ARACHNE: A Whole-Genome Shotgun Assembler

Serafim Batzoglou, David B. Jaffe, Ken Stanley, Jonathan Butler, Sante Gnerre, Evan Mauceli, Bonnie Berger, Jill P. Mesirov, and Eric S. Lander

Presented by Ilya Sutskever

Problem: ab-initio genome assembly

Assembled genome

Sanger sequencing

- Recover genome from the paired reads
- Paired reads have very long known distance (40K+noise)
- Each read is moderately long (250-500)

Why whole-genome assembly hard?

- Easy If No Repeats.
 - Every method works: just grow overlapping reads.
 - May not even need paired reads.
- Almost unsolvable with repeats.
 - "Which repeat did the read come from?"
 - (Question to the audience: is it always true that the more repeats an organism has, the more "evolved" it is?)

Why is it an important problem?

- Because it is cheaper than Hierarchical Shotgun (used to sequence human genome).
 - Divide and Conquer: break genome to small bits.
 - Sequence each bit.
 - But much more expensive than NGS.
- Has more potential for personalized genome assembly.

Hierarchical Shotgun

Original, unmanageable Genome

This paper's contribution

 An assembly algorithm that copes with repeats using Sanger reads as inputs.

Talk Outline

- Description of Algorithm.
- Discussion of Results.
- irrelevance to NGS.

ARACHNE: high level steps

- 1) Throw away low-quality paired-reads.
- 2) Align overlapping reads
 - 1) Compute neighbors.
- 3) Correct errors and evaluate alignmetns.
- 4) Grow paired reads into "good" contigs, and up to repeat boundaries.
- 5) Determine who is a repeat and who is not.
- 6) Use the repeats to fill in the gaps between the non-repeats.
- 7) Output: a few very long contigs.

Step 1: clean up data

- Make sure that all reads have a sufficiently high quality score.
- Especially Near the boundaries.
- Make sure its not similar to E. Coli genome.
 must be good quality

Step 2: Align Overlapping Reads (to fix errors and find neighbors)

- 1) Use a sorted table of all 24-mers appearing in data, and their locations.
- 2) Produce a list of all overlapping reads.
- 3) Approximately align all reads sharing a 24-mer.
- 4) Use DP to exactly align all close-enough reads.
- 5) This is inapplicable to NGS, since the reads have length 24 at most.

Q-mer table (Q=24)

Computing Neighbors

- Given a read, we can efficiently find all other reads that share a q-mer.
- Can find all "neighboring" reads efficiently.
- Essential subroutine in what follows

Align Overlapping Reads: details

- For each pair of reads sharing a Q-mer:
 - Merge overlapping Q-mers contained in both reads.
 - Extend the shared Q-mers to some alignment.
 - Refine Alignment with DP
- Note: we do not make use of the "paired" aspect of the reads here.

Aligning reads that share a Q-mer

Shared Overlapping Q-mers are merged. Some mistakes are allowed. This initializes an alignment.

Details regarding alignments

 Each alignment has a penalty score: the amount of change it makes, depending on the quality of the bases.

- Very bad alignment disqualify both reads.
- Chimeric reads are also removed.
- Reads are error-corrected to match the majority vote.

Chimeric Reads detection

Chimeric Read. To find it, the algorithm verifies that it point of chimerism has a point of Chimerism.

Assembling Contigs

 Merge pairs of reads if they overlap on both ends, get contig:

- Treat the contig as a large paired read;
- Iterate.

But avoid repeat boundaries.

Check if a position is a repeat boundary:

What do we have?

 We have long contigs with long distance "links", most of which do not cross repeats boundaries.

Which contig is a repeat?

- We can grow contigs that mostly avoid repeat boundaries.
- So each contig is either a repeat or a nonrepeat.
- A contig is a repeat if
 - they have high depth of coverage
 - links to conflicting contigs

Repeat contig detection: covered too well.

Repeat contig detection: links to highly nonoverlapping contigs

Assembling Supercontigs

- Take all non-repeating contigs.
- Using the links, join super contigs. But there can be gaps now.

non-repeat contig

non-repeat contig

Fill the gaps with repeats

- Use the links from the repeat configs to fill the gaps.
- If a repeat config has enough links, it can be used to fill the empty space.
- Obtain a small number of very long contigs.

Results

- Synthetic experimental data:
 - Take a good genome
 - Produce reads at random
 - Assign realistic quality scores (by matching to existing reads)
- But: the reads are not taken uniformly from the genome.
- 10-fold and 5-fold coverage.
- Links: 40K and 4K, ratio 20:1 or 10:1

Table of results (10-fold coverage)

	H. Influenzae	S. cerevisiae	D. melanogaster	Human 21	Human 22
Length (MB)	1.8	12	120	33.8	33.5
% Gen. in contigs Supercontig:	98.80%	96.10%	97.90%	96.70%	95.30%
N50 Length (KB)	1192	1177	5143	3986	3011
BP accuracy	45.3	43.6	43.4	42.8	41.3
Missasemblies:	2	6	115	14	32
Mean insert length		350	990		400
Mean delete lengt	440	470	1660	360	430

Table of results (5-fold coverage)

	H. Influenzae	S. cerevisiae	D. melanogaster	Human 21	Human 22
Length (MB)	1.8	12	120	33.8	33.5
% Gen. in contigs Supercontig:	97.10%	92.40%	95.40%	95.00%	92.00%
N50 Length (KB)	629	1732	4258	3278	3197
BP accuracy	32.3	32.6	33	32.3	32.1
Missasemblies:	6	6	175	43	63
Mean insert length	380		670	90	390
Mean delete lengt	290	3790	1600	220	340