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Problem
• de novo assembly is the problem of figuring 

out the genome sequence without no prior 
information

• for example, sequencing a species for the 
first time

• inputs reads short, can be modelled as 
randomly broken pieces of the genome

• plus possibly paired end data
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TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG

 AGTCGAG CTTTAGA  CGATGAG CTTTAGA   

  GTCGAGG  TTAGATC  ATGAGGC    GAGACAG

     GAGGCTC   ATCCGAT AGGCTTT GAGACAG

 AGTCGAG    TAGATCC ATGAGGC  TAGAGAA

TAGTCGA  CTTTAGA CCGATGA    TTAGAGA  

    CGAGGCT  AGATCCG TGAGGCT  AGAGACA

TAGTCGA GCTTTAG TCCGATG  GCTCTAG     

   TCGACGC    GATCCGA GAGGCTT AGAGACA

TAGTCGA    TTAGATC GATGAGG TTTAGAG   

  GTCGAGG TCTAGAT   ATGAGGC  TAGAGAC 

      AGGCTTT  ATCCGAT AGGCTTT GAGACAG

 AGTCGAG   TTAGATT  ATGAGGC   AGAGACA

       GGCTTTA  TCCGATG    TTTAGAG   

    CGAGGCT TAGATCC  TGAGGCT   GAGACAG

 AGTCGAG  TTTAGATC  ATGAGGC TTAGAGA  

     GAGGCTT  GATCCGA GAGGCTT  GAGACAG
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3. Simplification of linear stretches

TAGTCGAG AGAGACAG

AGATCCGATGAG

GAGGCTTTAGA

2. Hashing

1. Sequencing 

(e.g. Solexa, 454…))

Linear stretches

4. Error removal

TAGTCGA

AGAGATAGA

AGAT

GCTTTAG

GCTCTAG

AGACAG

AGAA

CGAG

CGACGC

GAGG

GATCCGATGAG

GATT

AGGCT
Bubble

Tips

Graph: # nodes N50 (bp) Max. length 

(bp)

# nodes N50 Max. length 

(bp)

Initial 309,723 10 10 3,621,167 16 16

Simplified 190,441 10 60 2,222,845 16 44

Tips clipped 5,903 744 4,284 15,267 2,195 7,949

Tour Bus 1,934 1,140 4,624 3,303 4,334 17,811
Cov. cutoff 1,169 1,360 6,568 1,496 8,564 29,856

Ideal 1,120 1,565 7,028 1,305 9,609 29,856

Human BAC Streptococcus suis

B. Node (~contig) statistics at the different stages of the process described above for the analysis of

two experimental datasets generated from a human BAC and Streptococcus suis respectively.  The
ideal graph is simply obtained by building the graph of the known reference sequence.

Background

The Sanger method has long been the dominant approach to sequencing.
However, novel technologies, such as 454 and Solexa, are now capable of generating far

cheaper, but at the same time far shorter reads (25 to 100 bp instead of 800 to 1000bp).
Although greater coverage depths are thus affordable (50-200x instead of 2-10x), de novo

genome assembly from those datasets is significantly more complex. Firstly, memory
costs are an issue when dealing with so many elements, and secondly, the short read
length implies that the assembler must be able to deal with numerous ambiguous

overlaps.
We present here an algorithmic package in development, Velvet, which is

specifically designed to deal with short read sequencing. Velvet has two tasks: to remove
errors from the dataset, and then untangle repeated regions of the genome.

De Bruijn graphs

Given the exceptional redundancy of the information, an appropriate organization of

data is crucial. Whereas most assemblers currently use the overlap-consensus-layout
approach, where every read is a separate entity, the de Bruijn graph allows us to focus our

analysis on observed words (or k-mers). A given k-mer is therefore represented by a
unique node, regardless of how many times it was observed.

Furthermore, this representation seamlessly accommodates long and short read
mixtures. Long reads are thus represented as paths going from one word to the next,

alongside an undifferentiated mass of short reads.
The costliest part of constructing a de Bruijn graph consists in hashing all the reads,

according to a given word length. This operation offers nonetheless an advantageous time
complexity compared to a general pairwise alignment of all the sequences, especially

given the high coverage depths encountered. Once all the reads have been hashed, each
of their paths are traced along the k-mer nodes, incrementing coverage and creating the

appropriate arcs along the way. Figure A gives the example of an imaginary sequencing
project.

Error Removal with Velvet

Velvet's error correction algorithm, Tour Bus, concentrates on removing errors
without disrupting connections within the graph. This ensures that a unique point of the

genome with low coverage is not arbitrarily destroyed. For this reason, error removal is
done after graph creation.

Tour Bus distinguishes two types of errors: tips and bubbles. Tips arise from low
quality read ends which do not overlap with anything. Bubbles are created either by an

error in the middle of a long read, or by two erroneous read ends accidentally overlapping.
Because they are easily identifiable in the graph, tips are the first to be removed. A

tip is considered dubious depending on its length and its coverage.

Bubbles are then detected and removed by a progressive search of the graph
similar to Dijkstra's algorithm. This systematic progression through the nodes gives Tour

Bus its good time complexity (roughly N*log(N), N being the number of nodes). Bubbles
are not corrected by elimination of unwanted data, but by projection of one branch on the

other. This means that all the reads and connections belonging to the dubious branch are
conserved, and remapped onto the other. Finally, low coverage nodes which have not

been assimilated to larger contigs are eliminated.

Experimental Results

Velvet has already proved successful in removing errors and isolating long unique

regions from experimental datasets: a human BAC and Streptococcus Suis. Table B and
Figure C summarize the results obtained.  Velvet's implementation allows it to deal with

those datasets in little time (below 10 minutes) and using a reasonable amount of memory
(below 16GB)

Whole genome simulations have also been run on C. elegans, E. coli, and yeast.
See Figure D for more details.

Future Developments

The major limitation of short reads for de novo assembly is clearly resolving
repeats.  A number of experimental protocols could however be used to bring in extra

information to the assembler:
• Mixing long and short reads. The short reads would therefore eliminate practically all

coverage gaps, whereas long reads would help us bridge connections between unique
contigs.

• Using short read pairs to extend or even connect unique contigs.
• Pooling fosmids would also allow us to localize our graph construction, thus reducing

the effect of distant repeats.

Conclusions

Velvet has shown that handling huge amounts of short reads is computationally

feasible, thanks to the use of de Bruijn graphs. The Tour Bus algorithm also takes
advantage of this alternative data structure to eliminate errors quickly without sacrificing

low coverage areas, thus maintaining the integrity of the graph. Finally, although resolving
ambiguous repeats from short read data is a difficult challenge,  a number of available

options remain to be tested using the Velvet framework.

Acknowledgments
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A. Initial pipeline of the Velvet package.

D. Whole chromosome simulations of
sequencing projects on Yeast chr. IV, E.coli,

and C. elegans chr. V. The simulations involve
respectively error-free reads, reads with errors,

and reads with errors applied to a diploid
sample.

C. Coverage distribution of the final contigs
produced by the experiments described in B.

Analysis of contigs longer than 100 bp showed
no misassemblies and error rates of 0.02% and

0.004% respectively.
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Challenges

• Is this possible with short short reads? 
425=1015   109 bp in the human genome 

• repeats in the genome

• mistakes in the sequencing reads

• mistakes in the sequencing biology/
chemistry
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construction

• sequence of each read is parsed into k-
mers

• typical k=21 for read length of 25

• series of matches(k-1 long) are aligned 
together called a block

•   the information of each block is the last 
bp of each k-mer in of the block
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alignment

In this study, we present a set of algorithms, collectively
named “Velvet,” that manipulates these de Bruijn graphs effi-
ciently to both eliminate errors and resolve repeats. These two
tasks are done separately: first, the error correction algorithm
merges sequences that belong together, then the repeat solver
separates paths sharing local overlaps. We have assessed Velvet
on both simulated and real data. Using only very short paired
simulated reads, Velvet is capable of assembling bacterial ge-
nomes, with N50 contig lengths of up to 50 kb, and simulations
on 5-Mb regions of large mammalian genomes, with contigs of
∼3 kb.

Results

The de Bruijn graph

Structure

In the de Bruijn graph, each node N represents a series of over-
lapping k-mers (cf. Fig. 1 for a small example). Adjacent k-mers
overlap by k ! 1 nucleotides. The marginal information con-
tained by a k-mer is its last nucleotide. The sequence of those
final nucleotides is called the sequence of the node, or s(N).

Each node N is attached to a twin node Ñ, which represents
the reverse series of reverse complement k-mers. This ensures that
overlaps between reads from opposite strands are taken into ac-
count. Note that the sequences attached to a node and its twin do
not need to be reverse complements of each other.

The union of a node N and its twin Ñ is called a “block.”
From now on, any change to a node is implicitly applied sym-
metrically to its twin. A block therefore has two distinguishable
sides, in analogy to the “k-mer edges” described in Pevzner et al.’s
2001 paper.

Nodes can be connected by a directed “arc.” In that case, the
last k-mer of an arc’s origin node overlaps with the first of its
destination node. Because of the symmetry of the blocks, if an arc

goes from node A to B, a symmetric arc goes from B̃ to Ã. Any
modification of one arc is implicitly applied symmetrically to its
paired arc.

On these nodes and arcs, reads are mapped as “paths” tra-
versing the graph. Extracting the nucleotide sequence from a
path is straightforward given the initial k-mer of the first node
and the sequences of all the nodes in the path.

Construction

The reads are first hashed according to a predefined k-mer length.
This variable k is limited on the upper side by the length of the
reads being hashed, to allow for a small amount of overlap, usu-
ally k = 21 for 25-bp reads. Smaller k-mers increase the connec-
tivity of the graph by simultaneously increasing the chance of
observing an overlap between two reads and the number of am-
biguous repeats in the graph. There is therefore a balance be-
tween sensitivity and specificity determined by k (cf. Methods).

For each k-mer observed in the set of reads, the hash table
records the ID of the first read encountered containing that k-mer
and the position of its occurrence within that read. Each k-mer is
recorded simultaneously to its reverse complement. To ensure
that each k-mer cannot be its own reverse complement, k must be
odd. This first scan allows us to rewrite each read as a set of
original k-mers combined with overlaps with previously hashed
reads. We call this new representation of the read’s sequence the
“roadmap.”

A second database is created with the opposite information.
It records, for each read, which of its original k-mers are over-
lapped by subsequent reads. The ordered set of original k-mers of
that read is cut each time an overlap with another read begins or
ends. For each uninterrupted sequence of original k-mers, a node
is created.

Finally, reads are traced through the graph using the road-
maps. Knowing the correspondence between original k-mers and
the newly created nodes, Velvet proceeds from one node to the
next, creating a new directed arc or incrementing an existing one
as appropriate at each step.

Simplification

After constructing the graph, it is generally possible to simplify it
without any loss of information. Blocks are interrupted each time
a read starts or ends. This leads to the formation of “chains” of
blocks, or linear connected subgraphs. This fragmentation of the
graph costs memory space and lengthens calculation times.

These chains can be easily simplified. Whenever a node A
has only one outgoing arc that points to another node B that has
only one ingoing arc, the two nodes (and their twins) are merged.
Iteratively, chains of blocks are collapsed into single blocks.

The simplification of two nodes into one is analogous to the
conventional concatenation of two character strings, and also to
some string graph based methods (Myers 2005). This straightfor-
ward transformation involves transferring arc, read, and se-
quence information as appropriate.

Error removal

Errors are corrected after graph creation to allow for simulta-
neous operations over the whole set of reads. In our framework,
errors can be due to both the sequencing process or to the bio-
logical sample, for example, polymorphisms. Distinguishing
polymorphisms from errors is a post-assembly task. A naive ap-
proach to error removal would be to use the difference between

Figure 1. Schematic representation of our implementation of the de
Bruijn graph. Each node, represented by a single rectangle, represents a
series of overlapping k-mers (in this case, k = 5), listed directly above or
below. (Red) The last nucleotide of each k-mer. The sequence of those
final nucleotides, copied in large letters in the rectangle, is the sequence
of the node. The twin node, directly attached to the node, either below or
above, represents the reverse series of reverse complement k-mers. Arcs
are represented as arrows between nodes. The last k-mer of an arc’s origin
overlaps with the first of its destination. Each arc has a symmetric arc.
Note that the two nodes on the left could be merged into one without
loss of information, because they form a chain.

Zerbino and Birney

822 Genome Research
www.genome.org
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links

• a directed link is drawn if there exists a 
(k-1)long match between two blocks

• if everything is perfect, an underlying 
sequence follows all links in the de Bruijn 
graph while tracing through every block

• however, due to the noisy measurement 
and sequence repeats, many more steps are 
required
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TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG

 AGTCGAG CTTTAGA  CGATGAG CTTTAGA   

  GTCGAGG  TTAGATC  ATGAGGC    GAGACAG

     GAGGCTC   ATCCGAT AGGCTTT GAGACAG

 AGTCGAG    TAGATCC ATGAGGC  TAGAGAA

TAGTCGA  CTTTAGA CCGATGA    TTAGAGA  

    CGAGGCT  AGATCCG TGAGGCT  AGAGACA

TAGTCGA GCTTTAG TCCGATG  GCTCTAG     

   TCGACGC    GATCCGA GAGGCTT AGAGACA

TAGTCGA    TTAGATC GATGAGG TTTAGAG   

  GTCGAGG TCTAGAT   ATGAGGC  TAGAGAC 

      AGGCTTT  ATCCGAT AGGCTTT GAGACAG

 AGTCGAG   TTAGATT  ATGAGGC   AGAGACA

       GGCTTTA  TCCGATG    TTTAGAG   

    CGAGGCT TAGATCC  TGAGGCT   GAGACAG

 AGTCGAG  TTTAGATC  ATGAGGC TTAGAGA  

     GAGGCTT  GATCCGA GAGGCTT  GAGACAG
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3. Simplification of linear stretches

TAGTCGAG AGAGACAG

AGATCCGATGAG

GAGGCTTTAGA

2. Hashing

1. Sequencing 

(e.g. Solexa, 454…))

Linear stretches

4. Error removal

TAGTCGA

AGAGATAGA

AGAT

GCTTTAG

GCTCTAG

AGACAG

AGAA

CGAG

CGACGC

GAGG

GATCCGATGAG

GATT

AGGCT
Bubble

Tips

Graph: # nodes N50 (bp) Max. length 

(bp)

# nodes N50 Max. length 

(bp)

Initial 309,723 10 10 3,621,167 16 16

Simplified 190,441 10 60 2,222,845 16 44

Tips clipped 5,903 744 4,284 15,267 2,195 7,949

Tour Bus 1,934 1,140 4,624 3,303 4,334 17,811
Cov. cutoff 1,169 1,360 6,568 1,496 8,564 29,856

Ideal 1,120 1,565 7,028 1,305 9,609 29,856

Human BAC Streptococcus suis

B. Node (~contig) statistics at the different stages of the process described above for the analysis of

two experimental datasets generated from a human BAC and Streptococcus suis respectively.  The
ideal graph is simply obtained by building the graph of the known reference sequence.

Background

The Sanger method has long been the dominant approach to sequencing.
However, novel technologies, such as 454 and Solexa, are now capable of generating far

cheaper, but at the same time far shorter reads (25 to 100 bp instead of 800 to 1000bp).
Although greater coverage depths are thus affordable (50-200x instead of 2-10x), de novo

genome assembly from those datasets is significantly more complex. Firstly, memory
costs are an issue when dealing with so many elements, and secondly, the short read
length implies that the assembler must be able to deal with numerous ambiguous

overlaps.
We present here an algorithmic package in development, Velvet, which is

specifically designed to deal with short read sequencing. Velvet has two tasks: to remove
errors from the dataset, and then untangle repeated regions of the genome.

De Bruijn graphs

Given the exceptional redundancy of the information, an appropriate organization of

data is crucial. Whereas most assemblers currently use the overlap-consensus-layout
approach, where every read is a separate entity, the de Bruijn graph allows us to focus our

analysis on observed words (or k-mers). A given k-mer is therefore represented by a
unique node, regardless of how many times it was observed.

Furthermore, this representation seamlessly accommodates long and short read
mixtures. Long reads are thus represented as paths going from one word to the next,

alongside an undifferentiated mass of short reads.
The costliest part of constructing a de Bruijn graph consists in hashing all the reads,

according to a given word length. This operation offers nonetheless an advantageous time
complexity compared to a general pairwise alignment of all the sequences, especially

given the high coverage depths encountered. Once all the reads have been hashed, each
of their paths are traced along the k-mer nodes, incrementing coverage and creating the

appropriate arcs along the way. Figure A gives the example of an imaginary sequencing
project.

Error Removal with Velvet

Velvet's error correction algorithm, Tour Bus, concentrates on removing errors
without disrupting connections within the graph. This ensures that a unique point of the

genome with low coverage is not arbitrarily destroyed. For this reason, error removal is
done after graph creation.

Tour Bus distinguishes two types of errors: tips and bubbles. Tips arise from low
quality read ends which do not overlap with anything. Bubbles are created either by an

error in the middle of a long read, or by two erroneous read ends accidentally overlapping.
Because they are easily identifiable in the graph, tips are the first to be removed. A

tip is considered dubious depending on its length and its coverage.

Bubbles are then detected and removed by a progressive search of the graph
similar to Dijkstra's algorithm. This systematic progression through the nodes gives Tour

Bus its good time complexity (roughly N*log(N), N being the number of nodes). Bubbles
are not corrected by elimination of unwanted data, but by projection of one branch on the

other. This means that all the reads and connections belonging to the dubious branch are
conserved, and remapped onto the other. Finally, low coverage nodes which have not

been assimilated to larger contigs are eliminated.

Experimental Results

Velvet has already proved successful in removing errors and isolating long unique

regions from experimental datasets: a human BAC and Streptococcus Suis. Table B and
Figure C summarize the results obtained.  Velvet's implementation allows it to deal with

those datasets in little time (below 10 minutes) and using a reasonable amount of memory
(below 16GB)

Whole genome simulations have also been run on C. elegans, E. coli, and yeast.
See Figure D for more details.

Future Developments

The major limitation of short reads for de novo assembly is clearly resolving
repeats.  A number of experimental protocols could however be used to bring in extra

information to the assembler:
• Mixing long and short reads. The short reads would therefore eliminate practically all

coverage gaps, whereas long reads would help us bridge connections between unique
contigs.

• Using short read pairs to extend or even connect unique contigs.
• Pooling fosmids would also allow us to localize our graph construction, thus reducing

the effect of distant repeats.

Conclusions

Velvet has shown that handling huge amounts of short reads is computationally

feasible, thanks to the use of de Bruijn graphs. The Tour Bus algorithm also takes
advantage of this alternative data structure to eliminate errors quickly without sacrificing

low coverage areas, thus maintaining the integrity of the graph. Finally, although resolving
ambiguous repeats from short read data is a difficult challenge,  a number of available

options remain to be tested using the Velvet framework.
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A. Initial pipeline of the Velvet package.

D. Whole chromosome simulations of
sequencing projects on Yeast chr. IV, E.coli,

and C. elegans chr. V. The simulations involve
respectively error-free reads, reads with errors,

and reads with errors applied to a diploid
sample.

C. Coverage distribution of the final contigs
produced by the experiments described in B.

Analysis of contigs longer than 100 bp showed
no misassemblies and error rates of 0.02% and

0.004% respectively.

red = sequencing mistakes 
9

Friday, February 12, 2010



Example

EMBL- EBI

Wellcome Trust Genome Campus

Hinxton

CB10 1SD, Cambridge

United Kingdom

T +44 (0) 1223 494612

F +44 (0) 1223 494468

http://www.ebi.ac.uk

Velvet: de novo assembly using very short reads

Daniel Zerbino and Ewan Birney

Daniel Zerbino

PhD student

Ensembl

zerbino@ebi.ac.uk

TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG

 AGTCGAG CTTTAGA  CGATGAG CTTTAGA   

  GTCGAGG  TTAGATC  ATGAGGC    GAGACAG

     GAGGCTC   ATCCGAT AGGCTTT GAGACAG

 AGTCGAG    TAGATCC ATGAGGC  TAGAGAA

TAGTCGA  CTTTAGA CCGATGA    TTAGAGA  

    CGAGGCT  AGATCCG TGAGGCT  AGAGACA

TAGTCGA GCTTTAG TCCGATG  GCTCTAG     

   TCGACGC    GATCCGA GAGGCTT AGAGACA

TAGTCGA    TTAGATC GATGAGG TTTAGAG   

  GTCGAGG TCTAGAT   ATGAGGC  TAGAGAC 

      AGGCTTT  ATCCGAT AGGCTTT GAGACAG

 AGTCGAG   TTAGATT  ATGAGGC   AGAGACA

       GGCTTTA  TCCGATG    TTTAGAG   

    CGAGGCT TAGATCC  TGAGGCT   GAGACAG

 AGTCGAG  TTTAGATC  ATGAGGC TTAGAGA  

     GAGGCTT  GATCCGA GAGGCTT  GAGACAG

AGAT

(8x)

ATCC

(7x)

TCCG

(7x)

CCGA

(7x)

CGAT

(6x)

GATG

(5x)

ATGA

(8x)

TGAG

(9x)

GATC

(8x)

GATT

(1x)

TAGT

(3x)

AGTC

(7x)

GTCG

(9x)

TCGA

(10x)

GGCT

(11x)

TAGA

(16x)

AGAG

(9x)

GAGA

(12x)

GACA

(8x)

ACAG

(5x)GCTT

(8x)

GCTC

(2x)

CTTT

(8x)

CTCT

(1x)

TTTA

(8x)

TCTA

(2x)

TTAG

(12x)

CTAG

(2x)
AGAC

(9x)

AGAA

(1x)

CGAG

(8x)

CGAC

(1x)

GAGG

(16x)

GACG

(1x)

AGGC

(16x)

ACGC

(1x)
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GAGGCTTTAGA
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4. Error removal
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# nodes N50 Max. length 
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Simplified 190,441 10 60 2,222,845 16 44

Tips clipped 5,903 744 4,284 15,267 2,195 7,949

Tour Bus 1,934 1,140 4,624 3,303 4,334 17,811
Cov. cutoff 1,169 1,360 6,568 1,496 8,564 29,856

Ideal 1,120 1,565 7,028 1,305 9,609 29,856

Human BAC Streptococcus suis

B. Node (~contig) statistics at the different stages of the process described above for the analysis of

two experimental datasets generated from a human BAC and Streptococcus suis respectively.  The
ideal graph is simply obtained by building the graph of the known reference sequence.

Background

The Sanger method has long been the dominant approach to sequencing.
However, novel technologies, such as 454 and Solexa, are now capable of generating far

cheaper, but at the same time far shorter reads (25 to 100 bp instead of 800 to 1000bp).
Although greater coverage depths are thus affordable (50-200x instead of 2-10x), de novo

genome assembly from those datasets is significantly more complex. Firstly, memory
costs are an issue when dealing with so many elements, and secondly, the short read
length implies that the assembler must be able to deal with numerous ambiguous

overlaps.
We present here an algorithmic package in development, Velvet, which is

specifically designed to deal with short read sequencing. Velvet has two tasks: to remove
errors from the dataset, and then untangle repeated regions of the genome.

De Bruijn graphs

Given the exceptional redundancy of the information, an appropriate organization of

data is crucial. Whereas most assemblers currently use the overlap-consensus-layout
approach, where every read is a separate entity, the de Bruijn graph allows us to focus our

analysis on observed words (or k-mers). A given k-mer is therefore represented by a
unique node, regardless of how many times it was observed.

Furthermore, this representation seamlessly accommodates long and short read
mixtures. Long reads are thus represented as paths going from one word to the next,

alongside an undifferentiated mass of short reads.
The costliest part of constructing a de Bruijn graph consists in hashing all the reads,

according to a given word length. This operation offers nonetheless an advantageous time
complexity compared to a general pairwise alignment of all the sequences, especially

given the high coverage depths encountered. Once all the reads have been hashed, each
of their paths are traced along the k-mer nodes, incrementing coverage and creating the

appropriate arcs along the way. Figure A gives the example of an imaginary sequencing
project.

Error Removal with Velvet

Velvet's error correction algorithm, Tour Bus, concentrates on removing errors
without disrupting connections within the graph. This ensures that a unique point of the

genome with low coverage is not arbitrarily destroyed. For this reason, error removal is
done after graph creation.

Tour Bus distinguishes two types of errors: tips and bubbles. Tips arise from low
quality read ends which do not overlap with anything. Bubbles are created either by an

error in the middle of a long read, or by two erroneous read ends accidentally overlapping.
Because they are easily identifiable in the graph, tips are the first to be removed. A

tip is considered dubious depending on its length and its coverage.

Bubbles are then detected and removed by a progressive search of the graph
similar to Dijkstra's algorithm. This systematic progression through the nodes gives Tour

Bus its good time complexity (roughly N*log(N), N being the number of nodes). Bubbles
are not corrected by elimination of unwanted data, but by projection of one branch on the

other. This means that all the reads and connections belonging to the dubious branch are
conserved, and remapped onto the other. Finally, low coverage nodes which have not

been assimilated to larger contigs are eliminated.

Experimental Results

Velvet has already proved successful in removing errors and isolating long unique

regions from experimental datasets: a human BAC and Streptococcus Suis. Table B and
Figure C summarize the results obtained.  Velvet's implementation allows it to deal with

those datasets in little time (below 10 minutes) and using a reasonable amount of memory
(below 16GB)

Whole genome simulations have also been run on C. elegans, E. coli, and yeast.
See Figure D for more details.

Future Developments

The major limitation of short reads for de novo assembly is clearly resolving
repeats.  A number of experimental protocols could however be used to bring in extra

information to the assembler:
• Mixing long and short reads. The short reads would therefore eliminate practically all

coverage gaps, whereas long reads would help us bridge connections between unique
contigs.

• Using short read pairs to extend or even connect unique contigs.
• Pooling fosmids would also allow us to localize our graph construction, thus reducing

the effect of distant repeats.

Conclusions

Velvet has shown that handling huge amounts of short reads is computationally

feasible, thanks to the use of de Bruijn graphs. The Tour Bus algorithm also takes
advantage of this alternative data structure to eliminate errors quickly without sacrificing

low coverage areas, thus maintaining the integrity of the graph. Finally, although resolving
ambiguous repeats from short read data is a difficult challenge,  a number of available

options remain to be tested using the Velvet framework.
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TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG

 AGTCGAG CTTTAGA  CGATGAG CTTTAGA   

  GTCGAGG  TTAGATC  ATGAGGC    GAGACAG

     GAGGCTC   ATCCGAT AGGCTTT GAGACAG

 AGTCGAG    TAGATCC ATGAGGC  TAGAGAA

TAGTCGA  CTTTAGA CCGATGA    TTAGAGA  

    CGAGGCT  AGATCCG TGAGGCT  AGAGACA

TAGTCGA GCTTTAG TCCGATG  GCTCTAG     

   TCGACGC    GATCCGA GAGGCTT AGAGACA

TAGTCGA    TTAGATC GATGAGG TTTAGAG   

  GTCGAGG TCTAGAT   ATGAGGC  TAGAGAC 

      AGGCTTT  ATCCGAT AGGCTTT GAGACAG

 AGTCGAG   TTAGATT  ATGAGGC   AGAGACA

       GGCTTTA  TCCGATG    TTTAGAG   

    CGAGGCT TAGATCC  TGAGGCT   GAGACAG

 AGTCGAG  TTTAGATC  ATGAGGC TTAGAGA  

     GAGGCTT  GATCCGA GAGGCTT  GAGACAG
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Tour Bus 1,934 1,140 4,624 3,303 4,334 17,811
Cov. cutoff 1,169 1,360 6,568 1,496 8,564 29,856

Ideal 1,120 1,565 7,028 1,305 9,609 29,856
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B. Node (~contig) statistics at the different stages of the process described above for the analysis of

two experimental datasets generated from a human BAC and Streptococcus suis respectively.  The
ideal graph is simply obtained by building the graph of the known reference sequence.

Background

The Sanger method has long been the dominant approach to sequencing.
However, novel technologies, such as 454 and Solexa, are now capable of generating far

cheaper, but at the same time far shorter reads (25 to 100 bp instead of 800 to 1000bp).
Although greater coverage depths are thus affordable (50-200x instead of 2-10x), de novo

genome assembly from those datasets is significantly more complex. Firstly, memory
costs are an issue when dealing with so many elements, and secondly, the short read
length implies that the assembler must be able to deal with numerous ambiguous

overlaps.
We present here an algorithmic package in development, Velvet, which is

specifically designed to deal with short read sequencing. Velvet has two tasks: to remove
errors from the dataset, and then untangle repeated regions of the genome.

De Bruijn graphs

Given the exceptional redundancy of the information, an appropriate organization of

data is crucial. Whereas most assemblers currently use the overlap-consensus-layout
approach, where every read is a separate entity, the de Bruijn graph allows us to focus our

analysis on observed words (or k-mers). A given k-mer is therefore represented by a
unique node, regardless of how many times it was observed.

Furthermore, this representation seamlessly accommodates long and short read
mixtures. Long reads are thus represented as paths going from one word to the next,

alongside an undifferentiated mass of short reads.
The costliest part of constructing a de Bruijn graph consists in hashing all the reads,

according to a given word length. This operation offers nonetheless an advantageous time
complexity compared to a general pairwise alignment of all the sequences, especially

given the high coverage depths encountered. Once all the reads have been hashed, each
of their paths are traced along the k-mer nodes, incrementing coverage and creating the

appropriate arcs along the way. Figure A gives the example of an imaginary sequencing
project.

Error Removal with Velvet

Velvet's error correction algorithm, Tour Bus, concentrates on removing errors
without disrupting connections within the graph. This ensures that a unique point of the

genome with low coverage is not arbitrarily destroyed. For this reason, error removal is
done after graph creation.

Tour Bus distinguishes two types of errors: tips and bubbles. Tips arise from low
quality read ends which do not overlap with anything. Bubbles are created either by an

error in the middle of a long read, or by two erroneous read ends accidentally overlapping.
Because they are easily identifiable in the graph, tips are the first to be removed. A

tip is considered dubious depending on its length and its coverage.

Bubbles are then detected and removed by a progressive search of the graph
similar to Dijkstra's algorithm. This systematic progression through the nodes gives Tour

Bus its good time complexity (roughly N*log(N), N being the number of nodes). Bubbles
are not corrected by elimination of unwanted data, but by projection of one branch on the

other. This means that all the reads and connections belonging to the dubious branch are
conserved, and remapped onto the other. Finally, low coverage nodes which have not

been assimilated to larger contigs are eliminated.

Experimental Results

Velvet has already proved successful in removing errors and isolating long unique

regions from experimental datasets: a human BAC and Streptococcus Suis. Table B and
Figure C summarize the results obtained.  Velvet's implementation allows it to deal with

those datasets in little time (below 10 minutes) and using a reasonable amount of memory
(below 16GB)

Whole genome simulations have also been run on C. elegans, E. coli, and yeast.
See Figure D for more details.

Future Developments

The major limitation of short reads for de novo assembly is clearly resolving
repeats.  A number of experimental protocols could however be used to bring in extra

information to the assembler:
• Mixing long and short reads. The short reads would therefore eliminate practically all

coverage gaps, whereas long reads would help us bridge connections between unique
contigs.

• Using short read pairs to extend or even connect unique contigs.
• Pooling fosmids would also allow us to localize our graph construction, thus reducing

the effect of distant repeats.

Conclusions

Velvet has shown that handling huge amounts of short reads is computationally

feasible, thanks to the use of de Bruijn graphs. The Tour Bus algorithm also takes
advantage of this alternative data structure to eliminate errors quickly without sacrificing

low coverage areas, thus maintaining the integrity of the graph. Finally, although resolving
ambiguous repeats from short read data is a difficult challenge,  a number of available

options remain to be tested using the Velvet framework.
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Tour Bus algorithm for bubble removal

the expected coverage of genuine sequences and that of random
errors. Therefore removing all the low coverage nodes (and their
corresponding arcs) would remove the errors. However, this relies
on the differences being due to genuine errors and not to bio-
logical variants present at a reasonable frequency in the sample,
and errors being randomly distributed in the reads.

Instead, Velvet focuses on topological features. Erroneous
data create three types of structures: “tips” due to errors at the
edges of reads, “bulges” due to internal read errors or to nearby
tips connecting, and erroneous connections due to cloning errors
or to distant merging tips. The three features are removed con-
secutively.

Removing tips

A “tip” is a chain of nodes that is disconnected on one end.
Removing these tips is a straightforward task. Discarding this
information results in only local effects, as no connectivity is
disrupted. Nonetheless, some restraint must be applied to the
process to avoid eroding genuine sequences that are merely in-
terrupted by a coverage gap. To deal with this issue, we define
two criteria: length and minority count.

A tip will only be removed if it is shorter than 2k. This
arbitrary cutoff length was chosen because it is greater than the
length in k-mers of an individual very short read. Erroneous con-
structs involving entire short reads are presumably extremely
rare. In the case of long reads, this cutoff is set to be the maxi-
mum length tip that can be created by two nearby mistakes. A tip
longer than 2k therefore represents either genuine sequence or
an accumulation of errors that is hard to distinguish from novel
sequence. In the latter case, clipping the read tips more strin-
gently might be necessary.

We define “minority count” as the property that, at the
node where the tip connects to the rest of the graph, the arc
leading to that tip has a multiplicity inferior to at least one of the
other arcs radiating out of that junction node. In other words,
starting from that node, going through the tip is an alternative to
a more common path.

This ensures that, at the local level, tips are removed in
increasing order of multiplicity. Velvet progressively uncovers
chains of high coverage nodes that are not destroyed by virtue of
the previous criteria, thus preserving the graph from complete
erosion.

Velvet iteratively removes tips from the graph under these
two criteria. When there are no more tips to remove, the graph is
simplified once again.

Removing bubbles with the Tour Bus algorithm

We consider two paths redundant if they start and end at the
same nodes (forming a “bubble”) and contain similar sequences.
Such bubbles can be created by errors or biological variants, such
as SNPs or cloning artifacts prior to sequencing. Erroneous
bubbles are removed by an algorithm called “Tour Bus.” The
criteria for deciding whether two paths justify simplification can
be complex, taking into account error models of the sequence or
(for the case of mixed haplotype samples) other features of the
sequence and graph, such as coverage. Currently, we apply
simple sequence identity and length thresholds.

Detection of redundant paths is done through a Dijkstra-like
breadth-first search. The algorithm starts from an arbitrary node
and progresses along the graph, visiting nodes in order of increas-
ing distance from the origin. In this application, the distance

between two consecutive nodes A and B is the length of s(B)
divided by the multiplicity of the arc leading from A to B. This ad
hoc metric gives priority to higher coverage, more reliable, paths.

Whenever the process encounters a previously visited node,
it backtracks from both the current node and the previously vis-
ited node, to find their closest common ancestor. From the two
retraced paths, the sequences are extracted and aligned. If judged
similar enough, they are merged. The path that reached the end
node first in the search, “shortest” according to the metric, is
used as the consensus path because of its higher coverage. The
metric implicitly imposes a majority vote in choosing the con-
sensus sequence. Figure 2 shows how the iteration proceeds on a
small example graph.

Merging two paths is a complex operation, as all the under-
lying graph structures must be remapped while maintaining their
connections with other nodes. The positioning of the different
elements is based on the sequence alignment of the paths. Al-
though straightforward on linear paths, that is, when no block is
visited more than once, this transformation is subtler in the pres-
ence of palindromes. Palindromes create “hairpin folds,” paths
that go through a block one way, then go through it again, in the
opposite direction. The need to preserve connectivity forbids
projecting hairpins onto linear paths.

To merge two paths, Tour Bus creates a chain of markers
along both of them, node by node. The paths are merged pro-

Figure 2. Example of Tour Bus error correction. (A) Original graph. (B)
The search starts from A and spreads toward the right. The progression of
the top path (through B! and C!) is stopped because D was previously
visited. The nucleotide sequences corresponding to the alternate paths
B!C! and BC are extracted from the graph, aligned, and compared. (C)
The two paths are judged similar, so the longer one, B!C!, is merged into
the shorter one, BC. The merging is directed by the alignment of the
consensus sequences, indicated in red lines in B. Note that node X, which
was connected to node B!, is now connected to node B. The search
progresses, and the bottom path (through C! and D!) arrives second in E.
Once again, the corresponding paths, C!D! and CD are compared. (D)
CD and C!D! are judged similar enough. The longer path is merged into
the shorter one.

Short read de novo assembly using de Bruijn graphs

Genome Research 823
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TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG

 AGTCGAG CTTTAGA  CGATGAG CTTTAGA   

  GTCGAGG  TTAGATC  ATGAGGC    GAGACAG

     GAGGCTC   ATCCGAT AGGCTTT GAGACAG

 AGTCGAG    TAGATCC ATGAGGC  TAGAGAA

TAGTCGA  CTTTAGA CCGATGA    TTAGAGA  

    CGAGGCT  AGATCCG TGAGGCT  AGAGACA

TAGTCGA GCTTTAG TCCGATG  GCTCTAG     

   TCGACGC    GATCCGA GAGGCTT AGAGACA

TAGTCGA    TTAGATC GATGAGG TTTAGAG   

  GTCGAGG TCTAGAT   ATGAGGC  TAGAGAC 

      AGGCTTT  ATCCGAT AGGCTTT GAGACAG

 AGTCGAG   TTAGATT  ATGAGGC   AGAGACA

       GGCTTTA  TCCGATG    TTTAGAG   

    CGAGGCT TAGATCC  TGAGGCT   GAGACAG

 AGTCGAG  TTTAGATC  ATGAGGC TTAGAGA  

     GAGGCTT  GATCCGA GAGGCTT  GAGACAG
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4. Error removal
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(bp)

# nodes N50 Max. length 
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Initial 309,723 10 10 3,621,167 16 16

Simplified 190,441 10 60 2,222,845 16 44

Tips clipped 5,903 744 4,284 15,267 2,195 7,949

Tour Bus 1,934 1,140 4,624 3,303 4,334 17,811
Cov. cutoff 1,169 1,360 6,568 1,496 8,564 29,856

Ideal 1,120 1,565 7,028 1,305 9,609 29,856

Human BAC Streptococcus suis

B. Node (~contig) statistics at the different stages of the process described above for the analysis of

two experimental datasets generated from a human BAC and Streptococcus suis respectively.  The
ideal graph is simply obtained by building the graph of the known reference sequence.

Background

The Sanger method has long been the dominant approach to sequencing.
However, novel technologies, such as 454 and Solexa, are now capable of generating far

cheaper, but at the same time far shorter reads (25 to 100 bp instead of 800 to 1000bp).
Although greater coverage depths are thus affordable (50-200x instead of 2-10x), de novo

genome assembly from those datasets is significantly more complex. Firstly, memory
costs are an issue when dealing with so many elements, and secondly, the short read
length implies that the assembler must be able to deal with numerous ambiguous

overlaps.
We present here an algorithmic package in development, Velvet, which is

specifically designed to deal with short read sequencing. Velvet has two tasks: to remove
errors from the dataset, and then untangle repeated regions of the genome.

De Bruijn graphs

Given the exceptional redundancy of the information, an appropriate organization of

data is crucial. Whereas most assemblers currently use the overlap-consensus-layout
approach, where every read is a separate entity, the de Bruijn graph allows us to focus our

analysis on observed words (or k-mers). A given k-mer is therefore represented by a
unique node, regardless of how many times it was observed.

Furthermore, this representation seamlessly accommodates long and short read
mixtures. Long reads are thus represented as paths going from one word to the next,

alongside an undifferentiated mass of short reads.
The costliest part of constructing a de Bruijn graph consists in hashing all the reads,

according to a given word length. This operation offers nonetheless an advantageous time
complexity compared to a general pairwise alignment of all the sequences, especially

given the high coverage depths encountered. Once all the reads have been hashed, each
of their paths are traced along the k-mer nodes, incrementing coverage and creating the

appropriate arcs along the way. Figure A gives the example of an imaginary sequencing
project.

Error Removal with Velvet

Velvet's error correction algorithm, Tour Bus, concentrates on removing errors
without disrupting connections within the graph. This ensures that a unique point of the

genome with low coverage is not arbitrarily destroyed. For this reason, error removal is
done after graph creation.

Tour Bus distinguishes two types of errors: tips and bubbles. Tips arise from low
quality read ends which do not overlap with anything. Bubbles are created either by an

error in the middle of a long read, or by two erroneous read ends accidentally overlapping.
Because they are easily identifiable in the graph, tips are the first to be removed. A

tip is considered dubious depending on its length and its coverage.

Bubbles are then detected and removed by a progressive search of the graph
similar to Dijkstra's algorithm. This systematic progression through the nodes gives Tour

Bus its good time complexity (roughly N*log(N), N being the number of nodes). Bubbles
are not corrected by elimination of unwanted data, but by projection of one branch on the

other. This means that all the reads and connections belonging to the dubious branch are
conserved, and remapped onto the other. Finally, low coverage nodes which have not

been assimilated to larger contigs are eliminated.

Experimental Results

Velvet has already proved successful in removing errors and isolating long unique

regions from experimental datasets: a human BAC and Streptococcus Suis. Table B and
Figure C summarize the results obtained.  Velvet's implementation allows it to deal with

those datasets in little time (below 10 minutes) and using a reasonable amount of memory
(below 16GB)

Whole genome simulations have also been run on C. elegans, E. coli, and yeast.
See Figure D for more details.

Future Developments

The major limitation of short reads for de novo assembly is clearly resolving
repeats.  A number of experimental protocols could however be used to bring in extra

information to the assembler:
• Mixing long and short reads. The short reads would therefore eliminate practically all

coverage gaps, whereas long reads would help us bridge connections between unique
contigs.

• Using short read pairs to extend or even connect unique contigs.
• Pooling fosmids would also allow us to localize our graph construction, thus reducing

the effect of distant repeats.

Conclusions

Velvet has shown that handling huge amounts of short reads is computationally

feasible, thanks to the use of de Bruijn graphs. The Tour Bus algorithm also takes
advantage of this alternative data structure to eliminate errors quickly without sacrificing

low coverage areas, thus maintaining the integrity of the graph. Finally, although resolving
ambiguous repeats from short read data is a difficult challenge,  a number of available

options remain to be tested using the Velvet framework.
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 AGTCGAG CTTTAGA  CGATGAG CTTTAGA   

  GTCGAGG  TTAGATC  ATGAGGC    GAGACAG

     GAGGCTC   ATCCGAT AGGCTTT GAGACAG

 AGTCGAG    TAGATCC ATGAGGC  TAGAGAA

TAGTCGA  CTTTAGA CCGATGA    TTAGAGA  

    CGAGGCT  AGATCCG TGAGGCT  AGAGACA

TAGTCGA GCTTTAG TCCGATG  GCTCTAG     

   TCGACGC    GATCCGA GAGGCTT AGAGACA

TAGTCGA    TTAGATC GATGAGG TTTAGAG   

  GTCGAGG TCTAGAT   ATGAGGC  TAGAGAC 

      AGGCTTT  ATCCGAT AGGCTTT GAGACAG

 AGTCGAG   TTAGATT  ATGAGGC   AGAGACA

       GGCTTTA  TCCGATG    TTTAGAG   

    CGAGGCT TAGATCC  TGAGGCT   GAGACAG

 AGTCGAG  TTTAGATC  ATGAGGC TTAGAGA  

     GAGGCTT  GATCCGA GAGGCTT  GAGACAG
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3. Simplification of linear stretches
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Graph: # nodes N50 (bp) Max. length 

(bp)

# nodes N50 Max. length 

(bp)

Initial 309,723 10 10 3,621,167 16 16

Simplified 190,441 10 60 2,222,845 16 44

Tips clipped 5,903 744 4,284 15,267 2,195 7,949

Tour Bus 1,934 1,140 4,624 3,303 4,334 17,811
Cov. cutoff 1,169 1,360 6,568 1,496 8,564 29,856

Ideal 1,120 1,565 7,028 1,305 9,609 29,856

Human BAC Streptococcus suis

B. Node (~contig) statistics at the different stages of the process described above for the analysis of

two experimental datasets generated from a human BAC and Streptococcus suis respectively.  The
ideal graph is simply obtained by building the graph of the known reference sequence.

Background

The Sanger method has long been the dominant approach to sequencing.
However, novel technologies, such as 454 and Solexa, are now capable of generating far

cheaper, but at the same time far shorter reads (25 to 100 bp instead of 800 to 1000bp).
Although greater coverage depths are thus affordable (50-200x instead of 2-10x), de novo

genome assembly from those datasets is significantly more complex. Firstly, memory
costs are an issue when dealing with so many elements, and secondly, the short read
length implies that the assembler must be able to deal with numerous ambiguous

overlaps.
We present here an algorithmic package in development, Velvet, which is

specifically designed to deal with short read sequencing. Velvet has two tasks: to remove
errors from the dataset, and then untangle repeated regions of the genome.

De Bruijn graphs

Given the exceptional redundancy of the information, an appropriate organization of

data is crucial. Whereas most assemblers currently use the overlap-consensus-layout
approach, where every read is a separate entity, the de Bruijn graph allows us to focus our

analysis on observed words (or k-mers). A given k-mer is therefore represented by a
unique node, regardless of how many times it was observed.

Furthermore, this representation seamlessly accommodates long and short read
mixtures. Long reads are thus represented as paths going from one word to the next,

alongside an undifferentiated mass of short reads.
The costliest part of constructing a de Bruijn graph consists in hashing all the reads,

according to a given word length. This operation offers nonetheless an advantageous time
complexity compared to a general pairwise alignment of all the sequences, especially

given the high coverage depths encountered. Once all the reads have been hashed, each
of their paths are traced along the k-mer nodes, incrementing coverage and creating the

appropriate arcs along the way. Figure A gives the example of an imaginary sequencing
project.

Error Removal with Velvet

Velvet's error correction algorithm, Tour Bus, concentrates on removing errors
without disrupting connections within the graph. This ensures that a unique point of the

genome with low coverage is not arbitrarily destroyed. For this reason, error removal is
done after graph creation.

Tour Bus distinguishes two types of errors: tips and bubbles. Tips arise from low
quality read ends which do not overlap with anything. Bubbles are created either by an

error in the middle of a long read, or by two erroneous read ends accidentally overlapping.
Because they are easily identifiable in the graph, tips are the first to be removed. A

tip is considered dubious depending on its length and its coverage.

Bubbles are then detected and removed by a progressive search of the graph
similar to Dijkstra's algorithm. This systematic progression through the nodes gives Tour

Bus its good time complexity (roughly N*log(N), N being the number of nodes). Bubbles
are not corrected by elimination of unwanted data, but by projection of one branch on the

other. This means that all the reads and connections belonging to the dubious branch are
conserved, and remapped onto the other. Finally, low coverage nodes which have not

been assimilated to larger contigs are eliminated.

Experimental Results

Velvet has already proved successful in removing errors and isolating long unique

regions from experimental datasets: a human BAC and Streptococcus Suis. Table B and
Figure C summarize the results obtained.  Velvet's implementation allows it to deal with

those datasets in little time (below 10 minutes) and using a reasonable amount of memory
(below 16GB)

Whole genome simulations have also been run on C. elegans, E. coli, and yeast.
See Figure D for more details.

Future Developments

The major limitation of short reads for de novo assembly is clearly resolving
repeats.  A number of experimental protocols could however be used to bring in extra

information to the assembler:
• Mixing long and short reads. The short reads would therefore eliminate practically all

coverage gaps, whereas long reads would help us bridge connections between unique
contigs.

• Using short read pairs to extend or even connect unique contigs.
• Pooling fosmids would also allow us to localize our graph construction, thus reducing

the effect of distant repeats.

Conclusions

Velvet has shown that handling huge amounts of short reads is computationally

feasible, thanks to the use of de Bruijn graphs. The Tour Bus algorithm also takes
advantage of this alternative data structure to eliminate errors quickly without sacrificing

low coverage areas, thus maintaining the integrity of the graph. Finally, although resolving
ambiguous repeats from short read data is a difficult challenge,  a number of available

options remain to be tested using the Velvet framework.
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A. Initial pipeline of the Velvet package.

D. Whole chromosome simulations of
sequencing projects on Yeast chr. IV, E.coli,

and C. elegans chr. V. The simulations involve
respectively error-free reads, reads with errors,

and reads with errors applied to a diploid
sample.

C. Coverage distribution of the final contigs
produced by the experiments described in B.

Analysis of contigs longer than 100 bp showed
no misassemblies and error rates of 0.02% and

0.004% respectively.

• in this example, sequence length=38 bp, read 
length=7bp , coverage~10X, error rate~ 3%, with 
one major repeat = 11bp

• k is chosen to be 5 bp

• Velvet is able to resolve this toy example!
13

Friday, February 12, 2010



N50

• in problems of practical size, it is unlikely 
that any large genome can possibly be 
assembled through read data alone (more 
experiment needed)

• it is harder for to measure performance

• one measure of how well an assembler 
performs is the N50 (median length 
weighted contig length)
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simulated results

gressively from one end to the next. At each step, the first un-
mapped minority node is compared to the corresponding major-
ity consensus node, using the local sequence alignment pro-
duced previously. All the information attached to that node,
including coverage, sequence identifiers, and arcs, is then
mapped accordingly onto the majority node. The presence of
markers allows Tour Bus to dynamically modify the marked path
as it corrects the graph. This can be especially useful when a path
goes through node A, then later through its twin node. After
remapping A, Velvet remaps Ã, and diverts the path markers
accordingly.

Removing erroneous connections

Erroneous connections are removed after Tour Bus. These un-
wanted connections do not create any recognizable loop or struc-
ture, so they cannot be readily identified from the topology of
the graph as with tips and bubbles. Also, they cannot be associ-
ated directly to a corresponding correct path. Therefore, Velvet
removes them with a basic coverage cutoff. Currently this cutoff
is set by the user, based on plots of node coverage after the re-
moval of bubbles.

It is important to stress that this simple node removal, be-
cause it is done after Tour Bus, does not contradict the cautious
approach in the design of that algorithm. Indeed, the purpose of
Tour Bus is to remove errors without destroying unique regions
with low coverage. Once this algorithm has run, most unique
regions are simplified into long straight nodes, where, by virtue
of the law of large numbers, the average coverage is close to the
expected value. Genuine short nodes
that cannot be simplified correspond to
low-complexity sequences that are gen-
erally present multiple times in the ge-
nome. Their overall coverage is therefore
proportionally higher. This means that
with a high probability, any low-
coverage node left after Tour Bus is a chi-
meric connection, due to spurious over-
laps created by experimental errors.

Testing error removal on simulated
data

We simulated reads from four different
reference genomes: Escherichia coli, Sac-
charomyces cerevisiae, Caenorhabditis el-
egans, and Homo sapiens. In the last three
species, we chose 5-Mb regions of each
genome, corresponding to the approxi-
mate amount of DNA that can be se-
quenced with a 50! coverage depth by a
single Solexa lane. Five megabytes is
therefore the largest amount of continu-
ous data that could be present on cur-
rent machine formats in a single lane;
currently there are significant laboratory
challenges to generate normalized clone
pools for a complete 5-Mb region, but
smaller units of genome, such as BACs,
(potentially using indexing technology
to track each clone) will present an easier
assembly problem. Reads 35 bp long
were randomly generated at different

coverage values, from 5! to 50!, then hashed by 21-mer words.
We only considered substitution errors as these are reported as
the most common class of error for current short read sequencing
technologies. The evolution of the N50, or median length-
weighted contig length, against coverage is displayed in Figure 3.

In the first test, the reads do not contain errors. Initially
coverage increases exponentially, as predicted by the Lander-
Waterman statistic (Lander and Waterman 1988). Then, when
coverage is sufficient, the N50 abruptly stops increasing, as it is
limited by the natural repetition of the reference genome. This
barrier has a different level depending on the reference genome.
Obviously, the more repetitive and complex the genome is, the
lower the maximum N50.

The second test is identical to the first, with the introduc-
tion of errors at a 1% rate. The results are consistent with the first
test, except that the maximum N50 is lower than with error-free
reads. In fact, as coverage rises to 50!, the N50 decreases slightly,
owing to the adjunction of errors without the closing of any
coverage gap.

Finally, the third test is identical to the second, but with
reads (with 1% error) generated from two copies of the reference
genome: the original one and one with SNPs randomly added at
a rate of 1/500 bp. Velvet is not significantly affected by these
variations.

Testing error removal on experimental data

A 173,428-bp human BAC was sequenced using Solexa sequenc-
ing machines, with an average coverage of 970!. The BAC was

Figure 3. Simulations of Tour Bus. The genome of E. coli and 5-Mb samples of DNA from three other
species (S. cerevisiae, C. elegans, and H. sapiens, respectively) were used to generate 35-bp read sets of
varying read depths (X-axis of each plot). We measured the contig length N50 (Y-axis, log scale) after
tip-clipping (black curve) then after the subsequent bubble smoothing (red curve). In the first column
are the results for perfect, error-free reads. In the second column, we inserted errors in the reads at a
rate of 1%. In the third column, we generated a slightly variant genome from the original by inserting
random SNPs at a rate of 1 in 500. The reads were then generated with errors from both variants, thus
simulating a diploid assembly.

Zerbino and Birney
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real reads

• a 173 kbp human BAC was sequenced by 
Solexa with a coverage of 970X

• read length are 35 bp

• k set to 31

• an virtual ideal sequencer(error free, gap 
free) that looks at the reference sequence 
is compared with Velvet

16
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experimental reads

17

also sequenced to finished quality using conventional methods.
The reads were 35 bp long, and the ensuing analysis was done
with 31-mers.

We removed errors using Velvet’s error correction algorithm
(cf. Table 1). Because of repeats, the Tour Bus method merged
similar paths in the finished sequence, smoothing out similar
(but not identical) repeats. The overcollapsing of repeats is not
drastic and potentially could be avoided with more sophisticated
detection of repeat differences.

To test the performance of Velvet against a virtual ideal assem-
bler, we built a de Bruijn graph from the known finished sequence
of the BAC. This is equivalent to an error-free, gap-free assembly.

Not only did the Tour Bus method significantly increase the
sensitivity and specificity of the correction, but it also preserved
the integrity of the graph structure. Indeed, the median and
maximum node lengths in the short read graph are comparable
to those in the finished BAC graph. The N50 for all nodes of the
graph was 1958 bp; for nodes >100 bp, 2041 bp; and for nodes
>1000 bp, 3266 bp. Direct sequence alignment showed that
nodes of length 100 bp or more from the short read graph cov-
ered 90.0% of the BAC with 99.989% sequence identity and no
mis-assembly. In comparison, in the ideal graph, nodes longer
than 100 bp represent 91.9% of the genome. Only one indel
(2-bp deletion) was observed.

Two million seven hundred thousand 36-bp reads were se-
quenced from the 2-Mb genome of Streptococcus suis P1/7, for a
mean coverage depth of 48!. The statistics of the resulting graph
are in Table 2. Again, no mis-assembly was created, while 96.5%
of the genome was covered with 99.996% identity. In the ideal
graph, 96.8% of the genome is covered by contigs longer than
100 bp. The N50 for all nodes of the graph was 8564 bp; for nodes
>100 bp, 8742 bp; and for nodes >1000 bp, 8871 bp. Excluding
contigs that mapped onto multiple copies of a repeat, only six
indels, up to 2 bp long, were observed.

On this data set, we tested the effect of coverage on the N50.
We built the graph for subsets of reads of various sizes. Figure 4
shows how the results with experimental reads are similar to
those of our simulations. The N50 goes up exponentially, then
hits a limit. To avoid biasing the results by setting an arbitrary
parameter for each data point, the removal of erroneous connec-
tions by coverage cutoff was omitted, hence the difference with
the results in Table 2.

Breadcrumb: Resolution of repeats with short read pairs

The previous simulations show that the short read assembly is
limited by the intrinsic repeat structure of the genome being
sequenced. It is therefore necessary to resolve these repeats; in
other words, to correctly extend and connect contigs through
repeated regions, which otherwise create “tangles” in the de
Bruijn graph. To do so, we developed another module within
Velvet, called “Breadcrumb” (Fig. 5), to exploit paired end read
information.

We suppose that the insert length distribution has a small
variance. We then determine a cutoff length longer than practi-
cally all inserts and designate as “long nodes” all the nodes
longer than that cutoff. The objective of this definition is to
include as many nodes of the graph as possible, while ensuring
that very few read pairs span over such chosen nodes. Note that
uniqueness is not an issue at this stage.

Using the read pairs, Breadcrumb starts by pairing up the
long nodes. Because we did not set any restriction on uniqueness,
some long nodes may consistently connect to several other long
nodes, but they are simply flagged as ambiguous and left un-
touched. This selection therefore eliminates duplicated nodes,
but not necessarily all of them.

For each of the unambiguous long nodes, Breadcrumb flags
all the nodes containing the mate reads of the reads in that long
node. If a single opposite long node is available, then all the
nodes that pair up to it are also flagged. Because of the node
length constraint, between two long contigs nearly all paired reads
map onto a read on either of the long reads. With low probabil-
ity, there will be mate pairs that are both in the low-complexity
region between the reads, which are essentially unusable.

Breadcrumb then extends the unique node by going as far as
possible from one connected flagged node to the next and stop-
ping if there are no, or several, options. In the best case, a simple
path can be found to the opposite long node, and the two contigs
can be merged.

To be robust, such a method must allow for erroneous reads.
First, Breadcrumb marks all the reads detected while removing
erroneous connections (cf. above) as unreliable and does not use
the corresponding read pairs. Second, despite this precaution,
several long nodes may be erroneously connected by very few
(<5) read pairs. Breadcrumb discards such weak connections be-
tween long nodes. Finally, because errors occur also in low-
complexity regions, it is necessary to apply a Tour Bus-like process
to the flagged nodes, unflagging them instead of destroying them.

Testing the use of read pairs

Using the same four species used previously, we tested the Bread-
crumb algorithm on artificially generated reads. We generated

Table 1. Efficiency of the Velvet error-correction pipeline on the
BAC data set

Step
No. of
nodes

N50
(bp)

Maximum
length

(bp)

Coverage
(percent
>50 bp)

Coverage
(percent
>100 bp)

Initial 1,353,791 5 7 0 0
Simplified 945,377 5 80 4.3 0.2
Tips clipped 4898 714 5037 93.5 78.7
Tour Bus 1147 1784 7038 93.4 90.1
Coverage

cutoff 685 1958 7038 92.0 90.0
Ideal 620 2130 9045 93.7 91.9

Each line in this table represents a different stage in Velvet. The initial
graph was built directly from the BAC reads. The second was the result of
node concatenation. The next three graphs were the result of the three
consecutive steps of error correction: tip clipping, Tour Bus, and coverage
cutoff. The last graph was obtained by building the graph of the refer-
ence sequence then submitting it to Tour Bus, to simulate an error-free
and gap-free assembly.

Table 2. Efficiency of the Velvet error-correction pipeline on the
Streptococcus data set

Step
No. of
nodes

N50
(bp)

Maximum
length

(bp)

Coverage
(percent
>50 bp)

Coverage
(percent
>100 bp)

Initial 3,621,167 16 16 0 0
Simplified 2,222,845 16 44 0.1 0
Tips clipped 15,267 2195 7949 96.2 95.4
Tour Bus 3303 4334 17,811 96.8 96.4
Coverage

cutoff 1496 8564 29,856 96.9 96.5
Ideal 1305 9609 29,856 97.0 96.8

Short read de novo assembly using de Bruijn graphs
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conclusion

• Velvet is able to a reasonably well job of 
error removal efficiently with short reads

• complex genome assembly is difficult due 
to repeats

• de novo genome assembly is not a solved 
problem
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pair end results

19

vet uses slightly more memory, it is significantly faster and pro-
duces larger contigs, without mis-assembly. Furthermore, it cov-
ers a large area of the genome with high precision.

We also tried using SHARCGS (Dohm et al. 2007) and
EULER (Pevzner et al. 2001) but were not able to make these
programs work with our data sets. This is probably due to differ-
ences in the expected input, particularly in terms of coverage
depth and read length.

Discussion
We have developed Velvet, a novel set of de Bruijn graph-based
sequence assembly methods for very short reads that can both
remove errors and, in the presence of read pair information, re-
solve a large number of repeats. With unpaired reads, the assem-
bly is broken when there is a repeat longer than the k-mer length.
With the addition of short reads in read pair format, many of
these repeats can be resolved, leading to assemblies similar to
draft status in bacteria and reasonably long (∼5 kb) SCSCs in
eukaryotic genomes.

For the latter genomes, the short read
contigs will probably have to be combined
with long reads or other sequencing strate-
gies such as BAC or fosmid pooling. Simu-
lations of Breadcrumb produced virtually
identical N50 lengths on both a continuous
5-Mb region and a discontinuous 5-Mb re-
gion made up of random 150-kb BACs, with

twofold variation in BAC concentration
(data not shown). This approach would
then require merging local assemblies.

Sequence connected supercontigs
have considerably more information
than gapped supercontigs, in that the se-
quence content separating the definitive
contigs is an unresolved graph. One can
easily imagine methods that can exclude
the presence of a novel sequence in the
SCSC completely by considering the
potential paths in the unresolved se-
quence regions, in contrast to tradi-
tional supercontigs, where one can
never make such a claim. In addition,
the unresolved regions will often be dis-
persed repeats, and as such the classifi-
cation of such regions as repeats is more
important than their sequence content
for many applications.

It is important to emphasize that
assembly is not a solved problem, in par-
ticular with very short reads, and there
will continue to be considerable algo-
rithmic improvements. Velvet can al-
ready convert high-coverage very short
reads into reasonably sized contigs with
no additional information. With addi-
tional paired read information to resolve
small repeats, almost complete genomes
can be assembled. We believe the Velvet
framework will provide a rich set of dif-
ferent algorithmic options tailored to
different tasks and thus provide a plat-

form for cheap de novo sequence assemblies, eventually for all
genomes.

Methods
Velvet parameters
Velvet was implemented in C and tested on a 64-bit Linux ma-
chine.

The results of Velvet are very sensitive to the parameter k as
mentioned previously. The optimum depends on the genome,
the coverage, the quality, and the length of the reads. One ap-
proach consists in testing several alternatives in parallel and pick-
ing the best.

Another method consists in estimating the expected num-
ber X of times a unique k-mer in a genome of length G is observed
in a set of n reads of length l. We can link this number to the
traditional value of coverage, noted C, with the relations:

E!X" =
n!l − k + 1"

G − k + 1
≈

n
G !l − k + 1" = C

l − k + 1
l

Figure 6. Breadcrumb performance on simulated data sets. As in Figure 3, we sampled 5-Mb DNA
sequences from four different species (E. coli, S. cerevisiae, C. elegans, and H. sapiens, respectively) and
generated 50! read sets. The horizontal lines represent the N50 reached at the end of Tour Bus (see
Fig. 3) (broken black line) and after applying a 4! coverage cutoff (broken red line). Note how the
difference in N50 between the graph of perfect reads and that of erroneous reads is significantly
reduced by this last cutoff. (Black curves) The results after the basic Breadcrumb algorithm; (red curves)
the results after super-contigging.

Table 3. Comparison of short read assemblers on experimental Streptococcus suis Solexa
reads

Assembler
No. of
contigs N50

Average
error rate Memory Time Seq. Cov.

Velvet 0.3 470 8661 bp 0.02% 2.0G 2 min 57 sec 97%
SSAKE 2.0 265 1727 bp 0.20% 1.7G 1 h 47 min 16%
VCAKE 1.0 7675 1137 bp 0.64% 1.8G 4 h 25 min 134%

Short read de novo assembly using de Bruijn graphs
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