
BCB410 – Course Notes 
Title: Sequence Alignment (Needleman-Wunsch, Smith-Waterman) 
These notes are based on lecture notes taken by Gabe Musso for CSC 2427  
 
 
Topics: 

1. Needleman-Wunsch (Global Alignment) 
2.  Maximum Contiguous Subsequence Sum 
3. Smith-Waterman (Local Alignment) 

 
Background: Importance of Sequence Alignment 
Comparative analysis is the backbone of evolutionary biology.  It was phenotypic 
variation which allowed Darwin to compose his theory of natural selection.  That theory 
rests on the fact that transfer of the genetic code from parent to progeny does not exist 
without change.  It is these changes in genetic sequence which allow for divergence of 
species, and thus provide a backdrop for natural selection.  Just as comparative analysis 
was key for evolutionary biology, sequence alignment is the cornerstone of modern 
bioinformatics.  Rapid and automated sequence analysis facilitates everything from 
functional classification & structural determination of proteins, to studies of genetic 
expression and evolution.     
 
 
1.  Needleman-Wunsch (Global Alignment) 
Dynamic programming algorithms find the best solution by breaking the original problem 
into smaller sub-problems and then solving.  The Needleman-Wunsch algorithm is a 
dynamic programming algorithm for optimal sequence alignment (Needleman and 
Wunsch, 1970).  Basically, the concept behind the Needleman-Wunsch algorithm stems 
from the observation that any partial sub-path that tends at a point along the true optimal 
path must itself be the optimal path leading up to that point.  Therefore the optimal path 
can be determined by incremental extension of the optimal sub-paths.  In a Needleman-
Wunsch alignment, the optimal path must stretch from beginning to end in both 
sequences (hence the term ‘global alignment’).   

 
In order to perform a Needleman-Wunsch alignment, a matrix is created which allows us 
to compare the two sequences.  The score M(i,j) for every cell depends on the three 
cells corresponding to either or both sequence having 1 less letter (i.e. cells M(i-1.j), 
M(i,j-1) and M(i-1,j-1). It is calculated as follows:  
 

M(i,j) = MAX(Mi-1,j-1 + S(Ai, Bj) 
Mi-1, j + gap 
Mi,j-1 + gap) 

  
 
where gap is the gap penalty and the function S returns the score/penalty for matching the 
two corresponding letters. Once we have computed this score for every cell, we must do a 
“traceback”, that is to determine the actual set of operations that lead to the score. 



Because when computing the score of a cell we took a max over three numbers, on the 
traceback we go to the location of the highest – going sideways or up corresponds to 
gaps, and going along the diagonal corresponds to a match. This algorithm performs 
alignments with a time complexity of O(mn) and a space complexity of O(mn). 
 
 
 
Example: 

Find the best alignment of these two sequences: 
  

ACTGATTCA 
ACGCATCA 

 
Using -2 as a gap penalty, -3 as a mismatch penalty, and 2 as the score for a 
match. 

 
 
Solution: 

Step 1: Draw the matrix 
For 2 sequences (length m and length n) what size scoring matrix is 
needed for their alignment?  Grid dimensions must be (m+1) × (n+1).  
Think of each increment as a division of the sequence members: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 Step 2: Assign scores 
 

 
 
 
 
 
 Step 3: Trace back  

The optimal path is traced beginning from the lower right-hand corner 
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Result: 

This analysis yielded the following alignment: 
 

ACTG-ATTCA 
||   || || 
AC-GCAT-CA 

 
The alignment score is equal to the value in the lower right-hand corner of 
the matrix (8). 

 
 
 
 
 
2. From Global to Local Similarity: Maximum Contiguous Subsequence Sum 
When aligning two very large sequences, it is often useful to determine the locations of 
high similarity regions, even if there is no additional similarity inbetween the sequences.  
Now that we know how to calculate the global alignments, how can we find all local 
high-scoring hits, or local alignments above a given threshold for two large sequences?  
The answer is related to a programming “pearl”, the ‘Maximum Contiguous Subsequence 
Sum’ (MSS). 
 
 
Problem:  

Given integers A1, A2, ..., AN find (and identify the sequence corresponding to) 
the maximum value of: 

 
  
 
 
 
 
 
 
Solution:  

Can be solved in time complexity of ‘n’. 
 

mss(A) { 
 max = 0; 
 sum = 0; 
 for (i=1; i ≤ n; i+1) { 
  sum = sum + A[i]; 
  if (sum > max)  
   max = sum; 
  if (sum < 0) 
   sum = 0; 



 } 
 return max; 
} 

 
 
Analysis: 

When a subsequence occurs which has a negative sum, the subsequence which 
will be examined next can begin after the first subsequence (the one that produced 
the negative sum).  Basically, the entire first subsequence is regarded as not 
having a starting point which will generate a positive sum.  For example, consider 
this set of numbers: 
  
4, 6, -2, 2, -14, 9 
 
Some sums are positive (4, 4+6, 4+6+(-2), 4+6+(-2)+2) but the sum of the first 5 
terms (4+6+(-2)+2-14) is negative.  Therefore it follows logically that any 
sequence starting between the 4 and -14 and ending with the -14 will have a 
negative sum.    

 
The maximum contiguous subsequence sum searches exactly for the highest scoring local 
area. We now generalize this approach for sequence alignment; the only change is we do 
the abovealgorithm in two dimensions! 
 
3. Smith-Waterman (Local Alignment) 
Over a decade after the initial publication of the Needleman-Wunsch algorithm, a 
modification was made to allow for local alignments (Smith and Waterman, 1981).  In 
this adaptation, the alignment path does not need to reach the edges of the search graph, 
but may begin and end internally.  In order to accomplish this, 0 was added as a term in 
the score calculation described by Needleman and Wunsch.   
 
 
Recall that for global alignments the value at any point is:  

M(i,j) = MAX(Mi-1,j-1 + S(Ai, Bj) 
Mi-1,j + gap 
Mi,j-1 + gap) 

 
However for local alignments: 

M(I,j) = MAX(Mi-1,j-1 + S(Ai, Bj) 
Mi-1,j + gap 
Mi,j-1 + gap 

0) 
The implication of this is that there are no values below zero in a local alignment scoring 
matrix, and the reason for the zero is exactly the same as in the MSS problem above.   
 
 
Example:  
 Find the best local alignment between these two sequences: 



 
ATGCATCCCATGAC 
TCTATATCCGT 

 
Using -2 as a gap penalty, -3 as a mismatch penalty, and 2 as the score for a 
match. 

 
 
Solution: 
 Traceback begins at the highest value (which is also the alignment score). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Which yields the alignment: 
 

ATCC 
|||| 
ATCC 

 
 With an alignment score of 8. 
 
 



Local alignments are performed everywhere possible along two sequences.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When trying to find the best local alignments corresponding to a global alignment, a sub-
matrix is created with the highest positive score for all alignments above a given 
threshold.  Therefore, the same thing that the MSS was doing on a linear matrix, the 
Smith-Waterman alignment does on a rectangular matrix.   
 
 


