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ABSTRACT
Motivation: To compare entire genomes from different
species, biologists increasingly need alignment methods
that are efficient enough to handle long sequences,
and accurate enough to correctly align the conserved
biological features between distant species. The two main
classes of pairwise alignments are global alignment,
where one string is transformed into the other, and local
alignment, where all locations of similarity between the
two strings are returned. Global alignments are less prone
to demonstrating false homology as each letter of one
sequence is constrained to being aligned to only one letter
of the other. Local alignments, on the other hand, can cope
with rearrangements between non-syntenic, orthologous
sequences by identifying similar regions in sequences;
this, however, comes at the expense of a higher false
positive rate due to the inability of local aligners to take
into account overall conservation maps.
Results: In this paper we introduce the notion of glocal
alignment, a combination of global and local methods,
where one creates a map that transforms one sequence
into the other while allowing for rearrangement events. We
present Shuffle-LAGAN, a glocal alignment algorithm that
is based on the CHAOS local alignment algorithm and the
LAGAN global aligner, and is able to align long genomic
sequences. To test Shuffle-LAGAN we split the mouse
genome into BAC-sized pieces, and aligned these pieces
to the human genome. We demonstrate that Shuffle-
LAGAN compares favorably in terms of sensitivity and
specificity with standard local and global aligners. From the
alignments we conclude that about 9% of human/mouse
homology may be attributed to small rearrangements, 63%
of which are duplications.
Availability: Our systems, supplemental information, and
the alignment of the human and mouse genomes using

∗To whom correspondence should be addressed.
† These authors contributed equally to the work.

Shuffle-LAGAN are available at
http://lagan.stanford.edu/glocal.
Contact: serafim@cs.stanford.edu

1 INTRODUCTION
The availability of complete vertebrate genomes, such as
the human, mouse, and fugu (Lander et al., 2001; Venter et
al., 2001; Waterson et al., 2002; Aparicio et al., 2002) has
pushed comparative genomics into a new era. Comparing
genomic sequences from related species is a fruitful source
of biological insight, as functional elements such as genes
and regulatory sites tend to exhibit significant sequence
similarity across related genomes, whereas regions that
are not functional tend to be non-conserved (Dubchak et
al., 2000; Göttgens et al., 2002). Performing alignment
on a whole genome scale introduces new challenges, as
it is no longer feasible to do manual post-processing of the
alignments to ensure their correctness.

The availability of multiple genomic sequences also
makes it possible to learn more about the mutations
that DNA undergoes during evolution, and thus create
better alignment programs. In particular, most current
programs penalize insertions, deletions and substitutions
of individual base pairs between two sequences (we call
these events simple edits). It is known, however, that DNA
also mutates by various rearrangement events, such as
translocations (a subsegment is removed and inserted in
a different location but the same orientation), inversions
(a subsegment of DNA is removed from the sequence
and then inserted back in the same location but opposite
orientation), duplications (a copy of a subsegment is
inserted into the sequence, the original subsegment is
unchanged), or a combination of the above (See Fig. 1). In
this paper we explore local rearrangement events, which
we define to be longer than 100 base pairs (bp) and shorter
than 100 thousand bp (Kbp).

Of the two main methods for pairwise alignment—
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Fig. 1. Common rearrangement events. Top left corner corresponds start of both sequences, diagonal lines to areas of homology.
(A) No rearrangements (consistent homology). (B) Translocation. (C) Inversion. (D) Duplication.

global alignment, which shows how one sequence can
be transformed into another using a combination of
the simple edits, and local alignment, which identifies
local similarities between regions of sequences—neither
handles rearrangement events satisfactorily. Global
alignment algorithms such as Needleman and Wunsch
(1970), Dialign (Morgenstern, 1999), MUMmer (Delcher
et al., 1999, 2002), Avid (Bray et al., 2003), and LAGAN
(Brudno et al., 2003) do not handle these events at all: the
map between the two sequences that a global alignment
algorithm creates must be monotonically increasing in
both sequences. While local alignment methods such as
Smith and Waterman (1981), BLAST (Altschul et al.,
1990, 1997), CHAOS (Brudno and Morgenstern, 2002)
and BLASTZ (Schwartz et al., 2003) are able to identify
homology in the presence of rearrangements between two
sequences, they do not suggest how the two sequences
could have evolved from their common ancestor. Local
alignment algorithms also depend on a cutoff score:
only those alignments that score above a threshold are
accepted. Deciding on this cutoff can be difficult: if it is
set too high, some significant hits will be missed, and if it
is set too low there will be too many false positives. Also,
in the case where both sequences have n paralogs (copies)
of a particular gene or feature, local aligners return n2

local alignments between all of the pairs, whereas a
simple global alignment may more clearly reflect the
evolutionary process.

Most work on detecting large scale rearrangements for
whole genomes has been done at the level of genes and
chromosomes, not genomic sequences. Here each gene is
represented by a unique letter, and a string of these letters
is a ‘chromosome.’ Hannenhalli and Pevzner (1995) were
the first to present an algorithm to find the minimal number
of inversions required to transform one chromosome
into another. This method has been extended to other
operations, such as translocations, block interchanges and
transpositions (Hannenhalli, 1996; Christie, 1996; Bafna
and Pevzner, 1998). More recently Pevzner and Tesler
(2003) have investigated the rearrangements that have

occurred between the human and mouse genome, and
found that significant stretches of human/mouse homology
are due to micro-rearrangements, of size less than 1
million base pairs (Mbp).

Varré et al. (1999) proposed a distance metric between
two DNA sequences that models various rearrangement
events. Their algorithm, called Tnt1, builds a second
sequence from an initially empty string using insertions
and copying of blocks from the first sequence. The
distance between the two strings is defined to be the
Kolmogorov complexity of the program that builds the
second sequence. This algorithm has several shortcom-
ings, the most notable being its inability to handle simple
edit operations.

An alignment tool for genomic sequences that models
rearrangements must meet several criteria, the most impor-
tant of which is speed: an aligner for genomic sequences
should be able to rapidly align sequences of length 1 Mbp
or more. Likewise, it is important to use an objective func-
tion that correctly penalizes various rearrangement events
and simple edits. In this work we introduce the problem of
glocal alignment, a hybrid of global and local alignments,
and specify what features a glocal aligner should have.

We also present Shuffle-LAGAN (SLAGAN), a glocal
aligner capable of quickly aligning long genomic se-
quences. SLAGAN is based on the CHAOS and LAGAN
aligners (Brudno and Morgenstern, 2002; Brudno et al.,
2003), and has been used to align the mouse genome,
split into BAC-sized pieces, to the human genome. We
show that SLAGAN, when compared with the regular
LAGAN global aligner, has better sensitivity and similar
specificity. When compared to the BLASTZ local aligner,
SLAGAN shows better specificity at a modest cost in
sensitivity. Using the results produced by SLAGAN, we
discuss the characteristics of the local rearrangement
events that occured since the divergence of the human and
mouse genomes.
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2 ALGORITHMS
In this section we present a definition of glocal alignment,
and present SLAGAN, a glocal alignment algorithm that
we have implemented. SLAGAN is more sensitive than
regular global aligners, yet it has better specificity than
local aligners. Finally SLAGAN is able to rapidly align
long genomic sequences of length greater than 1 Mbp. The
total time to align the human and mouse genomes using
SLAGAN and the technique of Couronne et al. (2003) on
a modern cluster was about 12 hours of wall clock time
(25 CPU-days).

2.1 Glocal alignment
A glocal alignment between two sequences is a series of
operations that transform one sequence into the other. We
believe the necessary set of operations includes insertions,
deletions, point mutations, inversions, translocations and
duplications. Each operation incurs a penalty, and the total
edit distance between the two sequences is the sum of
the penalties. It may also be advantageous to penalize
not only individual operations, but also combinations; for
instance an inverted translocation should possibly have
a smaller penalty than the sum of an inversion penalty
and a translocation penalty. Finally, a glocal alignment
algorithm should be symmetric in the sequence order:
the resulting alignment should not depend on the order
in which the sequences are given. One of the main
shortcomings of the SLAGAN algorithm presented below
and the aforementioned Tnt1 algorithm is that neither
is symmetric in the sequence order. This is especially
noticeable when one aligns duplicated regions, as both
SLAGAN and Tnt1 will currently report duplications in
only one of the sequences.

This list of allowed operations is not meant to be
complete: as we learn more about the evolution of DNA
sequences, additional operations may become necessary.
It is also difficult to find good parameters for the various
penalties, as currently there is no sound mathematical
basis for glocal alignments. Both these areas are promising
topics for future work.

2.2 The Shuffle-LAGAN algorithm
The SLAGAN algorithm consists of three distinct stages.
During the first stage the local alignments between the
two sequences are found using the CHAOS tool (Brudno
and Morgenstern, 2002; Brudno et al., 2003). Second,
the maximal scoring subset of the local alignments under
certain gap penalties is picked to form a 1-monotonic
conservation map. It is the structure of this map that
makes SLAGAN different from standard anchored global
aligners. Finally, the local alignments in the conservation
map that can be part of a common global alignment
are joined into maximal consistent subsegments, which
are aligned using the LAGAN global aligner (Brudno et

al., 2003). See Figure 2 for a graphical overview of the
algorithm. The exact parameters used in the algorithm are
specified in Appendix 1.

2.2.1 Generation of local alignments. To generate lo-
cal alignments between the two sequences, SLAGAN uses
CHAOS, a method that finds small matching words with
degeneracy, and chains them into local alignments. Here,
we only summarize the CHAOS algorithm. (See Brudno
and Morgenstern, 2002; Brudno et al., 2003).

CHAOS works by chaining short words, the seeds,
which match between the two sequences. Given a word
length k, and a degeneracy c, a (k, c)-seed is a pair of k-
long words (k−mers) that match with at most c differences
between the two sequences. Given a maximum distance d,
and maximum shift s, two seeds that are x- and y-letters
apart in the first and second sequences, respectively, can
be chained together if x � d, y � d, and |x − y| � s.
A seed is chained to the single previous seed that creates
the highest scoring chain among all chains that end with
this seed. CHAOS also supports a translation option, in
which both nucleic sequences are translated in all 6 coding
frames (3 forward and 3 reverse), and all combinations
of frames are compared in turn. Amino acids are grouped
(Stanfel, 1996), and all amino acids in the same group are
considered equal. Finally, the chains are extended using
the standard ungapped BLAST (Altschul et al., 1990)
extension, until the score drops below a certain threshold.

After computing the chains, CHAOS scores each chain
by a rapid scoring mechanism: ungapped extensions are
performed in both directions from each seed, and the
optimal location to insert a gap of length exactly |x − y|
is found. The resulting alignment is scored using a
standard Needleman–Wunsch edit metric with penalties
described in Appendix 1. If the alignment is done on
amino acid sequences, the rescoring is done using a
BLOSUM62 matrix (Henikoff and Henikoff, 1992).

2.2.2 Building the 1-monotonic conservation map.
Most tools for rapid global alignment start with a set
of local alignments, which they resolve into a ‘rough
global map’ (Delcher et al., 1999; Batzoglou et al., 2000;
Bray et al., 2003; Brudno et al., 2003). The rough global
map must be non-decreasing in both sequences. In order
to allow our alignment algorithm to catch rearrange-
ments, we relax this assumption to allow the map to be
non-decreasing in only one sequence, without putting
any restrictions on the second sequence. We call this a
1-monotonic conservation map. Here we show how to
create a 1-monotonic conservation map under the affine
gap model.

For this portion of the algorithm we represent each
local alignment L generated in the previous section as
L = (start1, end1, start2, end2, score, strand), a vector
with six fields: the start and end positions of the local
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Fig. 2. Overview of the SLAGAN Algorithm. (A) The local alignment between the two sequences are generated using CHAOS. (B) The
highest scoring 1-monotonic map (indicated in bold) is found. (C) The maximal consistent subsegments of the 1-monotonic map (dashed
boxes) are aligned using LAGAN.

alignment in the two sequences, the score of the alignment,
and the strand on which the alignment occurs in the second
sequence. We define local alignments on the positive
strand to have both start positions less than their respective
end positions; on the negative strand, the end position in
sequence 2 is smaller than the start position.

Consider two local alignments, L1 and L2. We call
L1 and L2 1-monotonic if L2.start1 > L1.end1.
We call these alignments consistent if (1) they are 1-
monotonic, (2) they are both on the same strand, and
(3) L2.start2 > L1.end2 for alignments on the positive
strand or L2.start2 < L1.end2 for alignments on the
negative strand. An ordered list of local alignments
[L1 . . . Lk] is 1-monotonic or consistent if for any pair
of local alignments Li , L j if i < j then Li and L j
are 1-monotonic or consistent, respectively. Intuitively,
a list of local alignments is 1-monotonic if it is strictly
increasing in the first sequence. The list is consistent if the
alignments in it are strictly increasing in both sequences
and all on the positive strand, or strictly increasing in the
first sequence and strictly decreasing in the second and
all are on the negative strand. Equivalently, a list of local
alignments is consistent if all of them can be chained
into a single global alignment. A consistent, ordered list
of local alignments will consequently be referred to as a
consistent chain, or a consistent subchain.

The problem of finding the highest scoring consistent
subset of local alignments can be solved using standard
dynamic programming in time O(n2), by chaining each
alignment L j to the highest scoring consistent subchain
ending in some alignment Li such that Li and L j are
consistent. Eppstein and colleagues (Eppstein et al., 1992)
have shown how to use the sparse dynamic program-
ming technique to speedup the algorithm to run in time

O(n log n). The key observation is that at any point in the
dynamic programming, the set of optimal consistent sub-
chains considered so far partitions the two-dimensional
space of (start1, start2) coordinates into ‘influence ar-
eas’ such that any local alignment in a particular influence
area must be chained to a particular previous optimal
consistent subchain. By considering local alignments
in order of increasing start1, we need only perform a
one-dimensional search to find the appropriate influence
area for chaining each local alignment; more specifically,
this may be accomplished in O(log n) time by storing
the active influence areas sorted by diagonal number
(start1–start2) in a balanced binary tree (see Eppstein et
al., 1992 for details). We generalize this result to finding
the highest scoring 1-monotonic subset of alignments, also
under the affine gap model. Here we present an overview
of the algorithm (a more detailed description is in our
online supplement, http://lagan.stanford.edu/glocal/).

Within the new model, the assumptions that all local
alignments in a chain lie on the same strand and must be
consistent are relaxed. In particular, when chaining local
alignment L2 to a subchain ending in L1, L1 may be on
either the positive or negative strand (+/−), L1 may come
either before (L1.end2 < L2.start2) or after (L1.end2 >

L2.start2) L2 in sequence 2 (+/−), and L2 may be on
either the positive or negative strand (+/−). We represent
the eight possible combinations of L1.strand, direction,
and L2.strand by 3 bits, in that order.

The original Eppstein O(n log n) algorithm dealt with
the special case where an alignment on the positive strand
is always joined to a preceding subchain on the same
strand (+ + +). In the generalized model, however, an
alignment need not have the same strand or direction as
the subchain to which it is joined; more precisely, for
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each local alignment L2 on a given strand L2.strand, we
must consider joining it to consistent subchains that are
either on the positive or negative strand (L1.strand) and
that either precede or follow it in sequence 2 (direction).
Finding the optimal consistent subchain with which to join
L2 in each of the four possible combinations of L1.strand
and direction may be done in O(log n) time using the
balanced binary trees as in the original Eppstein algorithm.
Taking the maximum over the four cases then gives the
optimal chaining for L2. Since the gap penalties used
and hence the influence regions depend on L2.strand
as well, a total of eight balanced binary trees (for each
combination of L1.strand, direction, and L2.strand)
must be maintained, of which only the four consistent
with each L2.strand are used in determining the proper
chaining for L2. In a sense, we may regard this as running
eight parallel versions of Eppstein’s algorithm at once,
building a single common chain.

In practice we use only four different gap penalties, as
we eliminate the symmetric cases, e.g. if both strands are
positives and chained in the positive direction (+ + +),
they should be penalized the same way as negative strands
chained in the negative direction (− − −). One can think
of the four gap penalties as corresponding to the regular
gap penalties (+ + + and − − −), inversions (+ + −
and − − +), translocated inversions (+ − − and − + +)
and translocations (+ − + and − + −). The gap penalty
charged for all transitions consists of three parts: (1)
the gap open penalty is charged for the consistent cases
(+++ and −−−) if the two segments are on different di-
agonals (L1.end1–L1.end2 �= L2.start1–L2.start2),
and is always charged for the other cases (in these cases
it is the inversion, translocation or the inverted translo-
cation penalty); (2) the gap continue penalty is equal
to |(L1.end1–L1.end2)–(L2.start1–L2.start2)| ×
constant; and (3) the distance between two alignments
is defined to be min(|L1.end1–L2.start1|, |L1.end2–
L2.start2|), and it is also penalized as (distance ×
constant). Finally, in order to not pay both an inversion
and a translocated inversion penalty for a simple inversion,
we add a ‘momentum heuristic’: if a majority of the last
five elements in the chain have a different strand than the
current local alignment, and the case we are considering is
a translocated inversion (+−− or −++), the regular gap
penalty is charged instead. This is done in order to charge
inversions a smaller penalty than translocated inversions
(see Appendix 1 for the exact penalties used).

2.2.3 Aligning consistent subsegments. Recall that two
local alignments are considered to be consistent if they
can both be a part of a global alignment. Once we have
a 1-monotonic conservation map it is straight-forward to
generate the maximal consistent subsegments of the map
by simply sorting all of the local alignments in the 1-

monotonic map by their start1 coordinates, taking the
first alignment to be the start of a consistent subsegment,
and adding additional local alignments while they are
all consistent. As soon as an alignment is found to be
inconsistent with the current subsegment, we start a new
subsegment.

Because the edges of the local alignment may not be
reliable borders of the end of homology (there may be
additional conservation which was not strong enough
to meet the local alignment criterion) the start and end
positions of consistent subsegments are expanded in the
first sequence to the borders of the previous and next
consistent subsegments, respectively. The borders are also
expanded in the second subsequence, in proportion to
how much they were expanded in the first sequence.
The expanded consistent subsegments can now be aligned
using any global alignment algorithm.

Note that because of the expansion, the consistent
subsegments will now overlap in the first sequence. In
order to get a true glocal alignment between the two
sequences, it is now necessary to clip the overlapping
alignments so that they do not overlap in the first sequence.
This can be done using two linear passes over the
alignments, one forward and one backward, to find the
optimal point at which to end one alignment and start the
other.

3 RESULTS
We tested SLAGAN by aligning the human and mouse
genomes using the whole genome alignment technique
used in the Berkeley Genome Pipeline (Couronne et al.,
2003). In this technique the mouse genome is split up
into contigs of 250 Kbp. The potential human orthologs
for each contig are found using the BLAT aligner (Kent,
2002). The human sequence is then extended around the
BLAT anchor, and aligned to the mouse contig using
the tested aligner. If the aligner being used is a global
aligner and the BLAT hits fall on both strands, then the
aligner is called both with the original mouse contig and
a reverse-complemented copy, making it possible to catch
inversions. However, a global aligner in this context would
not be able to deal with small scale translocations or
duplications on the same strand. When using SLAGAN
about 40% of all local alignments created by CHAOS are
eliminated while creating the 1-monotonic conservation
map, indicating that the homology map is ‘cleaned up’
compared to just having all local alignments. This allows
for more sensitive settings when generating the local
alignments.

3.1 Quality of SLAGAN alignments
In order to evaluate the quality of SLAGAN alignments
we have used the metrics developed to evaluate the
various alignment programs for the mouse genome paper
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Table 1. Sensitivity and specificity of Shuffle-LAGAN compared to a local
aligner (BLASTZ) and a global aligner (LAGAN)

Dataset BLASTZ LAGAN Shuffle-LAGAN

all human v. all mouse 39.6 36.5 38.2
human chr 20 v. all mouse 40.5 41.6 42.5
human chr 20 v. mouse chr 2 37.2 41.4 42.4
% non-orthologous 8.1% 0.5% 0.2%

The first three rows are the total coverage of the human dataset by
alignments with the mouse dataset. The last line is the percentage of
non-onhologous alignments on human chromosome 20

(Waterson et al., 2002). In particular, we consider the
sensitivity of an alignment program to be the percentage
of base pairs in the alignment it produces that meet a
particular Smith–Waterman scoring threshold. The exact
matrices we use (‘total’ and ‘tight’) are identical to those
used to evaluate the mouse genome aligners (see Appendix
1). To test the specificity of the aligners we applied the
technique used to evaluate the specificity of BLASTZ: the
coverage of human chromosome 20.

Because human chromosome 20 is considered to be
completely ortholgous to mouse chromosome 2, very little
difference should be seen between the coverage of human
chromosome 20 by mouse chromosome 2 and by the
whole mouse genome. The results are summarized in
Table 1. The overall conclusion is that while SLAGAN
may not be quite as sensitive as BLASTZ on the whole
genome scale, it is able to align a larger percentage of
the orthologous regions of human chromosome 20 and
has higher specificity as shown by the lower percentage
of non-orthologous alignments. As compared to regular
LAGAN, SLAGAN is more sensitive, especially for
aligning genes and nearby areas (see Table 2), which are
the areas of the genome that are more likely to undergo
duplications in order to evolve new function. SLAGAN
appears to be slightly more specific than LAGAN, though
the difference may not be statistically significant.

3.2 Analysis of rearrangements
After aligning the whole human and mouse genomes with
a glocal aligner, it becomes possible to characterize the
extent to which BAC-sized chunks in the human genome
have maintained a linear order, and by this whether
global alignments are an appropriate method to analyze
BAC-sized chunks of the genome. Our results (Table 2)
indicate that overall, the homologies found on the whole
genome level by global and glocal alignments are very
similar. There is, however, a noticeable difference when
one considers the alignment of genes and gene-related
elements, such as coding regions, UTRs and elements
close to genes, where one sees a significant improvement
of about 2% in total coverage. This result suggests
that as much as 2% of the gene coding regions in the

human genome may have evolved by local translocation
or duplication since the human/mouse divergence. The
evolution of genes by local duplication is supported by
anecdotal evidence of co-location of homologous genes
such as the globin cluster (Flint et al., 2001).

Once the 1-monotonic map is found, it is possible to
classify the various types of rearrangements on it. We
generate the highest scoring consistent map of all the local
alignments above a threshold CHAOS score in order to
determine whether the main conservation is on the positive
or negative strand. Using this map, we classify any local
alignment that lies on the opposite strand as an inversion.
We label as a translocation any local alignment that is on
the main strand, but not part of the consistent chain, as
well as any alignment on the weak strand that could not
be part of the main consistent chain had it been on the
main strand. Finally, if a particular alignment covers at
least 70% of another alignment in the mouse sequence,
the lower scoring of the two local alignments is labeled
a duplication. Because SLAGAN is not symmetric only
the duplications in mouse are found. Thus, the number of
duplications may be underestimated by as much as a factor
of two. We would also not be able to locate translocations
and duplications that have been split between two contigs.
Table 3 summarizes the different rearrangement events,
their proportion in the human genome, and the level to
which they are conserved, both overall and per base pair.
It is notable that duplications as a whole score lower
per base pair (42.7) than sequences that have undergone
other rearrangements (54.4). This could be the result of
duplicated sequences being free to mutate to evolve new
function, while sequences rearranged but not duplicated
being more constrained to their previous function. Of the
non-duplicated sequences, simple inversions tend to be the
shortest (average length of 122 bp), and have the highest
score per base pair (55.3), followed by translocations
(188 bp, 46.8).

4 DISCUSSION
Sequence alignment is one of the oldest and most success-
ful applications of computer science to biology. Despite
the considerable advances achieved after several decades
of research in this area, many important challenges
remain. One of these challenges is the development
of systems for aligning sequences in the presence of
rearrangements. This is becoming increasingly important
when automatically comparing whole genomes of related
species.

We developed SLAGAN, a system suitable for high-
throughput reliable alignment of genomic sequences in
the presence of rearrangements. SLAGAN is based on
LAGAN, a pairwise aligner that is designed for rapid and
reliable alignment of a pair of genomic sequences that
may be very similar (e.g. human and chimpanzee), or very
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Table 2. Coverage of various features of the human genome by BLASTZ, LAGAN, and Shuffle-LAGAN. The tight matrix is the one from Schwartz et al.
(2003). Coding, UTR and Upstream500 refer to the corresponding areas of Refseq genes

BLASTZ LAGAN Shuffle-LAGAN

Coverage Total Tight1 Total Tight Total Tight
Overall 39.5 5.6 36.49 5.24 38.17 5.45

Coding (CDS) 98.2 92.5 93.18 88.31 95.46 90.34
UTRs 86.1/85.92 39.6/26.02 82.46 28.78 84.35 29.16

Upstream200 85.2 28.3 77.71 26.56 80.48 27.1

1 These results use chromosome 20 rather than the whole genome as the human sequence, as numbers for the latter were not published. Whole genome
numbers tend to be slightly lower. 2 BLASTZ authors did not publish the overall coverage of UTRs, the 5′ UTR/3′UTR coverage is given instead.

Table 3. Classification of local rearrangements found between the human and mouse genomes by Shuffle-LAGAN and LAGAN.

Main Strand Inverted Total

% of Avg Score % of Avg Score % of Avg Score
Length Length per bp Length Length per bp Length Length per bp

Consistent 90.8 143 59.9 1.1 133 55.9 91.8 143 59.9
Translocated only 1.0 150 53.6 1.5 159 54.0 2.5 155 53.8
Duplicated only 2.3 274 44.8 0.2 249 39.4 2.3 272 44.2

Transloc. & Dupl. 1.5 183 44.8 1.9 267 39.2 3.5 222 41.7
Total 95.4 145 59.3 4.7 185 47.6 263Mbp 133 58.1

% of Length is the percentage of the total length (in the human sequence) of all local alignments (263 Mbp). Avg Length is the length of the average local
alignment. Score per bp is the CHAOS score divided by length

distant (e.g. human and zebrafish). SLAGAN source code
is available at http://lagan.stanford.edu/glocal. The source
code for LAGAN is also available from the authors.

The introduction of the concept of glocal alignment sug-
gests several new research directions, of which multiple
glocal alignment is perhaps the most natural. The scoring
scheme that we use in the SLAGAN algorithm is simplis-
tic, and it is likely that a more sophisticated scheme would
result in better alignments. One of the major drawbacks
of the SLAGAN algorithm is that it is not symmetric in
the sequence order, and thus misses duplications in the se-
quence that is constrained to be 1-monotonic. We suspect
that chaining with rearrangements may be an NP-complete
problem if one does not require the chain to be monotonic
in one of the two sequences. It should also be possible to
create glocal alignment algorithms using completely dif-
ferent edit models. This work represents a ‘first stab’ at an
open problem, and that more work in this area is necessary.
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Varré,J.S., Delahaye,J.P. and Rivals,E (1999) Transformation dis-
tances: a family of dissimilarity measures based on movements
of segments. Bioinformatics, 15, 194–202.

Venter,J.C. et al. (2001) The sequence of the human genome.
Science, 291, 1304–1351.

Waterson,G.A. et al. (2002) Initial sequencing and comparative
analysis of the mouse genome. Nature, 420, 520–562.

APPENDIX 1: DEFAULT PARAMETERS
The initial local alignments are generated using CHAOS
using seeds of size 11 with one degeneracy. The chains are
then rescored with matches and mismatches scored using
the match matrices from Chiaramonte et al. (2002), a gap
open penalty of –50 and a gap continuation penalty of –25.
All local alignments scoring above 2000 are returned, and
are used to create the 1-monotonic conservation map.

When creating the 1-monotonic conservation map,
we penalize all inversions with a cost of—1000— 1 ×
distance, and translocations with—2000—2.5 × distance,
where the distance is the offset between the two align-
ments, as defined in section 2.2.2. In order to prevent
false chaining of two segments that are consistent we
use a small gap continuation penalty of −0.5, with no
gap opening penalties, as they are not meaningful when
one is dealing with gaps between alignments, rather than
individual base pairs.

Finally for reasons of efficency we have arbitrarily
limited the expansion of consistent subsegments to only
25 kilobase pairs at each end. A whole genome alignment
pipeline often tries to align non-homologous regions, and
because LAGAN runs slowly in such cases it is necessary
to limit the input sequence lengths. LAGAN is run with
its default parameters. We do not currently perform the
final merging of the overlapping alignments. In order
to build the 1-monotonic map we use repeat masked
(Repeatmasker, Smit and Green, unpublished) sequences,
but we use the unmasked sequences for the final LAGAN
alignment, allowing us to align conserved repeats without
being misled by non-homologous repeats when building
the conservation map.

All of the parameters were hand trained on the Cystic
Fibrosis Transmembrane Conductance Regulator region
(CFTR), representing ∼1.8 megabases of human chro-
mosome 7 and its ortholog in mouse (Thomas et al.
manuscript in preparation, 2003).

The whole genome alignments were run on a 24 node
farm of two processor 2.3 GHz Pentium 4 machines.
For evaluation we used human genome June 2002 freeze
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Total: Tight:
Gap open 500, Gap extend 25, threshold 2500 Gap open 2000, Gap extend 50, threshold 3400

A C G T A C G T
A 90 −100 −50 −100 A 100 −200 −100 −200
C −100 110 −100 −50 C −200 100 −200 −100
G −50 −100 110 −100 G −100 −200 100 −200
T −100 −50 −100 90 T −200 −100 −200 100

Fig. 3. Matrices and cutoffs.

(http://genome.ucsc.edu/) and mouse genome MGSC
v3 freeze (http://www.ncbi.nlm.nih.gov/genome/guide/
mouse/index.html). The matrices and cutoffs used to
compute coverage are given in Figure 3.
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