homologous sequence is present.  In this section, we 
extend the pairwise alignment model to multiple alignment 
under a progressive scheme. 

3.1   Progressive alignment 
In the pairwise alignment case, an optimal expected 
accuracy alignment is calculated by applying the maximum 
weight trace algorithm (Kececioglu 1993) to a matrix 
consisting of the P(xi ~ yj | x, y) values; a related scheme is 
used in the T-Coffee program. 
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For the multiple sequence case, we rely on a progressive 
alignment scheme using the guide tree calculated by 
hierarchical clustering of sequences by the method given in 
Section 3.2.  Initially, progressive alignment proceeds by 
assigning each sequence to its corresponding leaf in the 
tree.  If a node has exactly two leaves as children, then the 
sequences assigned to the children are aligned, the 
alignment is assigned to the node, the leaves are removed, 
and the process repeats until only a single node remains 
and all sequences have been aligned. 

When aligning groups of sequences, we use a sum-of-
pairs scheme in which the score of a multiple alignment is 
given by summing the expected accuracy for each possible 
projection of the multiple alignment to two sequences.  
Thus, we can find the optimal expected accuracy alignment 
of a group of sequences by a straightforward extension of 
the pairwise dynamic programming computation. 

3.2   Guide tree calculation 
Guide trees are computed in a greedy hierarchical manner.  
Given a set S of sequences to be aligned, we denote the 
expected accuracy for aligning two sequences x and y as 
E(x, y).  Initially, each sequence is placed in its own 
cluster.  Then, the two clusters x and y with the highest 
expected accuracy are merged to form a new cluster xy; we 
then define the expected accuracy of aligning xy with any 
other cluster z as E(x, y)(E(x, z) + E(y, z)) / 2.  This process 
is repeated until only a single cluster remains. 

3.3   The probabilistic consistency transformation 
To align two sequences x and y given a set of multiple 
sequences, S, we would ideally estimate P(xi ~ yj | S).  In 
practice, we use the following heuristic decomposition: 

where we set P(xi ~ xj | x) to 1 if i = j and 0 otherwise. 
In this sense, the approximate probabilistic consistency 

calculation may be viewed as a transformation that, given a 
set of all-pairs pairwise posterior probabilities, produces a 
new set of all-pairs pairwise posterior probabilities that 
have been adjusted to account for a single intermediate 
sequence.  By iterated applications of the transformation, 
then, we can approximate the effect of accounting for more 
than one intermediate sequence at a time. 

3.4   PROBCONS aligner 
We implemented PROBCONS, an alignment tool based on 
the O(L2) approximate probabilistic consistency technique 
detailed above.  Given sequences x and y, the probability 
distribution over all possible global alignments is specified 
by a pair-HMM with states for emitting matched pairs of 
residues (M), short insertions in one sequence (I1

x and I1
y), 

and long insertions in one sequence (I2
x and I2

y).  The 
allowed transitions and their associated probabilities are 
given in Figure 2. 

PROBCONS begins by computing all-pairs pairwise 
posterior probabilities, followed by two iterations of the 
probabilistic consistency transformation.  One optional 
iteration of EM training over the sequences to be aligned is 
used to generate sequence-specific training parameters 
before the posteriors are calculated.  After computing a 
guide tree as described above, a multiple alignment is 
generated using the progressive alignment procedure. 

To further improve the quality of this alignment, 100 
rounds of iterative refinement are applied; in this 
procedure, sequences of the multiple alignment are 
randomly partitioned into two groups (where each 
sequence is placed in the first group with probability 0.5), 
and the groups are realigned using the probabilistic 
consistency sum-of-pairs objective function.  As the 
original multiple alignment can always be regenerated, the 
alignment score is guaranteed not to decrease. 

4   Evaluation 
To test the empirical performance of the PROBCONS 
aligner, we used the online BAliBASE 2.0 benchmark 
alignment database, a collection of 141 reference protein 
alignments consisting of structural alignments from the 
FSSP (Holm and Sander 1996) and HOMSTRAD 
(Mizuguchi et al. 1998) databases and hand-constructed 
alignments from the literature.  The database is organized 
into five reference sets: Reference 1 consists of few 
equidistant sequences of similar length; Reference 2, 
families of closely-related sequences with up to three 
distant “orphan” sequences; Reference 3, equidistant 
divergent families; Reference 4, sequences with large N/C-
terminal extensions; and Reference 5, sequences with large 
internal insertions. 
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Figure 2: PROBCONS HMM topology.  The transition 
parameters correspond to the probabilities of starting a 
new insertion (δ1 and δ2), continuing an insertion (ε1 and 
ε2), and switching between inserted sequences (γ1 and
γ2).  The initial probabilities for starting in a short or long 
insertion are given by π1 and π2 (not shown). 
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 BAliBASE core blocks, regions for which reliable 
alignments are known to exist, comprise 58% of all 
residues in the database.  To assess alignment quality, we 
used the ALN_COMPARE program (Notredame et al. 
2000), which scores alignments against a reference 
according to both the sum-of-pairs score (SP), the 
percentage of aligned core block residue pairs which are 
also aligned in the reference, and the column score (CS), 
the percentage of aligned columns that are also aligned in 
the core blocks of the reference. 

Emission probabilities for the PROBCONS HMM were 
estimated from the statistics used in generating the 
BLOSUM62 scoring matrix (Henikoff and Henikoff 
1992).  The remaining parameters, consisting of six 
transition (δ1, ε1, γ1, δ2, ε2, γ2) and two initial distribution 
probabilities (π1, π2) were obtained via unsupervised EM 
through two-fold cross validation.   

4.1   Comparison against existing tools 
We compared the results of the PROBCONS aligner to that 
of CLUSTALW 1.83, DIALIGN 2.2.1, and T-Coffee 1.37; 
default settings were used for all programs.  From the 
results above (see Tables 1 and 2), PROBCONS shows a 
clear advantage over the other methods.  Applying the 
Wilcoxon matched-pairs signed-ranks test over all 141 
alignments indicated significant improvement over the 

other three methods (with p < 10-6 for both SP and CS 
measures).  In other experiments (results omitted for space 
reasons), we found no significant difference between the 
full O(L3) and the approximate O(L2) probabilistic 
consistency alignment procedures. 

4.2   Comparison of PROBCONS variants 
We also ran tests which showed that (1) using two 
insertion state pairs instead of one, (2) using iterative 
refinement, and (3) performing EM on each set before 
aligning to estimate better sequence-specific parameters all 
gave improvements in alignment quality (see Table 3). 

5   Discussion 
In this paper, we developed a framework for probabilistic 
consistency of alignments and implemented these ideas in 
the PROBCONS protein multiple alignment tool.  Features 
of the program include (1) posterior probability scoring to 
account for suboptimal alignments, (2) the use of two 
insertion state pairs to model short and long insertions 
separately, (3) guide tree construction via expected 
accuracies rather than phylogenetic distance, (4) 
optimization of alignment expected accuracy rather than 
probability, (4) iterative refinement via a randomized 

Ref 1 (82) Ref 2 (23) Ref 3 (12) Ref 4 (12) Ref 5 (12) Overall (141) Algorithm SP CS SP CS SP CS SP CS SP CS SP CS 
Time 

(mm:ss) 
CLUSTALW 86.4 78.3 88.9 40.6 75.5 46.8 81.1 50.4 86.1 63.9 85.4 65.9 1:05 
DIALIGN 81.3 71.4 85.0 27.9 68.6 34.8 91.2 81.9 94.1 84.5 82.8 63.2 3:04 
T-Coffee 86.8 77.9 88.6 38.9 78.8 49.5 91.9 74.9 96.0 90.5 87.6 69.9 24:02 
PROBCONS 90.3 83.2 91.5 48.9 85.1 63.1 95.2 85.7 98.2 92.4 91.1 76.9 8:26 

 
Table 1: Comparison of BALIBASE performance for DIALIGN, CLUSTALW, T-Coffee, and PROBCONS.  The time 
required to run on the entire BAliBASE data is reported.  The best result in each column is shown in bold. 
 

CLUSTALW DIALIGN T-Coffee PROBCONS Algorithm SP CS SP CS SP CS SP CS 
% unique best alignment 12.1% 9.9% 3.5% 5.7% 14.2% 14.2% 51.8% 46.1% 

% best alignment 19.9% 21.3% 13.5% 19.1% 30.5% 34.0% 68.1% 66.7% 
 
Table 2: Percentage of alignments in which each method produced the (1) unique best alignment or (2) the best 
alignment (two or more methods achieved the same highest accuracy).  The best results in each row are shown in bold. 
 

Ref 1 (82) Ref 2 (23) Ref 3 (12) Ref 4 (12) Ref 5 (12) Overall (141) s c ir em SP CS SP CS SP CS SP CS SP CS SP CS 
Time 

(mm:ss) 
1 0 0 0 87.7 79.3 89.1 36.2 83.4 52.3 86.5 63.0 96.2 85.9 88.2 69.1 2:45 
2 0 0 0 87.8 79.3 89.8 41.5 83.3 52.6 86.6 63.9 95.2 83.4 88.2 69.9 5:08 
2 1 0 0 89.1 81.4 91.2 47.3 85.5 62.3 90.5 73.2 97.5 90.5 90.0 74.3 5:29 
2 2 0 0 89.4 81.8 91.5 48.9 85.1 63.1 90.5 73.2 98.2 92.4 90.2 75.0 5:54 
2 2 100 0 90.3 83.2 91.5 48.9 85.1 63.1 95.2 85.7 98.2 92.4 91.1 76.9 8:26 
2 2 100 1 90.6 83.5 91.7 49.5 85.3 63.8 95.2 85.7 98.2 92.4 91.4 77.2 14:14 

 
Table 3: Comparison of BALIBASE performance for PROBCONS variants.  The four parameters varied over these runs 
include: s, the number of insertion state pairs in the HMM topology; c, the number of consistency transformation 
applied; ir, the number of rounds of iterative refinement via randomized partitioning; and em, the number of 
unsupervised EM iterations used to train sequence-specific parameters for each set before aligning. 
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partitioning strategy, and (5) unsupervised EM training for 
obtaining parameters.  As demonstrated, PROBCONS 
provides a dramatic improvement in alignment quality over 
existing methods—achieving the highest scores on the 
BAliBASE alignment benchmark of any currently known 
alignment program—while maintaining practical running 
times.  Source code and updates to the program are freely 
downloadable from http://probcons.stanford.edu/. 
 The potential applications of probabilistic consistency 
are not limited to protein alignments.  Similar techniques 
may be used for DNA alignment, motif finding, and RNA 
structural prediction.  In general, methods in which 
multiple sources of information are decomposed into 
pairwise relations are potential targets for this technique.  
We will continue developing these ideas, to unlock the full 
potential of the probabilistic consistency methodology. 
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