SLIDER

MAXIMUM USE OF PROBABILITY INFORMATION FOR ALIGNMENT OF SHORT SEQUENCE READS AND SNP DETECTION

BIOINFORMATICS, 2009

Marc Fiume

SLIDER in a slide

- □ SLIDER is...
 - not a very technical/algorithmic aligner
 - more of a proof-of-concept:
 - can use confidence values to improve alignment

3 Motivation

The Big Picture

Genetic Variation and Disease

SLIDER

Alignment

SNP (and other genetic variation) discovery

Genetic Disease

The Improvement

- Recall: base-caller has two outputs for each base:
 - most likely nucleotide
 - confidence value

most aligners ignore confidence values

Illumina's confidence values

- stored in prb files
 - for each base called, 4 Q-values (QA, Qc, QG, QT)

SLIDER: Alignment

produce all "probable" reads based on Q-values

Base crispness

- □ Each base in a read is classified as:
 - □ crisp base
 - non-crisp base

Base crispness

□ crisp base: confidence ~100% for a particular base

QA	40	100%
QC	-40	0%
QG	-40	0%
QT	-40	0%

Base crispness

□ non-crisp base: confidence <100% for any base

QA	10	90%
QC	-40	0%
QG	-10	10%
QT	-40	0%

Q-value

read position

	1	2	3	4	5	6	7	8
QA	ε	ε	ε	99	ε	99	3	3
QC	ε	90	ε	ε	ε	ε	ε	ε
QG	99	9	ε	ε	ε	ε	96	ε
QT	ε	3	99	3	99	3	3	99

read position

	1	2	3	4	5	6	7	8
QA				99		99	3	
Qc		90						
QG	99	9					96	
QT			99		99			99

read position

Reads Database:

GCTATAGT

GGTATAGT

GCTATAAT 99*90*99*99*99* 3*99 = 2.5%

GGTATAAT 99*9*99*99*99*3*99 = 0.3%

99*90*99*99*99*96*99 = 81.3%

99* **9***99*99*99***96***99 = 8.1%

2. Create a reference database

put all k-mers from reference into database

Reference: ACGTGCCGAAATAGCAGAGCAT

Database: ACGTGCCGA

TGCACGGCT

CGTGCCGAA

GCACGGCTT

• • •

sort database

3. Align the reads DB to the reference DB

every entry in reads DB is aligned with every entry in reference DB

□ no match:

read aligns to no location

unique match:

read aligns to one location

multi-match:

read aligns to multiple locations

SLIDER: SNP Detection

Support for SNPs

consider positions of mismatches

Support for Event	SNP	Sequence Error / Misalignment
Coverage	High	Low
Percent coverage that is mismatched	High	Low
Sequence complexity	High	Low
Read Weight	High	Low

25 Results

RESULTS

- □ Align reads to
 - □ correct reference (RefBAC)
 - □ incorrect reference (RefEX)

RESULTS: Alignment Accuracy

- \square P_{mis} \sim % mapped to **incorrect** reference
- \square P_{uq} ~ % mapped to **correct** reference

Table 3. Alignment results							
	27		32		36		
	$P_{\rm mis}(\%)$	$P_{\mathrm{uq}}(\%)$	$P_{\rm mis}(\%)$	$P_{\mathrm{uq}}(\%)$	$P_{\rm mis}(\%)$	$P_{\mathrm{uq}}(\%)$	
Eland	2.791	76.65	3.002	79.47			
RMAP	2.828	76.69	3.002	79.45	3.520	81.68	
Slider	1.169	77.08	1.172	80.19	1.302	83.16	

Results of aligning sequences from CT302 to its reference RefBAC and the human genome excluding chromosome 6.

RESULTS: SNP Accuracy

- limited validation
- claim reasonably accurate SNP prediction at low coverage

Fig. 2. Probability that a given base mismatch is a true SNP as a function of the read sequence weight.

²⁹ Conclusions

Conclusions

read alignment is an important first step in genetic variation discovery

 remember that read sequences are abstractions of noisy data

can incorporate confidence values in alignment

END