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While the popular DNA sequence alignment tools incorporate powerful heuristics

to allow for fast and accurate alignment of DNA, most of them still optimize the

classical Needleman Wunsch scoring scheme. The development of novel scoring
schemes is often hampered by the difficulty of finding an optimizing algorithm

for each non-trivial scheme. In this paper we define the broad class of rectangle
scoring schemes, and describe an algorithm and tool that can align two sequences

with an arbitrary rectangle scoring scheme in polynomial time. Rectangle scoring

schemes encompass some of the popular alignment scoring metrics currently in
use, as well as many other functions. We investigate a novel scoring function

based on minimizing the expected number of random diagonals observed with the

given scores and show that it rivals the LAGAN and Clustal-W aligners, without
using any biological or evolutionary parameters. The FRESCO program, freely

available at http://compbio.cs.toronto.edu/fresco, gives bioinformatics researchers

the ability to quickly compare the performance of other complex scoring formulas
without having to implement new algorithms to optimize them.

1. Introduction

Sequence alignment is one of the most successful applications of computer
science to biology, with classical sequence alignment programs, such as
BLAST1 and Clustal-W2, having become standard tools used by all biolo-
gists. These tools, developed while the majority of the available biological
sequences were of coding regions, are not as effective at aligning DNA3.
Consequently, the last ten years have seen the development of a large num-
ber of tools for fast and accurate alignment of DNA sequences. These
alignments are typically not an end in themselves - they are further used as
input to tools that do phylogeny inference, gene prediction, search for tran-
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scription factor binding sites, highlight areas of conservation, or produce
another biological result.

Within the field of sequence alignment, several authors4,5,6,7 have noted
the distinction between the function that is used to score the alignment,
and the algorithm that finds the best alignment for a given function. Given
an arbitrary scoring scheme, it is normally easy to assign a score to an
already-aligned pair of sequences, but potentially more complicated to
yield a maximal-scoring alignment if the sequences are not aligned to begin
with. While for some scoring schemes, such as edit distance or Needleman-
Wunsch, the optimizing algorithm is simple to write once the scoring func-
tion is defined, in other cases, such as the DIALIGN scoring metric, it is
trivial to score a given alignment, but the algorithm which one could use
to compute the optimal alignment under the given metric may be difficult
to devise. Because of this complexity, sequence alignment programs con-
centrate on a single scoring scheme, allowing the user to vary a range of
parameters, but not the scheme itself.

Among the many DNA alignment programs developed over the last few
years, most have attempted to use various heuristics to quickly optimize
the Needleman-Wunsch metric. In this paper we propose algorithms and
software to enable bioinformatics researchers to explore a plethora of richer
scoring schemes for sequence alignments. First, we define the class of rectan-
gle scoring schemes, which encompass a large number of scoring metrics, in-
cluding Needleman-Wunsch, Karlin-Altschul E-value, DIALIGN, and many
others. Secondly we demonstrate an efficient polynomial-time algorithm to
compute the optimal alignment for an arbitrary rectangle scoring scheme,
and present both provably optimal and non-optimal heuristics to speed up
this search. Our algorithms are implemented in a tool, FRESCO, which can
be used to investigate the efficacy of various rectangle scoring schemes. Fi-
nally, we illustrate two examples of scoring functions that produce accurate
alignments without any prior biological knowledge.

2. Scoring Schemes

2.1. Previous work

The work on scoring an alignment is closely tied to the problem of defining
a distance between two strings. Classical work on formulating such dis-
tances are due to Hamming8 for ungapped similarities and Levenshtein9

for similarity of sequences with gaps. The Needleman-Wunsch algorithm10

expanded on Levenshtein’s approach to allow for varying match scores, and
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mismatch and gap penalties. Notably, the Needleman-Wunsch algorithm,
as described by the original paper, supports arbitrary gap functions and
runs in O(n3) time. The special case of affine gaps being computable in
quadratic time was demonstrated by Gotoh11 in 1982. Most of the widely
used DNA sequence alignment programs such as BLASTZ12, AVID13 and
LAGAN14 use the Needleman-Wunsch scoring scheme with affine gaps. The
DIALIGN scoring scheme4,5 is notable because it was one of the first scor-
ing schemes that allowed for scoring not on a per-letter, but on a per-region
(diagonal) basis. The score of a single diagonal was defined as the prob-
ability that the observed number of matches within a diagonal of a given
length would occur by chance, and the algorithm sought to minimize the
product of all these probabilities.

The Karlin-Altschul (KA) E-value15, which estimates the expected num-
ber of alignments with a certain score or higher between two random strings,
can be formulated not only as a confidence, but also as a scoring scheme,
as was heuristically done in the OWEN program16. After the single best
local alignment between the two sequences is found and fixed, the algorithm
begins a search for the second best alignments, but restricts the location
to be either before the first alignment in both sequences, or after in both.
The KA E-value depends on the lengths of sequences being aligned, and
because the effective sequence lengths are reduced by the first local align-
ment, the KA E-value of the second alignment depends on the choice of
the first. The OWEN program, which uses the greedy heuristic, does not
always return the optimal alignment under the KA E-value scoring scheme.
Other alignment scoring schemes include scoring metrics to find an align-
ment which most closely matches a given evolutionary model. These can
be heuristically optimized using a Markov Chain Montecarlo (MCMC) al-
gorithm, for example the MCAlign program17. Alignment scoring schemes
which are based on various interpretations of probabilistic models, e.g. the
ProbCons alignment program that finds the alignment with the maximum
expected number of correct matches, are another example. Within the con-
text of alignments based on probabilistic models there has been work on
methods to effectively learn the optimal values for the various parameters of
the common alignment schemes using Expectation Maximization or other
unsupervised learning algorithms18.
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2.2. Rectangle Scoring Schemes

In this section we will define the concept of a rectangle scoring scheme,
and illustrate how some of the classic alignment algorithms are all special
cases of such schemes. Consider a 2D matrix M defined under the dynamic
programming paradigm, on whose axes we set the two sequences being
aligned. We define a diagonal in an alignment as referring to a sequence
of matched letters between two gaps. We define a diagonal’s bounding
rectangle as the sub-rectangle in M delimited by the previous diagonal’s last
match and the next diagonal’s first match (Fig. 1a). Thus, a diagonal’s
bounding rectangle includes the diagonal itself as well as the preceding
and subsequent gaps. A rectangle scoring scheme is one that makes use
of gap and diagonal information from within this rectangle (such as the
number of matches, area of the rectangle, lengths of the dimensions, etc),
while the scores for all rectangles can be computed independently and then
combineda. For example, Needleman-Wunsch10 is one such scheme: the
score of a rectangle is defined as the sum of match and mismatch scores
for the diagonal, minus half of the gap penalties for the two gaps before
and after the diagonal. The Karlin-Altschul E-value15 (E = −Kmne−λs) is
another example, as the E-value depends on m and n, the entire lengths of
the two strings being compared. The DIALIGN scoring function is another
example of a rectangle scoring scheme.

Figure 1. (a) Definition of a bounding rectangle of a diagonal - the rectangle in M

delimited by the previous diagonal’s last match and the next diagonal’s first match. (b)
Shows the 4 important points within a rectangle: recstart & recend - the start and end

(top left and bottom right, respectively) points of a rectangle, and diagstart & diagend
- the starting and ending points of a diagonal. (c) Note how a recend is equivalent to
the next diagonal’s diagstart.

aCurrently FRESCO assumes the operation combining rectangle scores is addition or
multiplication, as this is most often the case, but can be trivially modified to allow for
any operation/formula.
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3. Algorithm

In this section we will present an overview of the algorithm that we use to
find the best alignment under an arbitrary rectangle scoring scheme. We
will again make use of the 2D dynamic programming matrix M defined
above, on whose axes we set the two sequences being aligned.

3.1. Basic FRESCO Algorithm

Given any rectangle scoring scheme, FRESCO computes an optimal align-
ment between two sequences. For clarity, we define recstart as the starting
point of a rectangle and recend as the endpoint of a rectangle, and, sim-
ilarly, diagstart and diagend points to be the starting and ending points
of a diagonal (Fig. 1b). By definition of a rectangle of a given diagonal,
a recstart is equivalent to the previous diagonal’s diagend and a recend is
equivalent to the next diagonal’s diagstart (Fig. 1c).

The FRESCO algorithm can be explained within a slightly modified
dynamic programming algorithm paradigm.

1. Matrix. First we create the dynamic programming matrix M with the
two sequences on the axes.

2. Recursion. Here we describe the recursion relation. We iterate through
the matrix M row-wise.

· Terminology: a diagend cell C can form a gap with several possible recend
cells D (cells that come after C on the same row or column), as shown in Figure
2a. Note that this {C, D} pair can thus be part of a number of rectangles {A,
B, C, D}, where A is the recstart and B is the diagstart. To view all of these,
one would consider all the possible diagstarts, and for each, all the possible
recstarts, as shown in Figure 2(b-d). We use this notion of a {C, D} pair and
{A, B, C, D} rectangle below.

· Invariant: (true at the end of each step (i,j)). Let C = M [i, j] and consider
this cell as a possible diagend. We have computed, for each possible pair {C,
D} described above, a rectangle representing the best alignment up to {C, D}.

· Recursion: Assume cell C is a diagend. For every cell D as described above:

◦ Find all the possible rectangles through {C,D}: {A, B, C, D} as described
above (for every possible diagstart consider every possible recstart)

◦ For each rectangle R = {A, B, C, D}, we will have computed the best
alignment & associated score SB up to {A, B} (via the invariant) and
we can compute the score SR of R alone via the current rectangle scor-
ing scheme. Adding ST = SB + SR will give us the score of the best
alignment through {A, B, C, D}.
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◦ After computing all the ST (total) scores for each R, we take the max-
imum, giving us the optimal alignment & score up to {C, D}. This
completes the recursion. For the purposes of recreating the alignment,
we hold, for each {C, D} pair, a pointer to the optimal {A, B} choice.

3. Computing the alignment.

· Let the final cell be denoted by F , F ≡ M [m, n] . We will have m + n − 1
pairs {C, F}, (where C is on the rightmost column of bottommost row) that
will hold the best alignment and score up to {C, F}. Taking the maximum
of these will give us the best alignment up to F. Having stored pointers from
each {C, D} pair to its optimal {A, B} pair, we simply follow the pointers
back through each rectangle up to M [0, 0], thus recreating the alignment.

The proof of correctness is by induction and follows very similarly. The
algorithm can be trivially modified to allow for unaligned regions by setting
the diagonal score to the score of the maximum contiguous subsequence.

3.1.1. Running Time and Resources

Let the larger of the sequences be of length n. The algorithm iterates over
all the points of the matrix M — O(n2) iterations. In the recursion, we look
ahead at most 2n recends D and look back at no more than n diagstarts B.
For each of these {B, C, D} sets, we search through at most 2n recstarts
A. Thus we have O(n3) computation and O(n) storage. Consequently we
have an overall running time of O(n5) and storage of O(n3).

Figure 2. The figure illustrates the search, described in section 3.1, for the best rectangle

assuming the current point acts as a diagend. For the current cell being considered (dark
gray), referred to as C, (a) shows possible recends D; and hence pairings {C, D}. (D could

also be on the same column as C). (b) illustrates the possible diagstarts (B) considered

for each of these {C, D}. For each {B, C, D} set we have possibilities such as those
shown in (c), all of which form rectangles {A, B, C, D} that go through the diagend C

we begin with. We choose the optimal of these rectangles, as shown in (d).
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3.2. FRESCO Speed Ups

Under most scoring schemes, a large portion of the calculations above be-
come redundant. We have built into FRESCO several optional features
that take advantage of the properties of possible scoring functions with the
aim of lowering the time and storage requirements for the algorithm. These
can be separated into two categories: optimal (the resulting alignment is
still optimal) and heuristic (without optimality guarantees).

Optimal

◦ Pareto Efficiency. Most relevant scoring schemes will score a specific diagonal’s
rectangle lower if its length or width are larger than another rectangle with
the same diagonal (and if the other parameter is the same). Given this likely
property, we have implemented an optional feature in FRESCO whereby, for
each set {B, C, D}, we will have eliminated any points A (recstarts) where we
have another closer A with a better overall score. This defines a pareto-efficient
set19. While it is difficult to predict the exact size of this reduction, empir-
ically, we observed that about order logn recstarts of the originally available
O(n) are retained, allowing us to reduce the running time and space require-
ments by almost a factor of n. This holds for both unrelated and highly similar
sequences.

◦ SMAWK. Given that the scoring function has the same concavity with respect
to the rectangle area throughout (i.e. the function is always concave, or al-
ways convex), we can further speed up the alignment using the SMAWK20

algorithm. In the recursion, we can reduce the number of rectangles we look
at if we change the order of the iterations: first we consider pairs of diag-
begin and diagend points {B, C}, and then compute the total scores at all
relevant recends (Ds) and recbegins (As). When the computation is done in
this manner, we can view this as the search for all of the column minima of
a matrix D[NxN ], where each row corresponds to a particular recbegin point,
each column corresponds to a recend point, and the cell D[i, j] is the score of
the path that enters the given diagonal through recbegin point i and exists it
through recend point j. This matrix has been previously used in literature,
and is commonly known as the DIST matrix21. If the scoring function is either
concave or convex, the DIST matrix is totally monotone, and all of its column
minima can be found in time linear in the number of columns and rows using
the SMAWK algorithm. This optimization decreases the computation time for
each possible diagend to O(n2), speeding up the overall alignment by O(n).

Because the user may be interested in exploring non-uniform scoring
schemes we have made both SMAWK and Pareto-efficency optional fea-
tures in FRESCO, which can be turned on or off using compile-time op-
tions. However, with both the Pareto-efficency and the SMAWK speedups,
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the overall running time, originally O(n5), is observed to grow as n3logn

when both speed-ups are enabled. The observed running times are sum-
marized in Figure 3.

Heuristic (Non-Optimal)

We also introduce two speed ups that, while not guaranteeing an optimal
overall score, have been observed to work well in practice.

◦ Maximum diagonal length. Since one key parameter that limits the running
time of our algorithm is having to compute diagonals of all possible lengths, we
have added an optional limit on the length of the diagonal, forcing each long
diagonal to be scored as several shorter ones. For many scoring schemes this
does not greatly affect the final alignment, while the running time is reduced
by O(n). This improvement was also employed in the DIALIGN program5.

◦ Banded Alignment. We have also added an option to FRESCO which forces the
rectangle scoring scheme to act only within a band in the matrix M around
an already-computed alignment. Because most genome sequence alignment
tools are going to agree overall on strong areas of similarity, banded alignment
heuristics have commonly been used to improve on an existing alignment.
Since FRESCO allows the testing of abilities of various scoring schemes, this
improvment technique may be of particular interest when used with FRESCO.
We have performed empirical tests by running FRESCO within a band around
the optimal alignment to investigate the running time, and empirically ob-
served a running time linear in n.

Figure 3 displays the running time of FRESCO using various optimiza-
tion techniques for sequences of length 100 to 1000 nucleotides.

Figure 3. We show the improvements in running time from the original FRESCO algo-
rithm, indicated by (x) and modeled by a polynomial, to the running time of FRESCO

with the Pareto and Ranges (SMAWK) utilities on, indicated by (+) and modeled by a
polynomial, and finally applying all speedups described in the text (including band size
of 20 bp, maximum diagonal length of 30 bp), and resulting in linear running time (•).
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4. Results

4.1. Functions allowed

The main power of the FRESCO tool is its ability to create alignments
dictated by any rectangle scoring scheme. This will allow researchers to
test schemes based on any motivations, such as evolution-based or statisti-
cal models. Since the creation of a new algorithm is not required for each
of these schemes, we now have the ability to quickly compare the perfor-
mance of complex scoring schemes. We have investigated traditional scor-
ing schemes and aligners Clustal-W and LAGAN, against two novel scoring
functions based on a parameter-less global E-value, described below.

4.2. Example function & performance

Given a diagonal and its bounding rectangle, the global E-value is the
expected number of diagonals within this rectangle with equal or higher
score. We calculate this by computing, for every possible diagonal in the
rectangle, the probability that it has a score higher than the one in our
diagonal, and summing these indicator variables. Note that our global E-
value is different from the Karlin-Altschul statistic. To compute the global
E-value we first define a random variable corresponding to the score of
matching two random (non-homologous) letters. The expected value of
this random variable (referred to as R below) is determined by computing
the frequency of all nucleotides in the input strings, and for all 16 possible
pairings multiplying the score of a match by the product of the frequencies.
The variance (V ) of the variable is the sum of the squared differences from
the expectation. We model a diagonal of length d as a set of repeated,
independent samplings of this random variable. The probability g(s, d)
that the sum of these d trials has a score > s can be approximated as the
integral of the tail of a Gaussian, with mean Rd and variance Vd:

g(s, d) =
∫ ∞

s

1
Vd

√
2π

e
− (x−Rd)2

2V 2
d dx (1)

Note that g(s, d) is also the expected value of the variable which indi-
cates whether or not a particular diagonal of length d has a score higher
than s. The expected number of diagonals within a rectangle with a given
score or higher is equal (by linearity of expectation) to the sum of expecta-
tions of indicator variables corresponding to individual diagonals, yelding
the formula
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E =
min(m,n)∑

i=1

g(s, i) + |m − n|g(s, d) (2)

The E-values for the individual rectangles can be combined in a variety
of ways, leading to various alignment qualities. Below we will demonstrate
results for two ways of combining the functions:

E − V alue I :
N∑

i=1

log(
2
Ei

+ ε) =
N∏

i=1

(
2
Ei

+ ε) = εN + 2
N∏

i=1

E−1
i (3)

E − V alue II :
N∑

i=1

log(log(
1
Ei

+ ε)) =
N∏

i=1

log(
1
Ei

+ ε) (4)

Where ε is used to avoid asymptotic behaviour. We used ε = 0.1.

Performance
The evaluation of DNA alignment accuracy is a difficult problem, with-
out a clear solution. In this paper we have chosen to simulate the evo-
lution of DNA sequence, and compare the alignments generated by each
program with the ”gold standard” produced by the program that evolved
the sequences. We used ROSE22 to generate sequences of length 100-200
nucleotides from a wide range of evolutionary distances and ratios of inser-
tions/deletions (indels) to substitution, using a Jukes-Cantor23 model and
equal nucleotide frequency probability (See Table 1). The evolved sequences
were aligned with FRESCO using several E-value based scoring functions
(described above), as well as with the Clustal-W and LAGAN aligners, with
default parameters. The accuracy of each alignment was evaluated both on
a per-nucleotide basis with the program described in Pollard et al, 200424,
as well as based on how closely the number of indels in the generated align-
ments matched the number of indels in correct alignments. The results are
summarized in Figure 4. While the per nucleotide accuracy of the LAGAN
aligner is best, the E-value II function we have defined manages to top
the ClustalW aligner in accuracy and estimate the indel ratio better than
both LAGAN and ClustalW in most tests, without using any biological or
evolutionary knowledge. It is important to note that the improvement of
the global E-value over ClustalW becomes more pronounced with greater
evolutionary distance.
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Figure 4. We evaluated the E-value scoring functions on a set of ROSE-generated align-
ments based on the accuracy (a) and 1 - the gap frequency difference (b) between the ob-

served and evolved alignment, and compared with results from the LAGAN and ClustalW

aligners. For alignment types 1-9, evolutionary distance 0.25, 0.50 & 0.75 subs/site, from
left to right, we tried three indel per substitution ratios 0.06, 0.09, and 0.12 each. While

the accuracy of the E-value II scheme fell between LAGAN and ClustalW, the indel ratio

is in general better (than both aligners) with the E-value II function. The details of the
analysis are included in the appendices.

Table 1. Summary of evolutionary parameters used to generate test data. Se-

quences were evolved using three different evolutionary distances (substitutions

per site), each with three different indel to substitution ratios.

Type 1 2 3 4 5 6 7 8 9

Subs Per Site 0.25 0.25 0.50 0.50 0.50 0.75 0.75 0.75 0.75

Indel/Subs 0.06 0.09 0.12 0.06 0.09 0.12 0.06 0.09 0.12

5. Discussion

In this paper we generalize several schemes that have been previously used
to align genomes into a single, more general class of rectangle scoring
schemes. We have developed FRESCO, a tool that can find the optimal
alignment for two sequences under any scoring scheme from this large class.
While the tool we have built only allows for alignment of short sequences,
and is not usable for whole genomes (it is many-fold slower than anchored
aligners such as LAGAN and AVID), we believe that it should enable bioin-
formaticians to explore a large set of schemas, and once they find one that
fits their needs, it will be possible to write a faster, specialized program for
that scoring scheme. In this paper we provide an example of a rectange
scoring function that incorporates no biological knowledge but performs
on par with popular alignment algorithms, and we believe that even more
accurate schemas can be found using the FRESCO tool.



September 24, 2007 21:17 Proceedings Trim Size: 9in x 6in ws-procs9x6

6. Implementation and Supplementary Information

FRESCO was developed solely in C. The scoring scheme is supplied as a ’.c’ file, in which

we allow a definition of the scoring function (in C code) as well as any pre-computations

and global variables necessary for the scheme. A script to test the FRESCO results
against other aligners or the true alignment is written to aid in comparing scoring

schemes, implemented in a combination of perl and shell scripts. All are available at

http://compbio.cs.toronto.edu/fresco. At this same address one can find an appendix
and the generated datasets used in the results section.
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