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Abstract

The development of Next Generation Sequencing technologies, capable of sequencing hundreds of millions of short reads
(25–70 bp each) in a single run, is opening the door to population genomic studies of non-model species. In this paper we
present SHRiMP - the SHort Read Mapping Package: a set of algorithms and methods to map short reads to a genome, even
in the presence of a large amount of polymorphism. Our method is based upon a fast read mapping technique, separate
thorough alignment methods for regular letter-space as well as AB SOLiD (color-space) reads, and a statistical model for
false positive hits. We use SHRiMP to map reads from a newly sequenced Ciona savignyi individual to the reference genome.
We demonstrate that SHRiMP can accurately map reads to this highly polymorphic genome, while confirming high
heterozygosity of C. savignyi in this second individual. SHRiMP is freely available at http://compbio.cs.toronto.edu/shrimp.
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Introduction

Next generation sequencing (NGS) technologies are revolution-
izing the study of variation among individuals in a population. The
ability of sequencing platforms such as AB SOLiD and Illumina
(Solexa) to sequence one billion basepairs (gigabase) or more in a
few days has enabled the cheap re-sequencing of human genomes,
with the genomes of a Chinese individual [1], a Yoruban
individual [2], and matching tumor and healthy samples from a
female individual [3] sequenced in the last few months. These
resequencing efforts have been enabled by the development of
extremely efficient mapping tools, capable of aligning millions of
short (25–70 bp) reads to the human genome [4–10]. In order to
accelerate the computation, most of these methods allow for only a
fixed number of mismatches (usually two or three) between the
reference genome and the read, and usually do not allow for the
matching of reads with insertion/deletion (indel) polymorphisms.
These methods are extremely effective for mapping reads to the
human genome, most of which has a low polymorphism rate, and
so the likelihood that a single read spans multiple SNPs is small.
While matching with up to a few differences (allowing for a SNP
and 1–2 errors) is sufficient in these regions, these methods fail
when the polymorphism level is high.
NGS technologies are also opening the door to the study of

population genomics of non-model individuals in other species.
Various organisms have a wide range of polymorphism rates -
from 0.1% in humans to 4.5% in the marine ascidian Ciona savignyi.
The polymorphisms present in a particular species can be used to
discern its evolutionary history and understand the selective

pressures in various genomic loci. For example, the large amount
of variation in C. savignyi (two individuals’ genomes are as different
as Human and Macaque) was found to be due to a large effective
population size [11]. The re-sequencing of species like C. savignyi
(and regions of the human genome with high variability) requires
methods for short read mapping that allow for a combination of
several SNPs, indels, and sequencing errors within a single (short)
read. Furthermore, due to larger-scale ‘‘structural’’ variation, only
a fraction of the read may match to the genome, necessitating the
use of local, rather than global, alignment methods.
Previous short read mapping tools typically allow for a fixed

number of mismatches by separating a read into several sections
and requiring some number of these to match perfectly, while
others are allowed to vary [4,6,8]. An alternative approach
generates a set of subsequences from the read (often represented as
spaced seeds [7,10,12]), again in such a manner that if a read were
to match at a particular location with some number of
mismatches, at least one of the subsequences would match the
genome [5,9]. While these methods are extremely fast, they were
developed for genomes with relatively low levels of polymorphism,
and typically cannot handle a highly polymorphic, non-model
genome.
This becomes especially apparent when working with data from

Applied Biosystem’s SOLiD sequencing platform (AB SOLiD). AB
SOLiD uses a di-base sequencing chemistry that generates one of
four possible calls (colors) for each pair of nucleotides. While a
sequencing error is a change of one color-call to another, a single
SNP will change two adjacent color positions. Hence a read with
two (non-adjacent) SNPs and a sequencing error will differ from
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the reference genome in five different positions. Simultaneously,
the nature of the di-base sequencing code allows for the
identification (and correction) of sequencing errors, so by carefully
analyzing the exact sequence of matches and mismatches within a
read, it is possible to determine that the read and the genome
differ by two SNPs. While efficient mappers for color-space
sequences have been developed [5,13], they translate the genome
to color-space, and directly compare to the color-space read. The
complexity of the color-space representation makes the identifica-
tion of complex variation such as adjacent SNPs and short indels
challenging or impossible with these tools.
In this paper we develop algorithms for the mapping of short

reads to highly polymorphic genomes and methods for the analysis
of the mappings. We demonstrate an algorithm for mapping short
reads in the presence of a large amount of polymorphism. By
employing a fast k-mer hashing step and a simple, very efficient
implementation of the Smith-Waterman algorithm, our method
conducts a full alignment of each read to all areas of the genome
that are potentially homologous. Secondly, we introduce a novel,
specialized algorithm for mapping di-base (color-space) reads,
which allows for an accurate, non-heuristic alignment of AB
SOLiD reads to a reference genome. Finally, we introduce
methodology for evaluating the accuracy of discovered alignments.
Because a read may match the genome in several locations with
variable amounts of polymorphism, we develop a statistical
method for scoring the hits, allowing for the selection of the most
probable variants, and filtering of false positives.
Our methods are implemented as part of SHRiMP: the SHort

Read Mapping Package. To demonstrate the usefulness of
SHRiMP we re-sequenced a Japanese Ciona savignyi genome on
the SOLiD platform. Preliminary estimates obtained in the course
of sequencing the reference genome indicate that the SNP
heterozygosity is 4.5%, whereas indel heterozygosity is 16.6%.
This species represents the most challenging known test case for
the detection of polymorphisms with short read technologies. We
aligned the SOLiD reads of the Japanese individual to the C.

savignyi reference genome using both SHRiMP and AB’s read
mapper. SHRiMP is able to identify 5-fold more SNPs than AB’s
mapper, while also capturing 70,000 indel variants.

Results/Discussion

This section is organized as follows: we begin with three
methodological sections, in which we first present an overview of
the algorithms used in SHRiMP for mapping short reads, explain
our specialized algorithm for alignment of di-base sequencing (AB
SOLiD) data, and present our framework for computing p-values
and other statistics for alignment quality. The data flow for these
methods is illustrated in Figure 1. In the last two subsections we
will first show the application of SHRiMP to the resequencing of
Ciona savignyi using the AB SOLiD sequencing technology and
present results on the accuracy of the SHRiMP tool on simulated
data.

Read Mapping Algorithm
The SHRiMP algorithm draws upon three recent developments

in the field of sequence alignment: q-gram filter approaches,
introduced by Rasmussen et al [14]; spaced seeds, introduced by
Califano and Rigoutsos [15] and popularized by the PatterHunter
family of tools [7,10]; and specialized vector computing hardware
to speed up the Smith-Waterman Algorithm [16–18] to rapidly
find the likely locations for the reads on the genome. Once these
locations are identified, we conduct a thorough, Smith-Waterman-
based algorithm to rigorously evaluate the alignments. In this
section we will provide a brief exposition of the methods used to
align short reads in SHRiMP (a more thorough description of each
of these steps is in Methods).

Spaced seeds. Most heuristic methods for local alignment
rely on the identification of seeds – short exact matches between
the two sequences. The advantage of using exact matches is that
they are easy to find using hash tables, suffix arrays, or related
techniques. While classically seeds have been contiguous matches,
more recently ‘‘spaced’’ seeds, where predetermined positions in the
read are allowed not to match, have been shown to be more
sensitive. Spaced seeds are often represented as a string of 1 s and
0 s, where 1 s indicate positions that must match, while 0 s
indicate positions that may mismatch. We refer to the length or span
of the seed as the total length of the string, and the weight of the
seed as the number of 1 s in the string. For example, the seed
‘‘11100111’’ requires matches at positions 1–3 and 6–8, and has
length 8 and weight 6. Because seeds with such small weight match
extremely often, we require multiple seeds to match within a
region before it is further considered, using a technique called Q-
gram filtering.

Q-gram filters. While most older local alignment tools, such
as BLAST, use a single matching seed to start a thorough
comparison of the strings around the seed, more recently
Rassmussen et al [14] introduced the use of q-gram filters,
where multiple seeds are used to determine if a good match exists.
This idea is also used in SHRiMP where we require a pre-
determined number of seeds from a read to match within a
window of the genome before we conduct a thorough comparison.

Vectorized Smith-Waterman. If a particular read has the
required number of seeds matching to a window of the genome we
conduct a rapid alignment of the two regions to verify the
similarity. This alignment is done using the classical Smith-
Waterman algorithm [19], implemented using specialized
‘‘vector’’ instructions that are part of all modern CPUs. In order
to speed up this stage we compute just the score of the optimal
alignment, and not the alignment itself. For every read we store

Author Summary

Next Generation Sequencing (NGS) technologies are
revolutionizing the way biologists acquire and analyze
genomic data. NGS machines, such as Illumina/Solexa and
AB SOLiD, are able to sequence genomes more cheaply by
200-fold than previous methods. One of the main
application areas of NGS technologies is the discovery of
genomic variation within a given species. The first step in
discovering this variation is the mapping of reads
sequenced from a donor individual to a known (‘‘refer-
ence’’) genome. Differences between the reference and
the reads are indicative either of polymorphisms, or of
sequencing errors. Since the introduction of NGS technol-
ogies, many methods have been devised for mapping
reads to reference genomes. However, these algorithms
often sacrifice sensitivity for fast running time. While they
are successful at mapping reads from organisms that
exhibit low polymorphism rates, they do not perform well
at mapping reads from highly polymorphic organisms. We
present a novel read mapping method, SHRiMP, that can
handle much greater amounts of polymorphism. Using
Ciona savignyi as our target organism, we demonstrate
that our method discovers significantly more variation
than other methods. Additionally, we develop color-space
extensions to classical alignment algorithms, allowing us
to map color-space, or ‘‘dibase’’, reads generated by AB
SOLiD sequencers.

SHRiMP: Mapping Short Reads
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the locations of top hits, sorted by their score. The number of top
hits to store is a parameter.

Final alignment. After we finish aligning all of the reads to
all of the potential locations, we conduct a final, full alignment of
each read to all of the top hits. This final alignment stage differs
depending on the specifics of the sequencing technology. Within
SHRiMP we have implemented separate final alignment
modules for Illumina/Solexa data (this is done with the regular
Smith-Waterman algorithm) and for color-space (di-base) data
produced by the AB SOLiD instrument (described in the next
section). Additionally we have an experimental module for
alignment of two-pass sequencing data, where two reads are
generated from every genomic location, which is described
elsewhere [20].

Algorithm for Color-space Alignment
The AB SOLiD sequencing technology introduced a novel

dibase sequencing technique, which reads overlapping pairs of letters
and generates one of four colors (typically labelled 0–3) at every
stage. Each base is interrogated twice: first as the right nucleotide of a
pair, and then as the left one. The exact combinations of letters and
the colors they generate are shown in Figure 2A. The sequencing
code can be thought of as a finite state automaton (FSA), in which
each previous letter is a state and each color code is a transition to the
next letter state. This automaton is demonstrated in Figure 2B. It is
notable that the sequence of colors is insufficient to reconstruct the
DNA sequence, as reconstruction requires knowledge of the first
letter of the sequence (or the last letter of the primer, which is fixed
for a single run of the technology).

Figure 1. Data flow and processing within the SHRiMP. Candidate mapping locations are first discovered by the seed scanner and then
validated by the vectorized Smith-Waterman algorithm, computing only a score. Top scoring hits are then fully aligned by a platform-specific
algorithm (i.e. letter-space for Solexa data and color-space for SOLiD data). Statistical confidence for the final mappings are then computed using the
PROBCALC utility.
doi:10.1371/journal.pcbi.1000386.g001

Figure 2. Two representations of the color-space (dibase) encoding used by the AB SOLiD sequencing system. A: The standard
representation, with the first and second letter of the queried pair along the horizontal and vertical axes, respectively. B: The equivalent Finite State
Automaton representation, with edges labelled with the readouts and nodes corresponding to the basepairs of the underlying genome.
doi:10.1371/journal.pcbi.1000386.g002

SHRiMP: Mapping Short Reads
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The AB SOLiD sequencing technology has the remarkable
property of differentiating between sequencing errors and biological
SNPs (under the assumption that the reference genome has no
sequencing errors): a SNP changes two adjacent readouts of the
color-space code, while a sequencing error is unlikely to happen at
two adjacent positions by chance (the technology does not sequence
adjacent letters at adjacent time points). At the same time, however,
the color-space code introduces certain complexities.
Let us consider a comparison done by first translating the color-

space read code into the letter-space sequence. Notice that a single
sequencing error would cause every position after the place of
error to be mistranslated (Figure 3B). Consequently, most
approaches have translated the letter-space genome into the
corresponding color code. However, this is problematic: since the
color-coding of every dibase pairing is not unique, a string of
colors can represent one of several DNA strings, depending on the
preceding base pair. For example, a string of zeroes could be
translated as a poly-A, poly-C, poly-G or poly-T string.
There is an additional drawback to translating the genome into

color-space code: a sequence of matches and mismatches in color-
space does not map uniquely into letter-space similarity. For
example, a single SNP results in two sequential color-space
mismatches. However, given two consecutive colors, there are 9
possible ways to generate two mismatches. Of these, only 3
correspond to a SNP, while the rest lead to DNA strings that

completely differ from the reference. This is illustrated in
Figure 3D.
We propose an alternate approach. Our key observation is that

while a color-space error causes the rest of the sequence to be
mistranslated, the genome will match one of the other three
possible translations. This is illustrated in Figure 4C. Consequent-
ly, we adapt the classical dynamic programming algorithm to
simultaneously align the genome to all four possible translations of
the read, allowing the algorithm to move from one translation to
another by paying a ‘‘crossover’’, or sequencing error penalty. If
one wishes for a probabilistic interpretation of the algorithm, one
can consider the FSA in Figure 2B to be a Hidden Markov Model,
where the letter is the hidden state, and the color-space sequence is
the output of the model. By taking the cross product of this HMM
with the standard pair-HMM associated with the Smith-
Waterman algorithm, we can allow all of the typical alignment
parameters, including the error penalty, to be probabilistically
motivated as the log of the probability of the event, and trained
using the Expectation-Maximization algorithm. It is notable that
our approach handles not only matches, mismatches, and
sequencing errors, but also indels. Because the sequences are
aligned in letter-space (to be precise, they are aligned and
translated simultaneously), indels can be penalized using the
standard affine gap penalty with no further modification of the
algorithm.

Figure 3. Various mutation and error events, and their effects on the color-code readouts. The reference genome is labeled G and the
read R. A: A perfect alignment; B: In case of a sequencing error (the 2 should have been read as a 0) the rest of the read no longer matches the
genome in letter-space; C: In case of a SNP two adjacent colors do not match the genome, but all subsequent letters do match. However, D: only 3 of
the 9 possible color changes represent valid SNPs; E: the rules for deciding which insertion and deletion events are valid are even more complex, as
indels can also change adjacent color readouts.
doi:10.1371/journal.pcbi.1000386.g003

Figure 4. Color-space (dibase) sequence alignment. A: The Dynamic Programming (DP) representation, B: recurrences, and C: alignment of a
letter space sequence to a color-space read with a sequencing error. Within the DP matrix we simultaneously align all of the four possible translations
(vertical) to the reference genome (horizontal); however the alignment can transition between translations by paying the crossover penalty. This is
illustrated by the fourth recurrence, where the third index (k) corresponds to the translation currently being used. In the alignment (C) after the
sequencing error, the original translation of the read (starting from a T) no longer matches, but a different one (starting from a C) does.
doi:10.1371/journal.pcbi.1000386.g004

SHRiMP: Mapping Short Reads
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In the SHRiMP algorithm, we only apply the special color-
space Smith-Waterman algorithm in the final stage. For the initial
stages, we convert the genome from letter-space to color-space,
and search for k-mer matches as well as perform vectorized Smith-
Waterman strictly in color-space. In order to better incorporate
SNPs in color-space data, we use a spaced seed that allows for two
adjacent mismatching colors between the read and the reference
genome.

Computing Statistics for Reads and Mate-pairs
Once all of the reads are mapped, for every read and mate-pair

we compute mapping confidence statistics. Initially these are
computed for each read; however, they are then combined to
compute likelihoods of accidental matches for mate-pairs.

Computing statistics for single reads. While a very
thorough statistical theory for local alignments has been
established [21], this theory assumes the comparison of infinite
length strings, and hence is inappropriate for evaluating
alignments of very short reads to a reference genome. Instead,
we have designed confidence statistics that explicitly model short
reads, and allow for the computation of confidences in the
presence of short insertions and deletions. We estimate the
confidence in the possible mappings of each read by using the
following statistics (calculated by the PROBCALC program):
pchance – the probability that the hit occurred by chance – and
pgenome – the probability that the hit was generated by the genome,
given the observed rates of the various evolutionary and error
events. For example, a good alignment would have a low pchance
(close to 0) and a very high pgenome (close to 1). In this section we
briefly expand on these two concepts, give them mathematical
definitions, and merge them to formulate an overall alignment
quality measurement. A detailed description is in Methods
(Computing Statistics: pchance and pgenome).
The pchance of a hit is the probability that the read will align with

as good a score to a genome that has the same length, but random
nucleotide composition with equal base frequencies (that is, the
read will align as well by chance). In order to compute this, we count
all of the possible k-mers with an equal number of changes as
observed in the hit, and we call this number Z. For example, if we
only have substitutions in our alignment (that is, no indels) and an
alignment length of r, then Zsubs~

r
subs

! "
3subs gives the number

of unique strings to which the read can align with the specified
number of substitutions. A more detailed discussion on the
construction of Z, especially for the more complex Z count for
indels, appears in Computing Statistics: pchance and pgenome. The
term Z=4r compares the number of unique strings with the given
score (when aligned to the read) compared to all possible unique
reads of length r, and gives us the probability that a read matches
by chance at any location. To compute the pchance statistic over the
entire length of the genome, we assume independence of positions,
and evaluate the likelihood that there is a match at any of the
positions:

pchance~1{ 1{cf rð Þ:Z
4r

! "2:g

ð1Þ

where r is the alignment length, g is the genome length (2
corresponds to the two strands), and cf rð Þ is a correction factor for
mappings that are shorter than the length of the read, detailed in
Computing Statistics: pchance and pgenome.
Our second computation, pgenome, defines the probability that a

hit was generated by the genome via common evolutionary events
characteristic of the genome - i.e. substitutions, indels and errors.

First, we estimate the rate for each type of event via bootstrapping.
Then, we compute the likelihood that the read will differ by as
many events from the genome via a binomial probability that uses
this estimation and our observations for the events in the current
hit. For example, when considering the number of errors, we first
estimate the average error rate Ce over all hits, and then we can
define the probability that the current read was created via this
many errors by

pe&
r

ne

! "
Cne
e 1{Ceð Þr{ne ð2Þ

where ne is the number of observed errors in the current hit, and r
is the alignment length. We can similarly define psubs and pindel for
substituion and indel events, respectively. Finally, we can form
pgenome as

pgenome~pepsubspindel : ð3Þ

More specifics about the mathematical formulations are available
in Computing Statistics: pchance and pgenome.
Finally, we define the quality measurement of this hit as the

normalized odds, i.e. a probability odds ratio pgenome
pchance normalized over

all of the hits of this read:

normoddshit~
pgenomehit=pchancehitP
Vhits pgenome=pchance

: ð4Þ

This value represents a relative credibility of this hit compared to
the others for a given read: A single hit would have a normalized
odds score of 1, two equally good hits will both have normodds
of 0.5 for both, while for an exact match and a more distant one,
the former will have a normodds close to 1, and the latter close
to 0.

Computing statistics for mate-pairs. SHRiMP also
assigns mate-pair confidence values (akin to the read
confidence values predicted by probcalc) by combining the
confidence values for individual reads with emprically observed
distributions of insert sizes in the library. We compute the
distribution of the mapped distances (distance between the
mapped positions of the two reads) d for all mate-pairs, and save
the average distance m (see Computing Mate Pairs with Statistics for
more details). Then, for each mate-pair mapping, we assign a
pchance, pgenome and normodds score, similar in meaning to
those used in the previous section:

N pchance for mate-pairs: assume pc gð Þ is the pchance of a
read that takes g, the length of the genome, as a parameter.
Now, the pchance of a mate-pair read_1, read_2 is defined as

pc~pc,read 1 gð Þ|pc,read 2 m{dz1j jð Þ ð5Þ

where g is the length of the genome used in probcalc, m is the
average mate-pair distance, and d is the distance of the current
mate-pair. That is, we ask the question: what is the probability
that a read as good as the first read would align anywhere in
the genome by chance, and that a second read will align by
chance within the observed mate-pair distance?

N pgenome for mate-pairs: assume pg is the pgenome of a
read. We can compute the pgenome of each mate-pair by

pg~pg,1|pg,2|T ð6Þ

SHRiMP: Mapping Short Reads
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where T is the tail probability of the mate-pair distance

distribution we computed (both tails, starting at the m{dij j
cutoff). Therefore, for a mate-pair with the distance really close

to m, the pgenome will be close to pg~pg,1|pg,2, otherwise, it
will be penalized. Thus, following the difinition of pgenome,
we will get a lower probability that the mate-pair was
generated from the genome if the mate-pair distance is too
big or too small compared to the average.

A discussion of the implementation steps are included in the
SHRiMP README, and a more detailed discussion of the
statistical values is included in Computing Mate Pairs with Statistics.

Validation
In our experiments, we used SHRiMP to compare 135 million

35 bp reads from a tunicate Ciona savignyi to the reference genome
[22]. The fragments were sequenced from sheared genomic DNA
with an AB SOLiD 1.0 instrument. In the following sections we
first describe the running time of SHRiMP at different parameter
settings, and then evaluate the quality of our alignments compared
to the Applied Biosystem’s read mapping program.

Running time analysis. One of the advantages of the
SHRiMP algorithm is the seamless parallelism provided by the
fact that we can simply subdivide the reads into separate
computational jobs, without affecting the results. This allows us
to take full advantage of compute clusters regardless of the amount
of memory available at each machine. We took a random subset
consisting of 500,000 35 bp C. Savignyi reads and mapped them to
the genome. The full read dataset and reference genome are
available at http://compbio.cs.toronto.edu/shrimp/misc/
paper_ciona_reads_35mer.csfasta.tar.bz2 and http://mendel.
stanford.edu/sidowlab/CionaData/CionaSavignyi_v.2.1.fa.zip,
respectively.
The running times at several parameter settings are summarized

in Table 1. Note that from smallest to largest seed weight, we see a
nearly two orders of magnitude difference in total run time, most
of which is concentrated in the vectorized Smith-Waterman filter,
and, to a lesser degree, in the spaced k-mer scan. The final, full
color-space Smith-Waterman alignment took approximately
constant time across all runs, as the average number of top
scoring hits that reached the stage was nearly constant
(24.4960.5); however, proportional time increased as the filter
stages became more efficient. While SHRiMP is somewhat slower
than other short read mapping programs, it allows both for micro-
indels in the alignments and a proper color-space alignment
algorithm. SHRiMP is also very configurable in terms of sensitivity
and running time trade-offs.

Ciona savignyi polymorphism analysis. The primary
strength of SHRiMP and other mapping methods based on
Smith-Waterman alignments is the ability to map reads containing

complex patterns of sequence variation, including insertions,
deletions and clusters of closely-space SNPs. Mappers that
exclusively produce ungapped alignments can only find SNPs.
Furthermore they are more likely to miss dense clusters of SNPs,
since the overlapping reads contain many mismatches, and SNPs
adjacent to an indel, since only a small fraction of the overlapping
reads contain just the SNP. Finally, since SHRiMP produces local
alignments, it can map a read even if either end overlaps a large
indel or structural variant.
To evaluate the effectiveness of SHRiMP for detecting sequence

variation we used it to find polymorphisms in a resequenced Ciona
savignyi individual. C. savignyi is a challenging test case because of its
very high polymorphism rate: the SNP heterozygosity is 4.5% and
the average per-base indel heterozygosity is 16.6% (indel rate of
0.0072 events per base) [11]. We therefore expect that even short
reads will frequently span multiple variant sites.
We used the AB SOLiD sequencing platform to generate 135

million reads of length 35 bp from a single C. savignyi individual.
We then aligned those reads to the reference genome [22] with
SHRiMP using lenient scoring thresholds so that reads with
multiple variant sites could be mapped, and we selected the single
highest-scoring alignment for each read (see Methods). We
discarded alignments in repetitive sequence by removing reads
with multiple similarly scoring alignments (‘‘non-unique’’ match-
es). The mapping took 48 hours using 250 2.33 GHz cores.
Table 2 summarizes the mapping results.
The alignment data contains noise due to two types of errors:

sequencing errors and chance alignments. Chance alignments are
a significant problem for short reads, particularly with the low
alignment score thresholds necessary for mapping reads containing
significant variation. Reads containing both sequence variation
and sequencing errors are even more likely to map to the wrong
position in the reference sequence. To combat the high false-
positive rate, for the remaining analysis we focused on a high-
quality subset of the data consisting of sequence variants supported
by at least four independent reads.
Across the genome SHRiMP detected 2,119,720 SNPs

supported by at least four reads. For comparison, we used the
SOLiD aligner provided by Applied Biosystems to map the reads
to the genome with up to three mismatches, where each mismatch
can be either a single color-space mismatch or a pair of adjacent
mismatches consistent with the presence of a SNP. Compared to
the SOLiD mapper, SHRiMP mapped 4.2 times as many reads
and found 5.5 times as many SNPs. The AB mapper, however,
was a lot faster, requiring 255 CPU hours to complete the
alignments, or roughly 506 faster than SHRiMP. While it is
possible to run the mapper with greater sensitivity, allowing for
more errors and SNPs, and thus more mapped reads, doing so
would surrender much of the runtime advantage and still not
overcome its fundamental inability to detect insertion and deletion

Table 1. Running time of SHRiMP for mapping 500,000 35 bp SOLiD C. savignyi reads to the 180 Mb reference genome on a single
Core2 2.66 GHz processor.

K-mer (7,8) (8,9) (9,10) (10,11) (11,12) (12,13)

% K-mer Scan 10.1% 16.5% 18.9% 13.4% 9.8% 7.4%

% Vectorized SW Filter 88.8% 75.4% 49.8% 30.2% 20.1% 14.9%

% Full SW Alignment 1.1% 8.0% 30.7% 55.5% 68.8% 76.2%

Time 1 d21 h34 m 6 h18 m 1 h36 m 50 m28 s 37 m52 s 32 m32 s

In all cases, two k-mer hits were required within a 41 bp window to invoke the vectorized Smith-Waterman filter.
doi:10.1371/journal.pcbi.1000386.t001
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polymorphisms. SHRiMP, on the other hand, is capable of
handling indels, and detected tens of thousands of them.
SHRiMP detected 51,592 deletions and 19,970 insertions of size

1–5 bp. The observed ratio of 2.56between insertions and deletions
for the C. savignyi data is biased by the construction of the reference
genome – whenever the two haplomes differed, the reference agreed
with the longer one. While there is a smaller inherent bias against
detecting insertions (reads containing nucleotides not present in the
reference) compared to deletions because a read spanning a deletion
only incurs a gap penalty whereas an insertion both incurs a gap
penalty and has fewer bases that match the reference. For simulated
data (see next section) this bias was only ,5% for single basepair
indels (data not shown). The size distribution of the detected indels
(Figure 5A) drops more rapidly with length than expected [11], but
this detection bias against longer indels is not surprising since longer
indels have lower alignments scores.
Mapping C. savignyi sequence is challenging primarily because

the population contains so much variation. Figure 5B shows the
high frequency of closely spaced SNPs detected by SHRiMP.

Mappers that can only detect nearly exact matches fail to map the
reads overlapping these dense SNP clusters. Note that even though
the reads are generated from the whole genome, a significant
fraction of the non-repetitive C. savignyi genome is coding, making
it is possible to see the typical three-periodicity of SNPs in coding
regions. Furthermore SHRiMP recovers microindels, which are
completely invisible to ungapped aligners and yet account for a
significant fraction of sequence variation in C. savignyi.

Analysis of simulated data. In order to further validate the
accuracy of the SHRiMP alignments we have designed simulated
experiments, where we sampled random locations from the C.
savignyi genome, introduced polymorphisms (SNPs and indels) at
the rates previously observed in the C. savignyi genome [22],
added sequencing errors at rates observed in our C. savignyi dataset
(2–7%, depending on the position in the read), and mapped the
reads back to the original genome. Each sampled read could have
multiple SNPs and indels, though due to the low indel rate only a
small fraction of the reads had multiple indels. We mapped the
reads with SHRiMP and postprocessed with PROBCALC

Table 2. Mapping results for 135 million 35 bp SOLiD reads from Ciona savignyi using SHRiMP and the SOLiD mapper provided by
Applied Biosystems.

SHRiMP SOLiD Mapper

Uniquely-Mapped Reads 51,856,904 (38.5%) 15,268,771 (11.3%)

Non-Uniquely-Mapped Reads 64,252,692 (47.7%) 12,602,387 (9.4%)

Unmapped Reads 18,657,736 (13.8%) 106,896,174 (79.3%)

Average Coverage (Uniquely-Mapped Reads) 10.3 3.0

Median Coverage (Uniquely-Mapped Reads) 8 1

SNPs 2,119,720 383,099

Deletions (1–5 bp) 51,592 0

Insertions (1–5 bp) 19,970 0

Non-uniquely-mapped reads have at least two alignments, none of which is significantly better than the others (see Methods). SNPs and indels have at least four
supporting reads.
doi:10.1371/journal.pcbi.1000386.t002

Figure 5. Size distribution of indels. (A) and distance between adjacent SNPs (B) detected by SHRiMP. The distance between adjacent SNPs
shows a clear 3-periodicity, due to the fact that a significant fraction of the non-repetitive C. savignyi genome is coding.
doi:10.1371/journal.pcbi.1000386.g005
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(pchance,0.001). Considering only those reads that had a unique
top hit, we computed the precision – the fraction of reads for
which this unique hit was correct, and recall – the fraction of all
reads that had a unique, correct hit. Table 3 shows the results of
this analysis. For each read, we classified it based on the number of
SNPs and the maximum indel length, and computed precision and
recall for each class. With such polymorphism, we can expect the
average read to have approximately 1.5 SNPs and 1.9 errors.
SHRiMP was able to accurately map 76% of reads with 2 SNPs
and 0 indels, at 84% precision, and nearly half of all reads with 2
SNPs and 3 bp indels at 74% precision.

Methods

Details of the SHRiMP Algorithm
The algorithm starts with a rapid k-mer hashing step to localize

potential areas of similarity between the reads and the genome. All

of the spaced k-mers present in the reads are indexed. Then for
each k-mer in the genome, all of the matches of that particular k-
mer among the reads are found. If a particular read has as many
or more than a specified number of k-mer matches within a given
window of the genome, we execute a vectorized Smith-Waterman
step, described in the next section, to score and validate the
similarity. The top n highest-scoring regions are retained, filtered
through a full backtracking Smith-Waterman algorithm, and
output at the end of the program if their final scores meet a
specified threshold. The SHRiMP algorithm is summarized in
Figure 6.

Spaced seed filter. We build an index of all spaced k-mers in
the reads, and query this index with the genome. Our approach
was taken primarily for simplicity: our algorithm can rapidly
isolate which reads have several k-mer matches within a small
window by maintaining a simple circular buffer of recent positions
in the genome that matched the read. Since our targeted compute
platform is a cluster of batch processing machines, indexing the
reads means that we can easily control memory usage and
parallelism by varying the read input size and splitting the read set
accordingly. Data is only loaded at program invocation; we do not
stream in new reads from disk as the algorithm runs.

Vectorized Smith-Waterman implementation. The
SHRiMP approach relies on a rather liberal initial filtering step,
followed by a rigorous, but very fast Smith-Waterman alignment
process. By maximizing the speed of the Smith-Waterman
comparison, we are permitted to let the algorithm test a larger
number of potential regions.
Most contemporary mobile, desktop and server-class processors

have special vector execution units, which perform multiple
simultaneous data operations in a single instruction. For example,
it is possible to add the eight individual, 16-bit elements of two
128-bit vectors in one machine instruction. Over the past decade,
several methods have been devised to significantly enhance the
execution speed of Smith-Waterman-type algorithms by paralle-
lizing the computation of several cells of the dynamic program-
ming matrix. The simplest such implementation computes the

Table 3. Color-space mapping accuracy of SHRiMP.

Number of SNPs

0 1 2 3 4

Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

0 85.7 83.2 84.8 81.3 83.5 76.6 80.6 65.2 75.6 46.8

Max 1 83.8 79.4 82.2 74.0 79.4 62.6 72.8 43.2 63.1 24.7

Indel 2 83.2 77.1 80.8 69.6 77.9 56.6 68.2 36.4 56.4 18.9

Length 3 80.7 71.0 79.6 64.2 73.6 48.3 66.5 31.5 57.1 16.6

4 78.0 65.4 76.5 56.1 71.4 41.9 60.6 23.9 50.3 12.4

5 75.9 58.9 73.0 48.1 69.7 36.6 57.0 21.3 46.0 12.7

Each cell shows the precision and recall for mapping simulated reads with
varying amounts of polymorphism. SHRiMP was able to accurately map .46%
of all reads with either 4 SNPs or 5 bp indels, despite the large number of
sequencing errors in our dataset (up to 7% towards the end of the read).
doi:10.1371/journal.pcbi.1000386.t003

Figure 6. SHRiMP Hashing technique & Vectorized Alignment algorithm. A: Overview of the k-mer filtering stage within SHRiMP: A window
is moved along the genome. If a particular read has a preset number of k-mers within the window the vectorized Smith-Waterman stage is run to
align the read to the genome. B: Schematic of the vectorized-implementation of the Needleman-Wunsch algorithm. The red cells are the vector
being computed, on the basis of the vectors computed in the last step (yellow) and the next-to-last (blue). The match/mismatch vector for the
diagonal is determined by comparing one sequence with the other one reversed (indicated by the red arrow below). To obtain the set of match/
mismatch positions for the next diagonal, the lower sequence needs to be shifted to the right.
doi:10.1371/journal.pcbi.1000386.g006
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dynamic programming matrix using diagonals. Since each cell of
the matrix can be computed once the cell immediately above,
immediately to the left, and at the upper-left corner have been
computed, one can compute each successive diagonal once the two
prior diagonals have been completed. In this way, the problem can
be parallelized across the length of supported diagonals (see
Figure 6B). In most cases, this is a factor of 4 to 16. The only
portion of such a ‘Wozniak’ approach that cannot be parallelized
is the identification of match/mismatch scores for every cell of the
matrix, which has to be done sequentially. These operations are
expensive, necessitating 24 independent data loads for 8-cell
vectors, and become increasingly problematic as vector sizes
increase. Because memory loads cannot be ‘vectorized’, when the
parallelism grows, so does the number of lookups. For example,
with 16-cell vectors, the number of data loads doubles to 48.
We propose an alternate method, where the running time of the

fully vectorized algorithm is independent of the number of
matches and mismatches in the matrix, though it only supports
fixed match/mismatch scores (rather than full scoring matrices).
Our key observation is that it is possible to completely parallelize
the score computation for every diagonal. Figure 6B demonstrates
the essence of our algorithm: by storing one of the sequences
backwards, we can align them in such a way that a small number
of logical instructions obtain the positions of matches and
mismatches for a given diagonal. We then construct a vector of
match and mismatch scores for every cell of the diagonal without
having to use expensive and un-vectorizable load instructions or a
pre-compute a ‘query profile’. In our tests, using a diagonal
approach with our scoring scheme surpasses the performance of
Wozniak’s original algorithm and performs on par with Farrar’s
method [17]. Table 4 summarizes these results. The advantage of
our method over Farrar’s is that it is independent of the scores
used for matches/mismatches/gaps, and it will scale better with
larger vector sizes. A disadvantage is that we cannot support full
scoring matrices and are restricted to match/mismatch scores,
though this is less important for DNA alignment. Additionally,
Farrar’s method is much faster for large databases where most of
the sequence is dissimilar to the query. However, this is never the
case for SHRiMP as the seed scan phase targets only small, similar
regions for dynamic programming. In these cases our algorithms
perform similarly.

Final pass. The vectorized Smith-Waterman approach
described above is used to rapidly determine if the read has a
strong match to the local genomic sequence. The locations of the
top n hits for each read are stored in a heap data structure, which
is updated after every invocation of the vectorized Smith-

Waterman algorithm if the heap is not full, or if the attained
score is greater than or equal to the lowest scoring top hit. Once
the whole genome is processed, highest scoring n matches are re-
aligned using the appropriate full color- or letter-space Smith-
Waterman algorithm. This is necessary, as the vectorized Smith-
Waterman algorithm described above only computes the
maximum score of an alignment, not the traceback, as this
would require a much more complicated and costly
implementation. Instead, at most only the top n alignments for
each read are re-aligned in the final step.

Computing Statistics: pchance and pgenome
In Computing Statistics for Single Reads, we briefly introduced the

concepts of the pchance, pgenome and normalized odds of a hit. In this
section we expand on the details regarding the construction of
pchance and pgenome. In these formulas we make use the following
definitions:

N g is the genome length

N r is the alignment length (note this may be different from the
read length, which is constant)

N subs is the number of substitutions (mismatches) in our
alignment

N ins is the number of nucleotide insertions in our alignment,
where the genome is the ‘‘original’’ sequence. For example, if
the genome is AC-G and a read is ACTG, there is an insertion
of a T.

N dels is the number of nucleotide deletions in our alignment.
For example, if the genome is ACTG and a read is A-TG,
there is a deletion of a C.

N insev is the number of insertion events (for example, for a single
insertion of length 3 we have insev~1 and ins~3.) delev is
similar.

N insn: following the previous definition, insev! will describe the
number of permutations of insertion events. To determine the
number of distinguishable permutations, we need to first look at
the frequency of insertion events of a certain size,
frequencyinsev sizeð Þ. For example, is we have 3 insertions of
size 2, we need to divide the permutations by
frequencyinsev 2ð Þ!~3!. Therefore, the distinguishable permuta-
tions of insertion events can be written as:

insev!

Pi~insevsizes frequencyinsev size~ið Þ!ð Þ

Below, we refer to this denominator term
Pi~insevsizes frequencyinsev size~ið Þ!ð Þ as insn. We similarly define
deln.

N P n,kð Þ describes the number of ways to assign n indistinguish-
able objects in k indistinguishable bins, which is recursively
defined by P n,kð Þ~

Pk
i~1 P n{k,ið Þ with P n,nð Þ~1 and

P n,1ð Þ~1.

pchance. We begin with the mathematical formulation of
pchance (defined above):

pc~1{ 1{cf rð Þ:Z
4r

! "2:g

; ð7Þ

where, as described before, Z=4r is the number of possible unique

Table 4. Performance (in millions of cells per second) of the
various Smith-Waterman implementations, including a regular
implementation (not vectorized), Wozniak’s diagonal
implementation with memory lookups, Farrar’s method and
our diagonal approach without score lookups.

Processor type Unvectorized Wozniak Farrar SHRiMP

Xeon 97 261 335 338

Core 2 105 285 533 537

We inserted each into SHRiMP, and used SHRiMP to align 50 thousand reads to
a reference genome with default parameters. The improvements of the Core 2
architecture for vectored instructions lead to a significant speedup for our
approach and Farrar’s, while Wozniak’s algorithm slight improvement is due to
the slow match/mismatch lookups.
doi:10.1371/journal.pcbi.1000386.t004
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sequences with the given edit distance as a fraction of all possible
unique reads of length r. Thus, Z=4r gives us the probability that
the current read has aligned by chance to a random genome of the
size of a read. To this term, we add a correction factor of
cf rð Þ~ readsize{rz1ð Þ which accounts for all the possible places
the alignment of size r might match. For example, if the readsize is
25 and we have a match of size 22, we should count Z=4r for every
position where this match could be found, that is 25222+1= 4.
Finally, to get the probability that the current read has aligned by
chance to a random genome of size g (instead of size r), we get
formula (7).
The factor that lies at the core of this calculation is Z, the

number of possible unique sequences that would align to the read
with the given edit distance. We have shown the definition of
Zsubs, which computes Z when there are no indels in the
alignment:

Zsubs~
r

subs

! "
3subs: ð8Þ

However, the calculation of the number of references to which a
read will map with a particular indel count, Zindels, depends on the
sequence of that read and is significantlymore complicated.We define
a lower and upper bound on Z in this case: a lower bound (least
number of unique sequences) occurs when the current read is one
repeated nucleotide, for example [AAAAAA], and the higher bound
occurs with the most change in nearby nucleotides, say [ACGTAC].
In the former case, we need to look at the deletion events from the
genome to this read, consider all the combinations of that number of
deletion events and deleted nucleotides, as well as all the places where
these combinations may occur. This gives the formula

Zlower~
delev!

deln

! "
P dels,delevð Þ

rzdels{ins

dels

! "
3dels: ð9Þ

Looking for the upper bound, we note that the places and
combinations of insertions also matters in generating unique
sequences, therefore giving us two extra terms involving insev

Zupper~
insev!

insn

! "
r

insev

! "
Zlower ð10Þ

~
insev!

insn

! "
r

insev

! "
delev!

deln
P dels,delevð Þ

rzdels{ins

dels

! "
3dels: ð11Þ

In order to estimate the correct value for Zindels, we estimated
the average complexity of the reads in our dataset (i.e., between
the simplest [AAAAA…] and the most complex [ACG-
TACGT…]). And have found that the mean observed Zindels

could be accurately estimated by

Zindels&
1

2
ZlowerzZupper

# $
: ð12Þ

Finally, we can approximate the total Z as

Z&Zsubs
:Zindels: ð13Þ

pgenome. In Computing Statistics for Single Reads, we defined our
pgenome factor as pe:psubs:pindel , where

pe&
r

ne

! "
Ceð Þne 1{Ceð Þr{ne ð14Þ

with Ce the rate of event e (estimated via bootstrapping) and ne the
number of observed events of type e in the current alignment. We
wrote pe as an approximation because there are small corrections
to this formula for each probability that is part of pgenome. First,
for the error term pe, the number of sites that can support errors is
in fact one minus the read size, giving us

pe~
r{1

ne

! "
Ceð Þne 1{Ceð Þr{1{ne : ð15Þ

When considering substitutions, we can have changes at any of the
inner nucleotides, excluding erroneous sites:

psub~
r{2{ne

nsub

! "
Csubð Þnsub 1{Csubð Þr{1{ne{nsub : ð16Þ

As before, when we look at alignments that involve indels, the
formula becomes more complex. In the case of pgenome, we do not
have to consider the various placements of insertion or deletion
events, but we do have to consider, for fixed placements of events,
the various combinations of the total number of insertions and
deletions into a set number of events.

pindel~P indels,indelevð Þ
r{1

nindelev

 !

Cindelevð Þnindelev 1{Cindelevð Þr{1{nindelev :

ð17Þ

Computing mate pairs with statistics. In this section we
provide several details for the implementation, usage and statistics
of the matepair post-processing step introduced in Computing
Statistics for Mate-pairs. We define a good matepair mapping as a
mapping whose distance d (between the two reads) are smaller
than some chosen limit M, and for which the read mappings are
in a consistent orientation and strand(i.e. R+F+ or F2R2). First,
probcalc_mp will compute a matepair distance and standard
deviation by looking at all the connected forward and reverse
reads - all matepairs - and adding the distance of any matepair
with exactly one good mapping to a histogram. Optionally, one can
choose to use only unique good mappings, or only use a certain
number of mappings (say, the first 100,000) to speed up the
program.
Next, we call a matepair concordant if it has at least one good

mapping, and otherwise we call it discordant. Depending on the
task, probcalc_mp can output all concordant matepairs, or all
discordant matepairs. For each matepair mapping, probcalc_mp
will compute the pgenome and pchance, as introduced in
Computing Mate Pairs with Statistics.

Parameters
For the C. savignyi polymorphism analysis we ran SHRiMP with

the following parameters. We used the spaced seed ‘‘11110111’’
and required two hits per 40-base window to invoke the Smith-
Waterman algorithm. The Smith-Waterman scoring parameters
were set to +100 for a matching base, 290 for a mismatch, 2250
and 2100 to open and extend a gap respectively, and 2300 for a
crossover (sequencing error). The minimum Smith-Waterman
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score thresholds were 1000 for the vectorized first pass and 1275
for the final alignment pass. We discarded alignments with pchance
less than 0.05, and to remove reads from known repetitive
sequence we required normodds to be at least 0.8.
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