Velvet: Algorithms for de novo short read assembly using de Bruijn graphs

Daniel R. Zerbino and Ewan Birney 2008

Problem

- de novo assembly is the problem of figuring out the genome sequence without no prior information
- for example, sequencing a species for the first time
- inputs reads short, can be modelled as randomly broken pieces of the genome
- plus possibly paired end data

is an Outstation of the European Molecular Biology Laboratory.

TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG

AGTCGAG CTTTAGA CGATGAG CTTTAGA GTCGAGG TTAGATC ATGAGGC GAGACAG GAGGCTC ATCCGAT AGGCTTT GAGACAG AGTCGAG TAGATCC ATGAGGC TAGAGAA TAGTCGA CTTTAGA CCGATGA TTAGAGA CGAGGCT AGATCCG TGAGGCT AGAGACA TAGTCGA GCTTTAG TCCGATG GCTCTAG TCGACGC GATCCGA GAGGCTT AGAGACA TAGTCGA TTAGATC GATGAGG TTTAGAG GTCGAGG TCTAGAT ATGAGGC TAGAGAC AGGCTTT ATCCGAT AGGCTTT GAGACAG AGTCGAG TTAGATT ATGAGGC AGAGACA GGCTTTA TCCGATG TTTAGAG CGAGGCT TAGATCC TGAGGCT GAGACAG AGTCGAG TTTAGATC ATGAGGC TTAGAGA GAGGCTT GATCCGA GAGGCTT GAGACAG

Challenges

- Is this possible with short short reads?
 4²⁵=10¹⁵ 10⁹ bp in the human genome
- repeats in the genome
- mistakes in the sequencing reads
- mistakes in the sequencing biology/ chemistry

de Bruijn graphs^{26 2:05 PM}

- each sequence is a path through the graph
- the outer path: 1001100

construction

- sequence of each read is parsed into kmers
- typical k=21 for read length of 25
- series of matches(k-1 long) are aligned together called a block
- the information of each block is the last bp of each k-mer in of the block

alignment

links

- a directed link is drawn if there exists a (k-1)long match between two blocks
- if everything is perfect, an underlying sequence follows all links in the de Bruijn graph while tracing through every block
- however, due to the noisy measurement and sequence repeats, many more steps are required

is an Outstation of the European Molecular Biology Laboratory.

TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG

AGTCGAG CTTTAGA CGATGAG CTTTAGA GTCGAGG TTAGATC ATGAGGC GAGACAG GAGGCTC ATCCGAT AGGCTTT GAGACAG AGTCGAG TAGATCC ATGAGGC TAGAGAA TAGTCGA CTTTAGA CCGATGA TTAGAGA CGAGGCT AGATCCG TGAGGCT AGAGACA TAGTCGA GCTTTAG TCCGATG GCTCTAG TCGACGC GATCCGA GAGGCTT AGAGACA TAGTCGA TTAGATC GATGAGG TTTAGAG GTCGAGG TCTAGAT ATGAGGC TAGAGAC AGGCTTT ATCCGAT AGGCTTT GAGACAG AGTCGAG TTAGATT ATGAGGC AGAGACA GGCTTTA TCCGATG TTTAGAG CGAGGCT TAGATCC TGAGGCT GAGACAG AGTCGAG TTTAGATC ATGAGGC TTAGAGA GAGGCTT GATCCGA GAGGCTT GAGACAG

red = sequencing mistakes

Example

- read data form example is parsed into 4-mers
- matches are found and the de Bruijn graph is constructed
- problems ?

 hanging tips(blocks that do not connect to anything) are likely due to mistakes, especially low-coverage ones

bubbles(cycles of the in the graph) is likely

	Human BAC			Streptococcus suis		
Graph: U		N50 (bp)	Max. length	# nodes	N50	Max. length
			(bp)			(bp)
Initial	309,723	10	10	3,621,167	16	16
Friday, February 12, 2010	190,441	10	60	2,222,845	16	44

Tour Bus algorithm for bubble removal

В

С

is an Outstation of the European Molecular Biology Laboratory.

 in this example, sequence length=38 bp, read length=7bp, coverage~10X, error rate~ 3%, with one major repeat = 11bp

k is chosenStreptec5.depts suis								
Max. length	# nodes	N50	Max. length					
(bp) • V	elvet is able	to resolve 1	(hip)toy exar	nple!				
10	3,621,167	16	3 16	-				
		1 (
Friday, February 12, 2010	2,222,845	10	44					

N50

- in problems of practical size, it is unlikely that any large genome can possibly be assembled through read data alone (more experiment needed)
- it is harder for to measure performance
- one measure of how well an assembler performs is the N50 (median length weighted contig length)

simulated results

real reads

- a 173 kbp human BAC was sequenced by Solexa with a coverage of 970X
- read length are 35 bp
- k set to 31
- an virtual ideal sequencer(error free, gap free) that looks at the reference sequence is compared with Velvet

experimental reads

Table 1. Efficiency of the Velvet error-correction pipeline on theBAC data set

Step	No. of nodes	N50 (bp)	Maximum length (bp)	Coverage (percent >50 bp)	Coverage (percent >100 bp)
Initial	1,353,791	5	7	0	0
Simplified	945,377	5	80	4.3	0.2
Tips clipped	4898	714	5037	93.5	78.7
Tour Bus Coverage	1147	1784	7038	93.4	90.1
cutoff	685	1958	7038	92.0	90.0
Ideal	620	2130	9045	93.7	91.9

conclusion

- Velvet is able to a reasonably well job of error removal efficiently with short reads
- complex genome assembly is difficult due to repeats
- de novo genome assembly is not a solved problem

pair end results

