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Abstract. While the discovery of structural variants in the human pop-
ulation is ongoing, most methods for this task assume that the genome
is sequenced to high coverage (e.g. 40x), and use the combined power
of the many sequenced reads and mate pairs to identify the variants.
In contrast, the 1000 Genomes Project hopes to sequence hundreds of
human genotypes, but at low coverage (4-6x), and most of the current
methods are unable to discover insertion/deletion and structural variants
from this data.

In order to identify indels from multiple low-coverage individuals we have
developed the MoGUL (Mixture of Genotypes Variant Locator) frame-
work, which identifies potential locations with indels by examining mate
pairs generated from all sequenced individuals simultaneously, uses a
Bayesian network with appropriate priors to explicitly model each indi-
vidual as homozygous or heterozygous for each locus, and computes the
expected Minor Allele Frequency (MAF) for all predicted variants. We
have used MoGUL to identify variants in 1000 Genomes data, as well
as in simulated genotypes, and show good accuracy at predicting indels,
especially for MAF > 0.06 and indel size > 20 base pairs.

1 Introduction

Next generation sequencing technologies have dramatically decreased the cost of
sequencing human genomes. These technologies are enabling the 1000 Genomes
Project - an ambitious undertaking to reconstruct hundreds of genotypes and
understand the polymorphisms present in the human population. The resequenc-
ing of humans for the 1000 Genomes Project uses a combination of approaches,
including deep sequencing of several individuals and whole-exome resequenc-
ing via DNA-capture. Simultaneously, the largest fraction of individuals will be
sequenced via a low-coverage whole-genome shotgun approach, where each indi-
vidual will be sequenced to ∼4-6x coverage. At this point in time it is not clear
if this low coverage will be sufficient to identify a large fraction of the human
variation, especially structural genomic polymorphisms.
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While methods for the discovery of SNPs from read mapping have been avail-
able for some time [1], and the past two years have seen several tools developed
specifically for discerning SNPs from NGS data ([2,3,4]), the development of
algorithms for the identification of larger, structural variants (SVs), including
insertions and deletions (indels), is still a very active research area. While the
identification of very small indels can be accomplished by directly analyzing the
read mappings, with 36bp reads it is difficult to identify indels > 10 bases. The
identification of larger indels and other rearrangements is typically accomplished
via the mate pair, or pair-end mapping technique (see [5] for a review). In this
approach, two reads are sequenced from the two ends of a DNA fragment (the
insert). Because the size of the DNA fragment is (approximately) known, struc-
tural variants can be identified by comparing the expected insert size to the
distance between the mapped reads in the reference genome: if these are signifi-
cantly different (the mate pair is termed discordant), it is likely that an SV has
occurred between the two mappings. The past few years have seen the devel-
opment of several novel methodologies and tools for SV discovery based on the
analysis of discordant mate pairs, including a formal framework for identification
of structural variants [6], tools that allow for flexible clustering of mate pairs to
identify SVs [7], maximum parsimony and maximum likelihood approaches for
SV detection [8], as well as tools that combine pair-end mapping with careful
analysis of unpaired reads to assemble SV breakpoints [9].

Previously we proposed MoDIL [10], a method for SV identification based
on the analysis of all matepairs (concordant and discordant) that span a par-
ticular genomic location. MoDIL (Mixture of Distributions Indel Locator) fits
two (possibly shifted) distributions of insert sizes (corresponding to the two hap-
loid genotypes in a diploid) to the observed mapped distances at each location
in the genome. By analyzing these distributions it is possible to discover much
smaller indels than with other mate pair-based approaches. MoDIL, however,
cannot be directly applied to low coverage individuals, including the bulk of the
1000 genomes data, as it requires at least 20 inserts covering a genomic locus to
identify indels (it is difficult to accurately fit two distributions with fewer data
points). In the 1000 Genomes data, each locus is expected to be covered, on
average, by 4 mate pairs in each individual. While the total coverage from all
individuals is much higher, and most polymorphisms are di-allelic (i.e. there are
only two alleles at a given locus in the human population), MoDIL expects the
fractions of matepairs sampled from each haplotype to be approximately equal.
In contrast, in the 1000 Genomes data the fractions are determined by the allele
frequencies and will vary across the loci.

In this work we build a Bayesian approach for the discovery of indel poly-
morphisms from mixtures of large numbers of genotypes, such as 1000 genomes
data. Our approach, MoGUL (Mixture of Genotypes Variant Locator), builds
a Bayesian network that uses priors to explicitly model each individual as ho-
mozygous or heterozygous, and computes the expected Minor Allele Frequency
(MAF) at each location along the chromosome. We use MoGUL to identify vari-
ants in the 1000 Genomes data and simulated genotypes, and demonstrate that
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it allows for the identification of indels > 30 bases for MAF > 0.04, while indels
as small as 20 bases can be identified for MAF > 0.06.
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Fig. 1. Distribution of insert sizes from different individuals, shifted so that they
are all centered at zero. Note the discrepancies among the individual distribution,
necessitating modeling them as separate random variables. Here mean of insert
sizes are set to be zero.

2 Methods

The main difficulty in identifying indels from paired-end data is differentiating
mate pairs coming from a locus with an indel from those with an anomalous
insert size. The insert size from each individual l follows a distribution, p(Yl)
(see Fig. 1), and individual mate pairs generated from the tail of the distribu-
tion are impossible to discern from mate pairs overlapping an indel. Previous
methods, such as MoDIL [10] and BreakDancer [9], use support from other mate
pairs, generated by the high matepair coverage to separate these cases. While
each individual in our dataset will have only a few mate pairs sampled at ev-
ery genomic location, our algorithm combines the mate pairs generated from
many individuals to achieve sufficient coverage. MoGUL models mate pairs as
generated from either one or two unknown distributions, corresponding to the
two possible alleles at this location among the human genotypes. Our algorithm
does not consider tri-allelic variants, which are rare.

Our algorithm starts by mapping all of the matepairs onto the reference
genome. We use the MrFAST tool [11], which identifies mappings for every mate
pair that has at most 2 mismatches in each read and has the mapped distance

(the distance between the forward and reverse reads of the pair) closest to the
expected insert size. If this mapped distance is within 3 standard deviations,
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only the best mapping is identified. If no such mapping is found, all possible
mappings for the two reads are returned, and our algorithm considers all of
them. For every genomic location we identify those matepairs that would be
affected if that location was the site of an indel. These matepairs will have the
two reads mapping on opposite sides of the genomic location, and we refer to
this set of matepairs as a cluster (see next section).

If the genomic location is the site of an indel that is polymorphic in the human
population, matepairs in the corresponding cluster may be generated from two
distributions, corresponding to the two alleles (with and without the indel).
Using a Bayesian network we infer the size of the indel, as well as the individuals
with indels for each cluster. Because our model may identify the same indel calls
from multiple clusters, a final post-processing step is used to combine these calls
and to compute the log likelihood ratio between our model and the null model.
For simplicity, in the following sections we will call a matepair “discordant”
if there is significant disparity between insert size and mapped distance, and
“concordant” otherwise. Note that these terms are only used for convenience –
we do not a priori assign matepairs to these categories.

2.1 Clustering Matepairs

We first generate clusters with mappings of matepairs for each genomic locus,
and determine whether or not the locus contains a common indel. In this step
we find a set of mate pairs C from L number of individuals, all of which overlap
with a particular genomic location. Figure 2 illustrates our clustering scheme.

For each matepair we look at one base after the left read and all matepairs
overlapping the location form a cluster C. We explain how we detect indels from
these clusters by example. Suppose the matepairs in Figure 2 are from the same
matepair library with the first two matepairs discordant and the rest concordant.
In such a case, as shown in Figure 2, the first two matepairs agree on a certain
indel size (they have similar mapped distance), and the indel can be detected
from the second to the fourth cluster containing the two discordant matepairs
(we merge indel calls in a post-processing step).

If we use all the clusters generated by this scheme, the number of clusters
will be close to the number of matepairs, and the algorithm will be too slow.
Instead, we filter out clusters if it is very likely that there is no indel iat the
corresponding location. For each individual l, we compute the likelihood that
the mate pairs were generated from a cluster with no indel (p-value). If there is
at least one individual with significant p-value (< 0.001) or two individuals with
less significant p-value (< 0.05), the locus is deemed significant.

We define the p-value as the probability of having at least predicted size
of indel (> γ) given no indels. Let {Dl1, . . . , Dln} represent independent and
identically distributed random variables corresponding to the mapped distances
of mate pairs generated from the l-th individual with insert size distribution
p(Yl), mean µYl

and standard deviation σYl
. Their mean follows the Gaussian

distribution with mean equal to the mean of the insert size µYl
and standard
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deviation of σYl
/
√
n according to the central limit theorem. We define the p-value

for the individual l with the size of indel γ as follows:

p-value =

∞
∑

γ

P (X; 0, σYl
/
√
n) =

0
∑

−∞

P (X; γ, σYl
/
√
n)

Here, X = D−µYl
is the expected size of the indel, and P (X) follows the Gaus-

sian distribution. The second equality can be proven via symmetry of Gaussian.
In computing the p-value we correct for the possibility that the cluster con-

tains a heterozygous indel by using a shifted sample mean: γ′ = 2γ.

Fig. 2. This figure shows how to generate clusters with mapped matepairs in
the reference genome. Matepairs are colored by red or blue representing differ-
ent individuals. For each matepair Xi, we generate a cluster consisting of all
mate pairs overlapping a genomic location of one base after the left read of the
matepair Xi (the locations of the arrows).

2.2 Detecting Common Indels Using a Bayesian network

The clusters from Sec. 2.1 include mate pairs generated from many individuals,
all of which have unique distributions of insert sizes (see Figure 1). We define the
variable Xlm as the expected size of indel from the m-th matepair of individual
l:

Xlm = Dlm − µYl

where Dlm is mapped distance of the m-th matepair of the individual l and µYl

is mean of the insert size distribution p(Yl). We will use random variabe Xli

instead of Dli because it shifts the distributions for all individuals so that they
are all centered at zero. Given a cluster of matepairs as an input, we developed
a Bayesian network (Figure 3) to infer the size of the indel polymorphism (if
one exists), and haplotypes of individuals that contain the indel. The Bayesian
network generates matepairs {Xlm}, while internal states correspond to the pres-
ence/absence of indel and its heterozygosity. All random variables are defined
for an input cluster, rather than the whole individual genome.

We model the individual l with random variable Zl:

Zl =

{

0 if individual l has no indel
1 if individual l has an indel.
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Fig. 3. Bayesian network for detecting common indels at a particular locus in
the genome. Here L represents the number of individuals and Ml is the number
of matepairs from individual l. The random variable Zl determines whether indi-
vidual l has an indel or not. If individual l has an indel (Zl = 1), Qlm generates
a matepair Xlm and θl controls the heterozygosity of Zl. Matepair, Xlm, is gen-
erated from distribution of insert sizes with zero mean or with shifted mean of γ
if Xlm has an indel. If individual l has no indel (Zl = 0), matepairs {Xlm}Ml

m=1

are generated from p(Yl) with zero mean. Priors π and θl are controlled by α

and β parameters.

We use the random variableQlm to model the two copies of chromosomes (alleles)
in individual l. Note that subscript l refers to individual l and m denotes m-th
matepair generated from this individual:

Qlm =







0 if Zl = 1 and chromosome contains no indel
1 if Zl = 1 and chromosome contains an indel
2 if Zl = 0.

As shown in Figure 3 we can generate Xlm given Zl, Qlm and size of indel γ.
For example, if Qlm = 1, Xlm is generated from p(Yl) with an indel size of γ.
If {Zl = 0 ∪ Qlm = 0} then Xlm is generated from p(Yl) with no indel. For
simplicity we omit the p(Yl)s in Fig. 3. To avoid overfitting problems we applied
Bayesian priors π and θl to Zl and Qlm, respectively.

We smooth the distribution of p(Yl), and define a new probability distribution
of insert sizes, q(Xl), for individual l as follows:

q(Xl) =

{

∑

kiσYl
≤y−µYl

<ki+1σYl

pYl
(y) if kiσYl

≤ Xl < ki+1σYl
∑

−k′

j+1
σYl

≤y−µYl
<−k′

j
σYl

pYl
(y) if −k′j+1σYl

≤ Xl < −k′jσYl

Here we sum pYl
(y)s over the intervals [kiσYl

, ki+1σYl
) for deletions and [−k′j+1σYl

,−k′jσYl
)

for insertions. In our experiments, we used 10 values of ki and k′js (i, j ∈
{1, 2, . . . , 10}, k1 = k′1 = 0). Probability distributions of the random variables in
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Figure 3 are defined as follows:

p(Zl = z|π) = πz(1− π)1−z

where z = 0 if individual l has no indel and P (Zl = 0) = π and P (Zl = 1) = 1−π.

p(Qlm = q|Zl = 1, θl) = θql (1− θl)
1−q

where q = 0 if the chromosome contains no indel, and 1 otherwise. If Z1 = 0, we
do not generate matepair Xlm from Qlm and set q = 2. We generate Xlm from
the following distribution:

p(Xlm|Zl, Qlm, γ) =

{

q(Xlm) if {Zl = 0 ∪ q = 0}
q(Xlm − γ) if q = 1.

The priors π and θl follow the beta distribution, which is the conjugate prior of
binomial distributions.

To infer the states of our model, we find maximum a posteriori (MAP) solu-
tion because it is fast and deterministic. We initialize our model using heuristics
(e.g. Qlm = 1 if Xlm > σl) and random configurations, and run the model mul-
tiple times to avoid local maxima. Given current states of the model the update
rules are given as follows (updated states are denoted by (*)):

π∗ =
u+ α1 − 1

L+ α1 + α2 − 2

where u is the number of individuals with no indel. In practice we use α = {30, 1}
because most variants have a small MAF [12].

θ∗l =
v + β1 − 1

Ml + β1 + β2 − 2

where v is the number of matepairs with Qlm = 0 in individual l, and we set
β = {5, 5}, favoring heterozygous indels, as these are more likely under a neutral
evolutionary model.

We update the random variables γ, Zl and Qlm as follows:

γ∗ = argmax
γ

L
∏

l=1

Ml
∏

m=1

P (Xlm|Zl, Qlm, γ)

Z∗
l = argmax

Zl∈{0,1}

P (Zl|π)
Ml
∏

m=1

P (Xlm|Zl, γ,Qlm)P (Qlm|Zl, θl)

Q∗
lm = argmax

Qlm∈{0,1,2}

P (Qlm|Zl, θl)P (Xlm|Zl, Qlm, γ).

This algorithm is iterated, with each hidden random variable updated until
the posterior probability of the model cannot be improved by the value of the
threshold (e.g. τ = 10−4).
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2.3 Merging and Assigning Confidence to Indel Calls

In the post-processing step we merge duplicated indel calls. As shown in Sec.
2.1, a single indel may be found in multiple clusters. We merge indel calls if they
meet three criteria: (1) the predicted indel regions overlap, (2) the expected size
of the indel is similar (< σmix) , (3) the sets of individuals for whom the indel
is predicted overlap. Here σmix is the standard deviation of insert sizes from all
individuals.

To assign confidence values for every cluster we compute the log likelihood
ratio R between our model and null model as follows:

R =
L
∑

l=1

Ml
∑

m=1

logP (Xlm|Zl, Qlm, γ)−
L
∑

l=1

Ml
∑

m=1

logP (Xlm|Zl, Qlm, 0).

We discard indel calls if the log likelihood ratio is not significantly larger
than a pre-specified threshold (by default, 30).

3 Results

In the sections below, we use two different approaches to validate our algorithms.
First, we use simulated data to evaluate how well MoGUL performs at different
variant frequencies, and then use MoGUL to perform variant discovery on one
chromosome of the current 1000 genomes dataset, that includes 124 individuals
sequenced at approximately 4x.

3.1 Simulation results

We first validate our model through simulation results. In our simulation, we
sampled matepairs from 120 individuals, with the matepair library size of each
individual l following the experimental distribution p(Yl).

We generated indels of 10-100 base pairs and implanted them in the individ-
ual genomes, varying the minor allele frequency (MAF) from 0.02 to 0.5. Fig.
4 shows the heatmap for the performance of MoGUL. MoGUL works well for
MAF greater than 0.06, for indels > 20 base pairs.

To investigate the precision and recall rate of MoGUL we generated 10,000
clusters with 50 individuals (100 haplotypes). 1000 clusters contained implanted
indels of 20-150 base pairs, while 100 clusters contained implanted indels of 150-
1000 base pairs. For each individual we sampled matepairs with approximately
2-3x read coverage. We detected indels for these individuals using MoGUL. The
recall and precision rates of our algorithm are shown in Table 1.

3.2 1000 genome project pilot dataset

In order to validate MoGUL on real data, we downloaded low coverage individ-
uals generated by the pilot project for the 1000 genomes project from the NCBI
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Fig. 4. Heatmap representing the performance of MoGUL. The color of each cell
indicates average error rate of 20 MoGUL simulations for a given combination of
deletion size (X axis) and Minor Allele Frequencies (Y axis). If the size of indel
predictions by MoGUL is more than 10bp away from the true size of deletion
we consider it incorrect.

trace archive, aligned these to the NCBI reference genome with MrFAST [11],
and predicted indels for all of these on chromosome 20. The results are summa-
rized in Table 1. Overall, MoGUL predicted 3,545 events in any individual on
chromosome 20. This is approximately 630 events per individual. We compare
these indels to previously discovered variants both across the population, and
for one specific individual, NA18507.

To our knowledge, the only previous study that has characterize small to
medium size indels in the human populations is by Mills et al [13]. They used
low coverage Sanger-style reads from 36 individuals to identify indels via the
split-read mapping approach. Thus they are able to identify the exact size of
the indel, while the MoGUL method infers it indirectly from the discordant
mappings. Overall, the overlap between MoGUL and the indels of Mills et al
was statistically significant. While exact sensitivity and specificity of the two
methods is difficult to analyze, as different (and fewer) individuals were used for
the Mills et al study, the size correlation of overlapping indels was very strong,
and the overall error of MoGUL size estimates was small (see Figure 6).

In order to enable the direct comparison of indel discovery from single high
coverage individual versus multiple low coverage individuals, we included in our
dataset a down-sampled version of the NA18507 Yoruban genome which we
previously analyzed using the MoDIL method. Remarkably, MoGUL was able
to identify 83% of the indels > 50bp (20/24) that were previously detected by
MoDIL, while identifying several additional variants that were missed by MoDIL,
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Table 1. Comparison between indel calls in chromosome 20 located by our
approach with the datasets generated by Mills et al. [13] (all MoGUL indels),
and MoDIL [10] (only indels in NA18507, the same individual as was studied by
Lee et al., was considered). For the simulation experiments we consider the indel
call is correct if the difference between the true indel size and the predicted one
is less than 10bp and the log likelihood ratio is greater than 10.

Population NA18507 Simulation

Length Type MoGUL Mills et al. Overlap MoGUL MoDIL Overlap Recall Precision

≥100bp INS 6 20 0 2 1 1 0.91 1
DEL 1009 183 57 34 13 10 0.89 1

50-100bp INS 56 44 15 19 4 4 0.92 0.68
DEL 486 71 42 22 6 5 0.86 0.99

20-50bp INS 170 231 43 25 24 12 0.64 0.37
DEL 1818 327 194 101 84 31 0.57 0.74

possibly due to low coverage in the NA18507 individual specifically. Of the events
20-50bp, 40% (43/108) were recovered by MoGUL.

In Figure 5 we plot the minor allele frequency of the variants discovered by
our method. The distribution agrees with the expected curve until ∼ MAF 0.07,
but then drops rapidly – demonstrating MoGUL’s inability to identify indels at
low minor allele frequencies.

4 Discussion

The identification of various polymorphisms in the human population is an im-
portant step towards understanding the landscape of human genotypes. In this
paper we present MoGUL: the Mixture of Genotypes Variant Locator, a tool
to identify common insertion/deletion polymorphisms from many individuals
sequenced at low coverage. We validate our approach via simulated data at var-
ious allele frequencies, as well as with data from the 1000 Genomes project.
MoGUL can identify indels >20 base pairs with at least 0.06 MAF, using the
current low coverage data; it is expected that the coverage will double to 6-
8x per individual for the final 1000 Genomes project data release, and we are
hopeful that MoGUL’s performance will further improve on this larger dataset.
Another application of MoGUL is resequencing of biopsy tissues, where the dis-
eased (tumourous) tissue is biopsied (and sequenced) together with the healthy
surrounding tissue, leading to a mixture of several genotypes at each location.

Simultaneously, MoGUL is only capable of recapturing a small fraction of
the rare variants that predominate in the human population. While capturing
common genotypes is important, it is thought that rare alleles, ones with MAF <
0.01, are much more likely to be evolutionarily harmful and disease related [12].
Designing methods that can find these variants from paired-end data, possibly
incorporating direct information on read matches, as in the Pindel tool [14], is
an important avenue for further research.
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Fig. 6. (A) A scatter plot showing the lengths of overlapping indels between
the Mills et al. dataset and MoGUL predictions. Overall the lengths are highly
correlated. The cluster of indels of length 300 corresponds to Alu element ac-
tivity. (B) The absolute error in the estimation of indel length. The predicted
lengths of the indels are very close (typically within 10 bases) of the true indel
size. Overall the distribution of the error follows a Gaussian, as expected from
the model (see [10] for details). The outliers may indicate either false positives
for either dataset or tri-allelic variants.
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