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ABSTRACT
Motivation: Recently, structural genomic variants have come to the
forefront as a significant source of variation in the human popu-
lation, but the identification of these variants in a large genome
remains a challenge. The complete sequencing of a human individual
is prohibitive at current costs, while current polymorphism detection
technologies, such as SNP arrays, are not able to identify many of
the large scale events. One of the most promising methods to detect
such variants is the computational mapping of clone-end sequences
to a reference genome.
Results: Here, we present a probabilistic framework for the iden-
tification of structural variants using clone-end sequencing. Unlike
previous methods, our approach does not rely on an a priori deter-
mined mapping of all reads to the reference. Instead, we build a
framework for finding the most probable assignment of sequenced
clones to potential structural variants based on the other clones. We
compare our predictions with the structural variants identified in three
previous studies. While there is a statistically significant correlation
between the predictions, we also find a significant number of pre-
viously uncharacterized structural variants. Furthermore, we identify
a number of putative cross-chromosomal events, primarily located
proximally to the centromeres of the chromosomes.
Availability: Our dataset, results, and source code are available at
http://compbio.cs.toronto.edu/structvar/
Contact: {seunghak,echeran,brudno}@cs.toronto.edu

1 INTRODUCTION
One of the fundamental problems in bioinformatics is the disco-
very of the genomic variation present within the human population,
and the association between these genotypes and phenotypes. Initi-
ally, it was thought that the bulk of variation between individuals
were point mutations (SNPs). However, as the HapMap project
[18] has increased our understanding of SNPs, it has also identified
large-scale structural genomic variation, including insertions, dele-
tions, translocations, inversions, and copy number variants (CNVs)
[6] as equally significant sources of differences between indivi-
dual genomes. A wide variety of methods have been used to find
these events[4]: for CNVs, for example, microarray technologies
are capable of detecting significant differences in copy number bet-
ween two DNA samples using Comparative Genome Hybridization
(CGH) techniques [8][14].

These methods, while useful for finding duplications, do not
detect “balanced” structural changes – those that do not result in
a change in the abundance of DNA that matches any probe, such
as inversions and translocations. Recently, the completion of the
diploid genome of an individual [13] has, for the first time, made it
possible to directly compare two complete human genomes, enab-
ling us to begin to understand the variety of genotypes present in the
human population. This fully assembled genome, however, is quite
different from the data that will become available in the near future.
The NHGRI (National Human Genome Research Institute) is plan-
ning to sequence the genomes of 1000 human individuals in the next
few years using Next Generation Sequencing (NGS) technologies.
While the NGS technologies will drastically reduce the cost of rese-
quencing an individual human, it is currently unclear to what extent
these platforms can be used to identify structural variations.

The bulk of the currently known structural variants have been
determined by mapping either individual reads [15] or clone-ends
[19] [11] from donor individuals to a reference genome. Many
sequencing techniques allow for the generation of reads from the
two ends of a DNA fragment simultaneously. Because the size
of a DNA fragment can be determined, e.g. by running it on a
gel, this allows for the generation of paired reads, positioned at a
known distance (insert size) from each other in a genome. Such
pairs of reads are known as clone-ends, or matepairs. Using a
known genomic sequence as a reference, matepairs can be used to
locate structural variations. To locate potential areas of rearrange-
ments, one first maps a matepair to this reference. If the size of
the insert differs significantly from the distance between the map-
ped positions on the genome (the matepair is discordant), then the
implication is that there is a variation at this locus or that there is an
error in either the sequenced insert, or the reference genome. While
one may assume that the reference genome is accurate, errors in
insert size estimation and assigning locations to the reads make the
determination of structural variants from clone-end data non-trivial.

Tuzun and colleagues conducted the original study applying clone
paired-end sequencing to find putative locations of insertions, dele-
tions and inversions [19]. They concentrated on the analysis of reads
from a single human donor. Reads were mapped to the genome, but
any read that mapped to a known recent segmental duplication was
removed from consideration. If a read mapped to multiple possible
locations on the genome, a simple set of rules was followed, favor-
ing hits that mapped at a distance equal to the length of the insert
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and those that had a higher degree of similarity. All inserts for which
the mapped distance between the reads was within 3 standard devia-
tions of the mean were discounted as not having enough statistical
significance to identify a structural variant. The authors identified
inversions whenever clone ends did not map in opposite orientati-
ons. Matepairs that mapped further than 10 Mb from each other, or
to locations on different chromosomes, were discarded. Because of
potential errors in clone construction and read mapping, rearrange-
ments were identified only when two distinct clones supported it. In
the study, they identified 297 potential variants. A similar approach
was used in a recent study by Korbel et al. [11], with the main
difference being the use of 454 Sequencing technology with a smal-
ler insert size. They identified 881 structural variants based on the
genomes of two donor individuals.

The use of NGS technology will make the computational pro-
blem of finding variations using clone-end data more challenging.
The short (25−50bp) reads generated by NGS platforms will often
not map uniquely onto the reference genome. Consequently it is
necessary to develop methods for detecting structural variants using
clone-ends without reliable mappings. Both the approaches of [19]
and [11] attempt to assign a priori every clone-end to some loca-
tion on the genome, an approach that is unlikely to scale if every
read maps to a large number of different locations. Here we present
an alternative approach, where we consider all possible mappings
for each read, and assign each read to a location based not only on
that read, but also based on all of the other reads generated from the
dataset. Furthermore, we explore the use of concordant matepairs to
identify heterozygous and homozygous events and control the false
discovery rate via a corrected p-value. We use our method to identify
structural variations between the recently published diploid human
genome [13] and the public reference genome [12]. Our results,
while significantly correlated with previously known variants, also
include a large number of putative novel events.

2 METHODS
In this paper, we describe a method to predict structural variations,
including insertions, deletions, inversions and translocations using a
probabilistic framework. Our method follows the general approach
of Tuzun et al. [19], where clone-end sequences from one indivi-
dual are compared to a reference genome. If the mapped distance
of a matepair is significantly different from the insert size of the
matepair, then we may speculate that there is an insertion or a dele-
tion (indel) between the pair of reads of the matepair. If the two
reads of a matepair map to the genome with the same orientations,
this indicates an inversion. Finally, matepairs mapping to different
chromosomes indicate cross-chromosomal events, which we refer
to as translocations (these can also be explained by other means,
see Section 3.3). In contrast to the Tuzun approach, which discar-
ded clones mapping to recent segmental duplications and considered
only a single best placement for every clone-end on the genome, we
use a local search algorithm to find an assignment of each clone to
a genomic locus, where our confidence in a particular assignment
grows if other clones are mapped nearby.

2.1 Notation
In the method descriptions below, we will make use of the following
notation:

1. Let X1, X2, . . . , XN be the matepairs (clones), generated from
the donor genome A, where N is the total number of matepairs.
These are mapped to the reference genome REF .

2. Each matepair has two clone-ends, which are referred to as the
forward and reverse reads. For a particular matepair, if the two
reads are mapped to the reference genome in α and β positions,
there exist M = α · β mapped positions for the matepair. The
ith mapped position for the matepair Xt is referred to as bi(Xt)
where 1 ≤ i ≤ M and 1 ≤ t ≤ N .

3. The size of the insert between the two reads (the distance
between them in the donor genome) for the matepair Xk is
referred to as s(Xk). In a typical sequencing project, clones
with varying insert lengths are generated.

4. A set of mapped locations of matepairs that explain the same
structural variation is referred to as a cluster. We will build the
set of clusters denoted by {C1, C2, . . . , CK}, where K is the
number of clusters via hierarchical clustering.

5. The probability that the mapped location bj(Xt) “explains” the
same variant as the cluster Ci is denoted as P (bj(Xt)|Ci). For
simplicity, we will write P (Xt|Ci) when the meaning is clear.
We consider all matepairs to be independent, so the probability
of two reads being a part of the same cluster P (Xi, Xj |Ck) is
computed as

P (Xi, Xj |Ck) = P (Xi|Ck)P (Xj |Ck).

6. The probability that Ci is a genuine cluster explaining a real
structural variant is denoted by P (Ci).

7. The probability that Ci is a genuine cluster given bj(Xt) is
denoted by P (Ci|b

j(Xt)). Again, we will use P (Ci|Xt) if
the meaning is clear.

2.2 Probabilistic Framework for Structural Variants
In the following four subsections, we will describe the probabilistic
models for four types of structural variants: insertions, deleti-
ons, inversions and translocations. For insertions and deletions, we
define these relative to the reference genome: an insertion indica-
tes the presence of a segment in the donor sample that is not in the
reference. Conversely, a deletion implies a segment present in the
reference that is not in the sample. Our model does not capture more
complex scenarios, such as those resulting from several events at a
single locus.

We will rely on the observed probability distribution, p(Y ), which
indicates the likelihood of observing a given mapped distance for
a particular insert size. This distribution is computed using those
matepairs whose forward and reverse reads map uniquely to the
reference genome, as they are the most reliable. Mapped distances
greater than twice the insert size are not taken into account. Figure 1
shows the distributions p(Y ) for insert sizes 10000, 12500, 43000,
and 45000 in our dataset [13].

2.2.1 Insertion Figure 2 shows a pair of matepairs (Xi, Xj),
both of which support an insertion of length r in genome A. When
matepairs in the sampled genome A are mapped to the genome
REF , the mapped distance of Xi and Xj decreases by r, because
the corresponding segment is missing in genome REF .

If Xi and Xj are members of a cluster Ck, we wish to com-
pute P (Xi, Xj |Ck), the probability that both Xi and Xj explain
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Fig. 1. Probability distribution p(Y ) of mapped distances for insert sizes.
Zero is the mean of all of the distributions, and each unit on the x-axis is one
standard deviation from the mean. The y-axis is the observed frequency of
the corresponding mapped distances.
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Fig. 2. Matepairs Xi and Xj from the sample genome A are mapped to the
reference genome REF . The size of insertion in genome A is r, thus the
mapped distance of Xi and Xj in genome REF is decreased by r. R is the
point where insertion took place.

the insertion in Ck. First, note that the point R, where the inser-
tion occurs, should be located in between the forward and reverse
reads of both Xi and Xj . Otherwise, P (Xi, Xj |Ck) = 0 as
Xi and Xj cannot both explain the same insertion. Using the
independence assumption (see Section 2.1) and the probability dis-
tribution p(Y ) explained above, we compute P (Xi, Xj |Ck) =
P (Xi|Ck)P (Xj |Ck), as follows:

P (Xi|Ck) = 1 − P (µY − δ ≤ Y < µY + δ)

δ = |µY − (s + r)|

where µY is the mean of p(Y ) and s is the mapped distance of Xi

in genome REF . We determine r by maximizing P (Xi, Xj |Ck):

arg max
r

P (Xi, Xj |r) = arg max
r

P (Xi|r)P (Xj |r).

The key idea is that given the cluster Ck, r is the length of
the insertion that is missing in genome REF . Thus, in the donor
genome A, Xi has insert size of s + r, which should be close to
the average insert size of matepairs. Because p(Y ) is the observed
distribution of insert sizes for inserts of size s(Xi), our formula
computes the likelihood that a given read in the cluster was genera-
ted from a donor genome A that has an extra DNA segment of size

r. Note that we will be unable to detect insertions of size larger than
the insert size of the matepair.
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Fig. 3. Two matepairs, Xi and Xj , are mapped onto the reference genome
REF . The mapped distances of Xi and Xj increase by r because of the
deletion in the donor genome A. The length of overlap between Xi and Xj

is l in the reference genome. The length of the deletion r should be less than
or equal to l. R1 and R2 denote the points at which the deletion occurred.

2.2.2 Deletion Figure 3 shows the case of a deletion with a clu-
ster Ck and matepairs Xi and Xj . The deletion case is simply the
opposite of the insertion, where the mapped distance in genome
REF increases because of the deletion of size r in genome A.

Similar to the insertion, P (Xi, Xj |Ck) = 0 if the two points R1

and R2 are not within the mapped positions of both Xi and Xj .
Otherwise we compute the probability of P (Xi, Xj |Ck) by again
using the independence assumption and distribution p(Y ):

P (Xi|Ck) = 1 − P (µY − δ ≤ Y < µY + δ)

where µY is the average of p(Y ) and δ = |µY − (s− r)|. Note that
here, r is subtracted from s because the insert size of Xi in genome
A is s − r assuming that there is deletion of size r in genome A.
The length of the deletion, r, associated with Ck is determined by
maximizing P (Xi, Xj |Ck):

arg max
r

P (Xi, Xj |r) = arg max
r

P (Xi|r)P (Xj |r)

where l is the length of the overlap between Xi and Xj in genome
REF as shown in Figure 3. Also, 0 ≤ r ≤ l since the length of the
deletion cannot exceed the length of the overlap l.

2.2.3 Inversion Figure 4 shows an inversion with Xi and Xj in
Ck. To be able to explain an inversion in genome A, both forward
and reverse reads should have the same orientation when they are
mapped to genome REF . Furthermore, all of the reads in a cluster
should map to the same strand of the REF genome.

In order to identify which matepairs are potentially in the same
cluster, we note that the following equality holds if Xi and Xj are
involved in the same inversion:

c − d = s(Xi) − s(Xj)

where c and d are the length between the start positions of the for-
ward and reverse reads of Xi and Xj , as shown in Figure 4, and
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Fig. 4. Two matepairs Xi and Xj lie on the region {R1, R2}, where an
inversion has taken place. Note that the region {R1, R2} is flipped over,
and the order of the right reads of Xi and Xj is reversed in genome REF .

s(Xi) and s(Xj) are the known insert sizes of Xi and Xj in genome
A. We can see that the above equality holds by inverting the region
{R1, R2} as follows:

c − d = (a1 + z − b2) − (b1 + z − a2)

= (a1 + a2) − (b1 + b2)

= s(Xi) − s(Xj)

In order to compute the probability P (Xi, Xj |Ck) for the case of
inversions, we build the probability distribution p(|Y1 − Y2|) using
p(Y1) and p(Y2), which are the distributions of mapped distances
for s(Xi) and s(Xj) sized matepairs, respectively:

P (Xi, Xj |Ck) = 1−P (µ|Y1−Y2|−γ ≤ |Y1−Y2| < µ|Y1−Y2|+γ)

where µ|Y1−Y2| is the average of p(|Y1−Y2|) and γ = |µ|Y1−Y2|−
(c − d)|.

According to the above equation, for the case when the two
matepairs Xi and Xj have the same insert size, if {µ|Y1−Y1| =
(c−d) = 0}, then P (Xi, Xj |Ck) = 1. Thus, the probability of the
inversion is maximized when the reads that support it are most in
agreement with each other. Here again, we assume that the mapped
positions of Xi and Xj overlap on the REF genome. Otherwise,
P (Xi, Xj |Ck) = 0 because they cannot explain the same inversion.

Additionally, inverted matepairs can be used to estimate the
length of the inverted region: consider the matepair Xj in Figure
4. Let m = b1 + z − b2 be the distance between the mapped positi-
ons of the two reads in the reference genome. Because the inversion
has flipped the mapped position around the midpoint of the [R1, R2]
region, the size of the inversion must be m − s(Xj) < R2 −R1 <
m + s(Xj). We will use the predicted insert size of all matepairs to
identify opposite ends on inversions in Section 2.4.1.

2.2.4 Translocation Figure 5 shows the case of a translocation
with a cluster consisting of Xi and Xj matepairs, where the region
{R1, R2} is translocated from chromosome p to chromosome q.
There are two possible ways of mapping matepairs of genome A
into REF . First, if we orient chromosomes p and q so that they
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Fig. 5. This figure shows a translocation. One read of both matepairs Xi and
Xj is mapped on chromosome p, and the other on chromosome q in genome
REF . The region {R1, R2} is translocated and mapped onto chromosome
q in genome REF with the same orientation.

have the same orientation, as shown in the figure, then the following
conditions describe agreeing matepairs for a translocation:

(c − a) − (d − b) = s(Xi) − s(Xj)

0 ≤ b − a ≤ s(Xi)

0 ≤ d − c ≤ s(Xj)

where a, b, c and d refer to the points in Figure 5. The first equa-
tion implies that the difference between the mapped distances of
matepair Xi and Xj are preserved. The second and third cons-
traints mean that Xi and Xj should overlap to explain the same
translocation.

The probability P (Xi, Xj |Ck) is defined as follows:

P (Xi, Xj |Ck) = 1−P (µ|Y1−Y2|−χ ≤ |Y1−Y2| < µ|Y1−Y2|+χ)

where χ = |µ|Y1−Y2| − {(c − a) − (d − b)}|.
Here, P (Xi, Xj |Ck) = 0 if |b − a| > s(Xi) or |d − c| >

s(Xj). In such a case, Xi and Xj do not overlap and they cannot be
involved in the same translocation.

It is also possible that the chromosomes p and q are oriented with
opposite orientations. In this case, we need to reverse the coordinate
system of chromosome q (e.g. the end of the chromosome becomes
position one, while the beginning is now the end), but the rest of the
calculations are unchanged.

2.3 Use of Concordant Matepairs
One important source of information that was not utilized in either
the Tuzun [19] or the Korbel [11] studies is the presence of con-
cordant matepairs (those mapping at approximately the expected
insert size) near a cluster of discordant matepairs. These concor-
dant matepairs are used by us for two analyses: determining, for
each structural variant, if it is likely to be homozygous, and com-
puting, for insertion and deletion clusters, the likelihood that they
were generated by chance (p-value).
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These analyses will rely on the number of concordant and discor-
dant inserts mapped to the location of some cluster Ck. The number
of discordant reads is taken as |Ck|. For computing the number of
concordant matepairs we consider the cluster to have two halves, in
which the left and right ends of the discordant reads map. Note that
the two halves are not necessarily adjacent: for example in Figure 5
the two halves are between a and b on chromosome p and c and d on
chromosome q. The number of concordant matepairs is computed as
the average of the number of left ends of concordant matepairs that
map within the left half of the cluster, and right ends that map within
the right end. If a particular matepair has k (concordant) mapped
positions, then we count it as 1/k of a matepair when computing
the number of concordant matepairs mapped to any cluster.

2.3.1 Determining Heterozygosity Deciding if a particular struc-
tural variant is heterozygous or homozygous is challenging when the
total number of matepairs supporting the variant is small. When we
observe a small number of discordant matepairs and no concordant
ones, it is still possible that the variant is heterozygous, but no con-
cordant matepairs were sequenced from the region. If we observe
a small number of concordant matepairs in an otherwise discordant
region, these could represent mismapped matepairs, or matepairs
that end before the predicted breakpoint (often we can only deter-
mine a range in which the breakpoint occurred, rather than an exact
location). We annotate a cluster as homozygous if it satisfies the
following criteria: (1) no more than one uniquely mapped concor-
dant matepair, (2) at least 4 discordant matepairs, and (3) at least a
four-fold higher coverage by discordant matepairs than concordant
matepairs.

2.3.2 Assigning Confidences to Indel Variants Matepairs that
correspond to inversion and translocation events are only possible
due to a biological structural variation or a significant experimental
error. This error could happen in the construction of the clone, the
mapping of the read to the reference genome, or in the assembly
of the reference genome itself. Clones that suggest indels, however,
potentially can be explained by a variation in the length of the insert
illustrated by the probability distribution p(Y ). This allows us to
assign p-values to the potential indel variants by computing the pro-
bability that it is generated by the reference genome, rather than a
structural variant. Informally, we estimate the total number of mate-
pairs likely to be mapped to the locus and compute the probability
that some subset of these deviates from the mean insert size by at
least as much as the observed data. Formally, we define Cnull as the
lack of a structural variation (no insertion or deletion). We compute
P (Xi|Cnull) as above, but set the size of the inserted or deleted
region r to zero. For a given cluster Ck we compute

pval(Ck) =

 

E

|Ck|

!

Y

Xi∈Ck

P (Xi|Cnull)

where E is the total number of clones (concordant and discordant)
mapped to the location of the cluster Ck.

2.4 Finding Structural Variations
Our algorithm starts by only considering the matepairs that are unli-
kely to be explained by the reference genome. For each matepair
Xi, we consider all possible mapped positions (combinations of

forward and reverse read mappings), and exclude all matepairs for
which any combination is mapped at a distance d(Xi) such that
|d(Xi) − s(Xi)| ≤ 2σ where σ is the standard deviation of the
distribution of p(Y ).

All of the remaining matepairs are unlikely to be explained by the
reference genome, and hence are potentially involved in a structu-
ral variant. Let D be the number of remaining matepairs. Each of
these matepairs is associated with a set of pairs of mapped positi-
ons denoted {bi(Xt)} where 1 ≤ i ≤ M and 1 ≤ t ≤ D. Recall
that M = α · β is the number of pairs of mapped positions for Xt,
where the forward and reverse reads map onto the genome in α and
β positions. While every element from {bi(Xt)} can be involved
in a cluster, each matepair Xt can support at most one structural
rearrangement (because it was generated from a single location in
the donor genome A). In the following sections, we describe an
algorithm to assign each matepair to a unique cluster.

2.4.1 Clustering The initial step of our algorithm is the cluste-
ring of all possible combinations of mapped locations in order to
identify the potential structural variants. We use hierarchical clu-
stering [5], a greedy clustering algorithm that starts with each data
element in its own cluster, and then merges the most similar clusters
until no two clusters are within a predetermined linkage distance.
We define this linkage distance, D(Cu, Cv), between two clusters
as follows:

D(Cu, Cv) =
1

|Cu||Cv |

X

Xi∈Cu,Xj∈Cv

lnP (Xi, Xj |Cm)

where Cm is the cluster consisting of Xi and Xj .
We initially assign each mapped position to its own cluster, and

for every pair of clusters, we compute the the linkage, D(Cu, Cv).
If the highest scoring pair is within the permissible linkage distance,
we unify them, and recompute the linkage distances between the
new cluster and all others. This procedure is iterated until the hig-
hest scoring pair is no longer within the permissible linkage distance
(D < 0.05).

The final step of the clustering algorithm is the identification of
mirroring ends of inversion events. In this step we use the approxi-
mate inversion size for each inversion cluster computed in Section
2.2.3. Two clusters can be the mirroring ends of an inversion if the
leftmost one has matepairs with all reads mapping to the positive
strand, rightmost one has matepairs with reads mapping to the nega-
tive strand, and the predicted inversion sizes intersect. We join these
pairs of clusters into super-clusters, which we call double-ended
inversions.

The result of this algorithm is the disjoint partition of the mapped
locations into clusters. We exclude clusters consisting of only one
element because they are likely to be a product of mismapped reads
or sequencing errors.

2.4.2 Choosing a Unique Mapped Location for Each Matepair
While each mapped location is assigned to a single cluster, each
cluster consists of multiple (at least two) mapped locations. Each
matepair can have a number of potential mapped locations. In other
words, the set of matepairs and mapped locations have a one-to-
many relationship, while each mapped location is a member of at
most one cluster. This is illustrated in Figure 6 (note that {Xt} is
the set of matepairs which are included in some cluster).
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Fig. 6. This diagram illustrates the relationship between the set of matepairs,
{Xt}, mapped locations {b(Xt)}, and clusters {Ci} after the clustering
phase. The goal of our algorithm is to find an assignment of each matepair
to a single mapped location, and hence to a single cluster.

We assume that each matepair is involved in at most one structu-
ral variation, hence there should be a many-to-one correspondence
between the set of matepairs and the set of clusters. To map each
matepair to a unique cluster, we search for a valid configuration, ω,
that has a one-to-one mapping between {Xt} and {b(Xt)}. Further-
more, we wish to find the configuration that maximizes the objective
function J(ω).

The objective function J(ω) is defined as follows:

J(ω) =
X

i

λifi(ω)

Here, λi is a weight parameter for each feature fi, trained as
described below in Section 2.4.3.

The three features used in our model are sequence similarity (the
percent identity of the alignment between the read and the refe-
rence genome), the probability that the cluster is genuine given the
matepairs, and the number of matepairs mapped to the cluster.

The sequence similarity feature is

f1(ω) =
K
X

i=1

X

b(Xt)∈Ci

z(b(Xt))

where z(b(Xt)) is the percent identity of the mapping b(Xt) and K
is the number of clusters.

The second feature is the product of probabilities that cluster Ci

is a genuine cluster given the matepairs which are assigned to Ci.
Larger probabilities imply that the cluster {Ci} is reliable. This is
defined as follows:

f2(ω) =
K
Y

i=1

P (Ci|{Xt} ∈ Ci)

=

K
Y

i=1

P ({Xt} ∈ Ci|Ci)P (Ci)
PK

j=1 P ({Xt} ∈ Ci|Cj)P (Cj)

=
K
Y

i=1

QL

l=1 P (X
(l)
t ∈ Ci|Ci)P (Ci)

PK

j=1 P ({Xj} ∈ Ci|Cj)P (Cj)

where L is the number of matepairs involved in cluster Ci, and X
(l)
t

is the lth matepair involved in Ci. Here, we assume that {Xt} pro-
vide independent support for the cluster. To compute P (X

(l)
t ∈

Ci|Ci), we use the average of log conditional probabilities of
matepairs (X

(l)
t , Xj ∈ Ci) as follows:

P (X
(l)
t ∈ Ci|Ci) ≈ exp

8

<

:

1

|Ci|

X

Xj∈Ci

lnP (X
(l)
t , Xj |Cm)

9

=

;

where Cm is a cluster consisting of X
(l)
t and Xj ∈ Ci. This

approximation allows us to reuse the implementation for computing
linkages in Sec. 2.4.1.

We define the prior probability of P (Ci) as follows:

P (Ci) = P{

L
[

l=1

(X
(l)
t ∈ Ci|Ci)}

= 1 − {(1 − P (X
(1)
t |Ci)) . . . (1 − P (X

(L)
t |Ci))}

The final feature is related to the cardinality of the clusters. Intui-
tively, we assume that clusters having a large number of matepairs
are more reliable than ones with a smaller number. Thus, when deci-
ding the cluster to which to assign a particular matepair, we want
to choose the mapped location b(Xt) ∈ {Ci} which belongs to
the cluster Cj , such that |Cj | ≥ |Ck| for all Ck ∈ {Ci}, where
Cj ∈ {Ci} and j 6= k. Thus the definition of the third feature is

f3(ω) =
K
X

i=1

|Ci|
2

2.4.3 Parameter Learning We have three parameters, λ1, λ2 and
λ3 in the objective function J . To train these, we use the softmax
regression/maximum entropy model [3]. Let Ω be the set of all valid
configurations (where each matepair is assigned to a single cluster).
We define a distribution over the configurations ω ∈ Ω:

p(ω) =
1

Z
exp

(

X

i

λifi(ω)

)

where Z is the partition function and
P

i λi is a fixed constant.
We rescale the three features f1(ω), f2(ω), f3(ω) so that for each

feature the highest observed value is one, and the lowest is zero.
prior to running the hill climbing procedure.

Given a sampling of the configurations after the clustering phase,
we learn parameters by maximizing the log likelihood

L(θ) = ln P (ω|θ)

where θ = {Xi} is the set of parameters. We use a hill climbing
search to locally maximize L(θ).

While initially we set all λi = 1, the hill climbing search yiel-
ded weights 0.10, 0.14 and 2.76 for the three features: sequence
similarity, cluster probability, and cardinality respectively.

2.4.4 Local Search to Optimize J(ω) Before maximizing the
objective function J using a hill climbing algorithm, we initialize
the configuration with a greedy method so that the local search starts
from a good location. We use the following algorithm:
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1. Determine the set of clusters identified by the clustering algo-
rithm of Section 2.4.1

2. Sort all matepairs based on the number of mapped locations.
3. For all matepairs Xt starting with those with the fewest mapped

locations, assign each to the cluster Ci that locally maximizes
the objective function J .

After the initial assignment, we perform a local hill climbing
search to optimize J(ω). At each step of the algorithm, we find a
matepair Xt that we can move from its current cluster to another
one, while increasing the objective function. As soon as no such
move exists, our algorithm terminates.

3 EXPERIMENTAL RESULTS
3.1 Dataset & Parameters
We have downloaded the repeat-masked NCBI version hg18 of the
human genome [12] from the UCSC Genome Browser [10], and the
matepairs corresponding to the recently published diploid human
genome (referred to as the JCVI donor) [13] from the NCBI Trace
Archive (http://www.ncbi.nlm.nih.gov/Traces/). 1

All reads were quality trimmed to the longest span with at most
10 low quality (Q ≤ 20) residues in any window of 40 residues.
Any read with length ≤ 200 after the trimming process was dis-
carded. The remaining reads were mapped to the reference genome
using BLAT [9] with the −mask = lower option. We also remo-
ved all BLAT hits without at least 150 bases mapped outside of any
repeat annotated by RepeatMasker (as downloaded from the UCSC
Browser). For every read we considered matches to the genome at
≥95% identity, selecting up to the top 20 matches. We computed
the probability distribution p(Y ) for every insert size (from 1925bp
to 45 Kb) as described above.

For all matepairs, if any pair of BLAT hits (for its left and right
reads) were concordant with the insert size (mapped at a distance
< 2σ from the mean), the clone was considered to be supported by
the genome, and was discarded from clustering analysis.

Table 1. The rows correspond to M = α · β, the number of mapped loca-
tions for the matepairs in the group. The overall column shows the total
percentage of all matepairs in each category. The concordant column shows
the percentage of matepairs having a pair of BLAT hits with a mapped loca-
tion deviating < 2σ from the mean insert size, and the discordant are the
remainder.

Type Overall Concordant Discordant
1 92.8 96.1 3.9
2-5 2.7 83.7 16.3
6-10 0.9 77.2 22.8
11-20 0.7 70.1 29.9
21-100 2.4 38.4 61.6
101-400 0.3 68.6 31.4

1 Downloaded Dec. 10, 2007, query: center name= ’JCVI’ and
species code= ’HOMO SAPIENS’ and center project=
’GENOMIC-SEQUENCING-DIPLOID-HUMAN-REFERENCE-GENOME’
and strategy= ’WGA’ and trace code type= ’WGS’

Table 1 summarizes the resulting data. The majority of the mate-
pairs had concordant hits (94%) and mapped to unique locations in
the genome (93%). The remaining reads varied widely in the num-
ber of mapped locations (we only considered the top 400 mapped
locations based on the sequence similarity for each matepair).

We used these data to generate a set of clusters, as described in
the Methods sections. We further filtered the putative insertions and
deletions by computing the p-values of all clusters and considering
only the most confident, allowing for a false discovery rate [1] of
5%. Because translocations are biologically less likely, we further
filtered out any predicted translocation if the cluster suggesting it
did not have at least one matepair mapped only to that location.

In the next two sections we analyze the results of our clusterings,
first by comparing our insertion, deletion, and inversion predictions
to three previously described datasets of structural variants, and then
by analyzing the inter-chromosomal events located by our method.

3.2 Analysis of Insertions, Deletions and Inversions
Our algorithm predicted 1578 insertions, 2615 deletions, and 373
inversions between the reference NCBI human genome and the
JCVI donor. Of these, 1374, 2279, and 185 respectively were sup-
ported by at least a single uniquely mapped matepair. 199 inversion
variants were double-ended (had a cluster at both inversion end-
points). The disparity in the number of insertions and deletions
discovered by our algorithm is due to two causes. The first is that
via the clone-end mapping strategy it is impossible to locate inserti-
ons which are longer than the clone size. As the bulk of the clones
used to sequence the JCVI donor were ≈10kb in length, many of
the larger insertions could not be discovered. Another potential bias
originates in the assembly of the reference human genome, which
is more likely to use a longer allele within a heterozygous locus. In
this section we compare our results to the Tuzun, Korbel and Levy
datasets (for the last dataset, we only consider variants found using
sequence comparisons) curated at the Database of Genomic Vari-
ants (DGV), as well as to the whole DGV database. The results are
summarized in Table 2.

Our predicted set of structural variants shows a clear correlation
with the results of the previous studies. Anywhere between 41%
(inversions) and 14% (insertions) of the events located by our algo-
rithm overlap an already known event. While our results show a
large overlap with all three of the datasets, we also predict a much
larger number of structural variants, as we are working with a larger
input set of matepairs. We computed a p-value for the correlation
between our results and all of the datasets described in Table 2,
and found these to be significantly correlated (p < 0.001 based
on Monte Carlo simulations).

Perhaps more surprising than the similarity between our results
and the previously described structural variants are the differences:
We identify 3464 insertion, deletion, and inversion structural vari-
ants that do not overlap any structural variant in the DGV [6], of
which 3032 have support from a uniquely mapped matepair.

In [13], the 20 largest insertions and 20 largest deletions identi-
fied in the JCVI donor were validated by fosmid-end mapping. The
authors were able to validate all 20 insertions and 17/20 deletions.
Our set of putative variants contains 13 of the 20 validated inser-
tion variants, as well as all 17 of the 17 deletion variants. Of the
7 insertion variants not predicted by our approach, 4 were larger
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Table 2. A comparison of the structural variants located by our approach with the datasets generated by Tuzun [19], Levy [13],Korbel [11], and all insertion,
deletion, and inversion variants in the DGV database [6]. The Variants row indicates the total number of events of each type identified by our algorithm, while
the rows for each study show the Total number of rearrangements of this type found by the study as well as the number of variants that overlap Any variant
from our dataset, our variants with a Unique matepair, and a homozygous (Hom) event, respectively. For inversion we separately note the events where both
ends were detected (double-ended inversions, Dbl).

Type Insertion Deletion Inversion
Total Any Unique Hom Total Any Unique Hom Total Any Dbl Unique Hom

Variations 1578 NA 1374 50 2615 NA 2279 81 373 NA 199 185 7
Tuzun 139 39 34 5 102 54 47 9 56 46 40 41 4
Levy 319 94 91 20 344 181 172 39 NA NA NA NA NA
Korbel 34 0 0 0 742 321 296 48 105 71 67 69 6
DGV-All 2216 163 116 10 4697 1117 1000 124 164 118 108 111 11

Fig. 7. A display of the DMBT1 gene from the UCSC Genome Browser with a custom track showing the mapped locations of the three matepairs supporting a
deletion in the JCVI donor’s genome. The nine discordant matepairs (top of the figure) are supporting a deletion of size ≈ 12 Kb. The 18 concordant matepairs
mapping to both the left and right sides of the cluster demonstrate that the variant is hetrozygous. Furthermore the continuous alignment with the chimpanzee
genome indicates that the ancestral allele is likely the one without the deletion.

than the largest insert size, and hence could not be found by clone-
end mapping. For the other three insertions we found no discordant
matepairs in the proximity of the variants. Notably, all of the three
deletions that could not be validated in [13] were absent from our
predictions.

An example of an indel found by our algorithm that had been
validated through fosmid end-mapping from unrelated individuals
is a deletion in the DMBT1 (Deleted in Malignant Brain Tumor
1) gene located on chromosome 10q26. The cluster supporting this
12 kilobase deletion consists of 9 matepairs and had a p-value of
1.75 · 10−13. The deletion location is localized to within 6 kb (see
Figure 3.2) and contains 10 of the 40 exons of the DMBT1 gene.
This deletion overlaps a known deletion from the Tuzun dataset, and
was identified in Levy et al.’s analysis as homozygous in the Ven-
ter genome. However our analysis indicated an approximately equal
number of concordant and discordant matepairs in the cluster. Addi-
tionally the authors of the original JCVI study have noticed a 2-fold
decrease in the coverage at this locus, and a high number of reads

whose pairs are located on a different scaffold (Samuel Levy, perso-
nal communication). This suggests that this is likely a heterozygous,
rather than a homozygous deletion. Furthermore, the conservation
between the human reference genome and the chimpanzee genome
at the locus suggests that the allele with the insertion is ancestral.

3.3 Analysis of Translocation Variants
Our algorithm, unlike the previous approaches of Tuzun and Kor-
bel, characterizes not only insertions, deletions, and inversions, but
also translocation variants. Translocations are extremely rare events,
hence it is quite likely that many of the events that we are labeling
as “translocations” – those characterized by the two ends of a clone
being mapped on different chromosomes – are in reality combina-
tions of simpler events (e.g. a duplication followed by a deletion).
Due to the low likelihood of such an event (or series of events), we
only predicted a translocation polymorphism when: 1) there was at
least one matepair for which the translocation mapping was unique,
and 2) for all of the other matepairs, there were no mapped locations
that had both ends of the clone on the same chromosome.

8



Detecting Structural Variations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Read 1

Re
ad

 2
Distance of Translocations from Centromere

Fig. 8. The scatter plot illustrating the locations of the 163 translocation
variants relative to the centromeres: 0 is the centromere, 1 is the telomere.
The plot illustrates that most translocations have one of their ends near a
centromere, and the other proximal to either the centromere or a telomere.

It is known that the centromeres are “hot-spots” for rearrange-
ments, including translocations, jumping translocations, and dupli-
cations, [17, 16, 7, 2]. We classified each translocation’s two
endpoints based on their distance from the centromere, normali-
zed between zero and one. The results are summarized in Figure
3.3. As expected, of the 163 translocation variants, a significant
fraction (59%) had at least one endpoint within 4.5 Mb from the
centromeres.

While some fraction of these results may be due to incorrect
mapping of reads, we believe this is not likely, as we require that
none of the matepairs have any pair of mapped locations on the
same chromosomes. It is possible that some fraction of these can
be explained biologically. However another explanation for these
events are errors in the reference human genome assembly, as the
centromeres are known to be difficult to assemble due to a large
number of repetitive sequences.

4 DISCUSSION
In this study we propose a probabilistic framework for identifying
structural variations. Our method, while sharing the overall clone-
end mapping strategy introduced by Tuzun et al, and employed by
Korbel et al [19, 11], differs significantly in that we do not a priori
assign the best mapped location to every mate pair, but rather search
over the space of all possible assignments in order to optimize our
overall confidence in all of the variations identified. Unlike the pre-
vious approaches, we make use of not only discordant matepairs,
but also concordant ones in order to determine if a variant is homo-
zygous and to compute p-values for insertion and deletion events.
One promising avenue for further improvement is the use of con-
cordant matepairs to identify false-positive clusters: if only a few

discordant matepairs support a cluster, while many concordant ones
contradict it, the cluster is likely to be a false positive.

The problem of detecting structural variations from matepair data
contains many significant challenges. For example, one limitation of
our approach is that it ignores microarray data that predict the copy
number variations (CNVs) present in the JCVI donor’s genome. The
development of methods that combine information from various
sources in order to better predict and classify the variations is an
important avenue for future work.
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