Practical Solution Techniques for First-order MDPs*

Scott Sannet

Statistical Machine Learning Group
National ICT Australia
Canberra, ACT, 0200, Australia

Craig Boutilier

Department of Computer Science
University of Toronto
Toronto, ON M5S 3H5, Canada

Abstract

Many traditional solution approaches to relationally specified decisiorrg¢tie@lanning
problems (e.g., those stated in the probabilistic planning domain descriptiorazagar
PPDDL) ground the specification with respect to a specific instantiation wiado ob-
jects and apply a solution approach directly to the resulting ground Mar&agidn pro-
cess (MDP). Unfortunately, the space and time complexity of these grdwsudigtion ap-
proaches are polynomial in the number of domain objects and exponential jimeticate
arity and the number of nested quantifiers in the relational problem spé&oificAn alter-
native to grounding a relational planning problem is to tackle the problerotljirat the
relational level. In this article, we propose one such approach thatatessn expressive
subset of the PPDDL representation to a first-order MDP (FOMDP)ifsgetton and then
derives a domain-independent policy without grounding at any interreesti@p. However,
such generality does not come without its own set of challenges—the ggugddhis ar-
ticle is to explore practical solution techniques for solving FOMDPs. To dsinate the
applicability of our techniques, we present proof-of-concept residltaur first-order ap-
proximate linear programming (FOALP) planner on problems from the pilistabtrack
of the ICAPS 2004 and 2006 International Planning Competitions.

Key words: MDPS, first-order logic, planning

* Parts of this article appeared in preliminary form in Sanner and Boultilie/5(22I06).
* Corresponding author.
Email addressssanner @i ct a. com au (Scott Sanner).

Preprint submitted to Elsevier 4 November 2008

1 Introduction

There has been an extensive line of research over the yenesl @t exploiting
structure in order to compactly represent and efficientlyesdecision-theoretic
planning problems modeled as Markov decision processe$@IBoutilier et al.,
1999). While traditional approaches from operations retetgpically use enumer-
ated state and action models (Puterman, 1994), these hawedpmpractical for
large-scale Al planning tasks where the number of distiteties in a model can
easily exceed the limits of primary and secondary storage@aern computers.

Fortunately, many MDPs can be compactly described by usfagtared state and
action representation and exploiting various indepenelentthe reward and tran-
sition functions (Boutilier et al., 1999). The independescand regularities laid
bare by such representations can often be exploited in exacapproximate so-
lution methods as well. Such techniques have permitted thetipal solution of
MDPs that would not have been possible using enumerates atat action mod-
els (Dearden and Boutilier, 1997; Hoey et al., 1999; St-Awbial., 2000; Guestrin
et al., 2002).

However, factored representations are only one type ottsirel that can be ex-
ploited in the representation of MDPs. Many MDPs can be desdrabstractly in
terms of classes of domain objects and relations betweee th@main objects that
may change over time. For example, a logistics problem 8pdan the probabilis-
tic planning domain description language (PPDDL) (Yourted.e2005) may refer
to domain objects such as boxes, trucks, and cities. If tectke is to deliver
all boxes to their assigned destination cities then thetimcs of these boxes and
trucks may change as a result of actions taken in pursuii®bttjective. Since ac-
tion templates such as loading or unloading a box are likeebpiply generically to
domain objects and can be specified independently of anyngrdamain instanti-
ation (e.g., 4 trucks, 5 boxes, and 9 cities), this permitsact MDP descriptions
by exploiting the existence of domain objects, relationsrdkiese objects, and the
ability to express objectives and action effects using tfieation.

Unfortunately, while relational specifications such as PR[Permit very compact,
domain-independent descriptions of a variety of MDPs, ¢bisipactness does not
translate directly to effective solutions of the undertyiplanning problems. For
example, one approach to solving a relational decisioofdte planning problem
might first construct sets of state variables and actionalfgrossible ground in-
stantiations of each relation and action with respect toexifip domain (e.g., 4
trucks, 5 boxes, and 9 cities). Then this approach mightydpmwn solution tech-
nigues to this ground factored representation of an MDPoldmhately, such an
approach is domain-specific; and the size of the ground MDRgpolynomially
in the number of domain objects, and exponentially in theligege arity and the
number of nested quantifiers in the problem specificationsEficiently large do-

mains and complex relational MDP specifications, groundiray not be a viable
option.

An alternative approach to grounding is to apply a solutippraach directly at
the relational level. In this article, we discuss one sudhn@ue that translates
an expressive subset of the relational PPDDL representtdiafirst-order MDP
(FOMDP) (Boutilier et al., 2001) specification. A symbolic policy méyen be
derived with respect to this FOMDP, resulting in a domaideipendent solution
that exploits a purely lifted version of the Bellman equasi@amd avoids grounding
at any intermediate step. This stands in contrast to aleffirat-order approaches
discussed in Section 6.2 that induce symbolic representbdf the solution from
samples of the Bellman equation in ground problem instances.

Unfortunately, the use of first-order logical languagesasadibe our FOMDP spec-
ification and solution introduces the need for computatlgrexpensive logical

simplification and theorem proving. While this means thaicesalutions are not
tractable for many FOMDPSs, there is often a high degree aflaety and struc-

ture present in many FOMDPs that can be exploited by the appate (heuristic)

solution techniques proposed in this article. To this ehi, article continues the
tradition of exploiting structure to find effective soluti®for large MDPs.

After providing a review of MDPs and relevant solution teicfugs in Section 2
and the FOMDP formalism and its solution via symbolic dynamriogramming
(Bouitilier et al., 2001) in Section 3, we make the followinghtributions to the
practical solution of FOMDPs:

(1) Section 3.2.2: We show how to translate a subset of PPDDhl@ms includ-
ing universal and conditional effects to FOMDPs.

(2) Section 4.1: We show how to exploit the logical structifreeward, value, and
transition functions using first-order extensions of atg&bdecision diagrams
(ADDs) (Bahar et al., 1993) for use in both exact and approtenr@®MDP
solutions.

(3) Section 4.2: We apply additive decomposition technsgioeuniversal reward
specifications in a manner that leads to efficient solutiamsotir FOMDP
representation and reasonable empirical performanceame problems.

(4) Section 5.3: We show how to generalize the approximagsali programming
technique for MDPs (Schweitzer and Seidmann, 1985; de $ama Roy,
2003; Guestrin et al., 2002) to the case of FOMDPs by castiegptimiza-
tion problem in terms of a first-order linear program.

(5) Section 5.4: We define a linear program (LP) with firstesrdonstraints and
provide a constraint generation algorithm that utilitizeselational general-
ization of variable elimination (Zhang and Poole, 1996)xpleit constraint
structure in the efficient solution of thigst-order LP (FOLP)

To demonstrate the efficacy of our techniques, we presenf+afeconcept results

of our first-order approximate linear programming (FOALPBJanner on problems
from the probabilistic track of the ICAPS 2004 and 2006 Inaiomal Planning
Competitions in Section 5.6. Following this, we discuss a benof related first-
order decision-theoretic planning approaches and digtiesselative advantages
and disadvantages of each in Section 6. We conclude withcasti®on of possible
extensions to our techniques in Section 7.

2 Markov Decision Processes

Markov decision processes (MDPs) were first introduced aagldped in the
fields of operations research and economics (Bellman, 19&f18y, 1953; Howard,
1960). The MDP has since been adopted as a model for dec¢isonetic planning
with fully observable state in the field of artificial intgJlence (Bertsekas, 1987,
Bertsekas and Tsitsiklis, 1996; Boutilier et al., 1999) andwsh provides the for-
mal underpinning for the framework that we describe in thigcke. In this sec-
tion, we describe various algorithmic approaches for n@kiptimal sequential
decisions in MDPs that we later generalize to the case ofdndgr MDPs. The
following presentation derives from Puterman (1994).

2.1 The MDP model and Optimality Criteria

Formally, a finite state and action MDP is specified by a typled, 7, R, h,).

S is a set of distinct states. An agent in an MDP can effect chang its state by
executing actions from the st We base our initial presentation in this section on
finite state and action MDPs; but in much of what follows, w# agsume an infi-
nite, discrete state and action space. The standard temmiqr MDPs discussed
here can be generalized to countable or continuous statactioth spaces (Puter-
man, 1994).

The transition functioriZ is a family of probability distributionsZ (s, a,s’) =
P(s'la, s), which denotes the probability that the world transitiorenis € S

to s € S when actiona € A was executed. This representation enforces the
Markov property: the distribution over states; at timet + 1 is independent of
any previous state,_; and actior;_;, ¢ > 1, givens; anday.

The preferences of the agent are encoded in a reward fun&ionS x A —

R. In addition to specifying single-step preferences, thenagnust also specify
how it trades off reward over the horizénof remaining decision stages. In this
article, we focus on the expected sum of discounted accuetuteward over an
infinite horizon ¢ = o0) since this is most compatible with the (approximate)
linear programming approach that we adopt later. In thewaion of discounted

accumulated reward, we discount rewatdisne steps into the future by a discount
factory' wherey € [0, 1]. Throughout this article, we assume< 1. The use of
~v < 1 allows one to model the notion that an immediate rewaisl worth more
than the equivalent reward delayed one or more time stepgifuture. Practically,
~ < 1is required to ensure that the total expected reward is benlimdthe case of
infinite horizon MDPs.

A stationary policy takes the form: S — A, with 7(s) denoting the action to be
executed in state. Thevalueof policy 7 is the expected sum of discounted future
rewards over horizoh given thatr is executed. Its value function is given by:

(1)

So—= S| .

h
o= [$
t=0

wherer! is a reward obtained at tinte~ is a discount factor as defined above, and
sq is the initial starting state.

A greedy policyry, with respect to a value function is simply any policy that
takes an action in each state that maximizes expected vatheregpect toV/,
defined as follows:

7y (s) = arg max {R(s, a)+v Y P(s|s, a)V(S’)} 2)

acA s'eS

Thus, from any value function, we can derive a correspondmegdy policy that
represents the best action choice with respect to that esimation.

An optimal policyz* in an infinite horizon MDP maximizes the value function for
all states. An optimal policyr* is any greedy policy with respect to the optimal
value functionV* and likewise the optimal value function is the value of an op-
timal policy, V.« (s) = V*(s). We note that’* satisfies the following fixed-point
equality:
V*(s) = max {R(s, a)+v > T(s,a,s)- V*(s’)} : (3)
s'eS
FindingV* constitutes finding aexact solutiorio an MDP. Throughout the article,

we use the terraolutionmore loosely to denote some attempt at approximating
whether the approximation guarantees error bounds or glgineuristic.

2.2 MDP Solution Algorithms

In this section we describe several exact and approximaii@o techniques for
MDPs that we later extend to the first-order case.

2.2.1 Value iteration

We begin our discussion of MDP solutions by providing two &tpns that form
the basis of the stochastic dynamic programming algoritheesl to solve MDPs.

We defineV?(s) = R(s,n(s)) and then inductively define thiestage-to-go value
functionfor a policy as follows:

Vi(s) = R(s,m(s)) +v > T(s,m(s),s") - Vi (s") (4)

s'eS

Based on this definition, Bellmanfginciple of optimality(Bellman, 1957) estab-
lishes the following relationship between the optimal ealunction at stage and
the optimal value function at the previous stage 1:

Vi(s) = max {R(s, a)+v > T(s,m(s),s)- th(s')} (5)

a€ s'eS

The computation of/* from 1V¢~1 via this relationship is referred to aBaliman
backup Thevalue iterationalgorithm consists of repeatedly performing Bellman
backups to compute thesestage-to-go value functions.

We note that the Bellman backup is often rewritten in the foifg two steps to
separate out the backup of a value function through a sirgjiereand the maxi-
mization of this value over all actions:

Qt<57 CI,) = R(87 (I) +- Z T(87 a, S/) ’ Vtil(sl) (6)
s'eS
V(s) = max {Q'(s,a)} (7)

Puterman (1994) shows that terminating once the followinlni error condi-
tion is met

_ 1—7)

Vi(s) — Vii(s)] < & 8
mai [V(5) = V71 (5)] < =5 ®)
guarantees that the estimated value functiéis e-optimalover an infinite horizon,
that is, its value is withir of the optimal valuemax, [V'(s) — V*(s)| < e.

We note that the value iteration approach requires timerohyal in the backup
depthd and the number of states and actions, (&|S|? - |A| - d). Puterman (1994)
provides a proof that value iteration converges linearly.

2.2.2 Linear programming

An MDP can also be solved using the following linear progr&m)(

Variables: V(s), Vs € S
Minimize:) V(s)
seS
Subjectto: 0> R(s,a) +~ Y P(s|s,a)V(s') = V(s); Vs € S,Vae A (9)

s'eS

Puterman (1994) provides a proof that the solution to thisd.fhe optimal value
function for an MDP.

2.2.3 Approximate Linear Programming

One general and popular approximate solution technique iPs is that of linear-
value function approximation (Schweitzer and SeidmanB8519Jsitsiklis and Van
Roy, 1996; Koller and Parr, 1999, 2000; Schuurmans and Ratrae01; Guestrin
et al., 2002). Representing value functions as a linear cmatibn of basis func-
tions has many convenient computational properties, mamyhah will become
evident as we incorporate relational structure in our MDRlehdHowever, perhaps
one of the most useful properties is that linear value fumctepresentations lead
to MDP solutions requiring optimization with respect todar objectives and linear
constraints—that can be formulated as LPs.

In ann-state MDP, the exact value function can be specified as avedR™. This
vector can be approximated by a value functignthat is a linear combination of
k fixed basis functions (at-vectors), denoted;(s):

k
f/w(s) = Z w; - bi(s) (10)

The linear subspace spanned by the basis set will generatlinclude the true
value function, but one can use projection methods to mzensome error mea-
sure between the true value function and the linear combimaf basis functions.
The basis functions themselves can be specified by domaertsxponstructed or
learned in an automated fashion (e.g., Poupart et al. (2002hadevan (2005)).
We will consider first-order methods for automated basigtion construction in
Section 5 and related work in Section 6.

Approximate linear programming (ALR3 simply an extension of the linear pro-
gramming solution of MDPs to the case where the value funé@pproximated.
In a linear value function representation, the objective @nstraints will be linear
in the weights being optimized, leading to a direct LP foratiain. Consequently,

we arrive at the following variant of the previous exact LRuson:

Variables: w
Minimize: >~ Vis(s)
sE€S

Subjectto: 0> R(s) +~ > P(s]s,a) 5(s) = Vig(s); Vs € S, Va € A (11)

s'eS
2.3 Selecting an MDP Solution Approach

The choice of whether to use a linear programming or dynamagramming so-
lution to MDPs is not always clear. Linear programming affarsimple one-shot
solution, but it relies on efficient LP solvers. Dynamic pramming is straight-
forward to implement, but may require a large number of tiers to converge.
However, the choice of exact vs. approximate is almost iabéyr determined by
the size of the state space. For sufficiently large stateespapproximate solution
techniques are the only viable option. But this last statémdepends critically on
how one measures the size of the state space.

Despite their promise, the exact and approximate soluechriques discussed
above must represent the value function (and policy, if iregiy as vectors or func-
tions over an explicitly enumerated state (and action) espabis is simply not
feasible for large-scale Al planning problems. Fortunattslere are many repre-
sentations (e.g., factored or relational) well suited toiglen-theoretic planning
that do not require explicit state or action enumerationtimee the problem repre-
sentation or the solution. To this end, we will be concernéd the exploitation of
relational planning structure for the remainder of thisctet

3 First-order MDPs

Given that relational representations seem natural fonhey problems, it makes
sense to attempt to exploit this relational structure atst-&rder level without re-
sorting to grounding. This is precisely the idea behind tret-brder MDP model
(FOMDP) and its symbolic dynamic programming solution (Bleartet al., 2001),
which we review in this section. For the remainder of thiscéat when we refer to
a FOMDP without further qualification, we refer to the speciirmalization pre-
sented in Boutilier et al. (2001), although there are othesjibe first-order MDP
formalizations and associated solution approaches (weisisthese alternatives in
Section 6). The reader already familiar with the motivasiéor FOMDPs and the
presentation and notation in Boutilier et al. (2001) may wislskip this section
and proceed directly to the main contributions of this &tio Sections 4 and 5.

NN
A 4
A o Brussels
y) -
' \

Rome

Fig. 1. An example BXxWORLD problem. Trucks may drive along solid lines and planes
may fly along dashed lines. The goal in this instance is to get all boxes in(Palisated
by the star).

3.1 Motivation

Before we introduce FOMDPs and their solution, we begin whin basics of re-
lational planning problem specifications and motivate teedhfor exploiting this
structure at a lifted first-order level rather than at a gcbpropositional level.

3.1.1 Relational Planning Specifications

We assume basic familiarity with unsorted first-order logith equality. While we
use a sorted notation for specifying object types of vaealand predicate slots,
we assume this sort information is compiled into an unsddgdal form where
VSort : ¢ ¢(c) is rewritten asve. Sort(c) D ¢(c) and likewisedSort : ¢ ¢(c) is
rewritten asde. Sort(c) A ¢(c). Assuming these transformations, we draw on the
logical notation and semantics for unsorted first-ordeiclg@gzen in Brachman and
Levesque (2004). Specifically:

e Predicate SymbolsiVe assume a set of predicatBsof each arity0 < i < m
for some finite maximumn. We assume="¢c P, with its usual interpretation.

e Function SymbolsiWe assume a set of function symbglsof each arity0 <
j < n for some finite maximun.

In addition, we use a few notational conventions. All pratks (including unary
predicates denoting domain object classes) are capilalind all variables and
constants are lowercased. We denote the types of predigaiemants using the

notationg(Sorty, ..., Sort;) for some predicate of arity. *

We can view many decision-theoretic planning problems asisting of classes of
domain objects and the changing relations that hold betvle®se objects at dif-
ferent points in time. For example, in theoBRWORLD logistics problem (Veloso,
1992) illustrated in Figure 1, we have four classes of donohiects: Box, City,
Truck, and Plane. For the relations that hold between them, we hBveln(Boz,
City), BoxOnTruck(Boz, Truck), TruckIn(Truck, City), Planeln(Plane, City),
BoxOnPlane(Box, Plane)). In this framework, generic action templates such as
loading or unloading a box from a truck or plane or drivingcesiand flying planes
between cities are likely to apply generically to domaineaktg and thus the plan-
ning problem can be specified independently of any groundagdlomstantiation.

One recent language for representing relational prolsdibiiplanning problems is
PPDDL (Younes et al., 2005). At its core, PPDDL is a probatdiextension of
a subset of PDDL conforming to the deterministic ADL plarqiianguage (Ped-
nault, 1989); ADL, in turn, introduced universal and comafal effects into the
STRIPS representation (Fikes and Nilsson, 1971). To seeotnpactness of a re-
lational representation, we provide a (P)PDDL represantaif the BOXWORLD
problem in Figure 2 where for simplicity, we omit th&ane class of objects and
associated actions and relations and abbreBate)n Truck(Boz : b, Truck : t)
asBoxOn(Box : b, Truck : t).

General PPDDL specifications can be more compact for som#gms than the
PPDDL subset we refer to in this article. For example, in gaf@PDDL, universal
and conditional effects and probabilities can be arbiyrarested, thus allowing for
exponentially more compact representations of probaicistion effects than can
be achieved with probabilities only at the top-level of effe(Rintanen, 2003). In
addition, there are some general PPDDL specificationscHratotbe translated to
the PPDDL subset described here. If the general PPDDL spaiiifn uses proba-
bilistic effectsnested undeuniversal effects (e.g., each box falls off a truck with
some independent probability), it is generally imposstblé&ranslate such a prob-
lem to the restricted PPDDL subset used here because irescam indefinitely
factored transition probability model that cannot be egpeel with finite probabil-
ity specifications restricted to the top level of effects. Whve do not discuss such
model-expressivity here, we refer the reader to Sanner amdiligo (2007) and
Chapter 6 of Sanner (2008) for a treatment of such issues trofider MDPs.

While the meaning of the PPDDL representation in Figure 2tsnided to be rel-
atively straightforward, there are a few important poiisttshould be explained.
First, we assume that actions can be executed in all state® st not encode
explicit preconditions. While this assumption is not neeegst does not have any
effect on the value of an optimal policy in a domain that alsehas anoop action

! Logically, this requires a background theory axioms,...,z; o¢(z1,...,2%) D
N, Sort;(x;) for each predicate(Sorty, . . ., Sorty,).

10

e Domain Object Types Bozx, Truck, City

¢ Relational (S)tate Descriptors (with parameter sorts)
BozIn(Boz, City), TruckIn(Truck, City), BoxOn(Bozx, Truck)

e (R)eward: if [3Box : b.BoxIn(b, paris)] then 10 else 0

e (A)ctions (with parameter sorts) and (7)ransition Function:

- load(Bozx : b, Truck : t):
Effects (probability 0.9):
when [3City : c. BoxIn(b, c) A TruckIn(t,c)] then [BoxOn(b,t)]
VCity : c. when [BozIn(b, c) A TruckIn(t,)] then [~ BoxIn(b, c)]
- unload(Bozx : b, Truck : t):
Effects (probability 0.9):
VCity : c. when [BoxOn(b,t) A TruckIn(t,c)] then [BoxIn(b,c)]
when [3City : c. BoxOn(b,t) A TruckIn(t,c)] then [-BoxOn(b,t)]
- drive(Truck : t, City : c):
Effects (probability 1.0)
when [3City : 1. TruckIn(t, c1)] then [TruckIn(t, c)]
VCity : c1. when [TruckIn(t, c1)] then [—TruckIn(t, 1))
- noop
No effects.

Fig. 2. APPDDL-style representation of a simple variant of tlex®B/ORLD problem. The
deterministic PDDL subset would exclude the probabilistic annotations aftessuming
that all effects occur with probability 1.0.

and it helps simplify our later notation. When an action exesueach probabilistic
effect is realized independently according to the specgrethability. For example,
theunload action realizes its effects only 90% of the time, whereaglitie action
deterministically realizes its effects on each execution.

Probabilistic effects at the top-level of the effect speaition consist of conjunc-
tions of effects. Each individual effect can beiversalandconditional Universal
effects denoted by universally quantified variables intthie clause permit the ef-
fect to apply to an arbitrary number of objects not explcitbtmed in the action’s
parameter list. Conditional effects denotedumen can be arbitrary first-order for-
mulae specifying that the effects listed in then clause hold in the post-action
state if thewhen conditions hold in the pre-action state. When universallgrdu
fied variables are shared betweentlten/then clause pair, we refer to such effects
asuniversal conditionalWe note that each individual effect is only allowed to men-
tion one positive or negative relation in tieen portion of the clause. A conjunc-
tion of then effects can be easily specified as multiple effects with #mewhen
condition. Disjunctive (i.e., non-deterministic) effecire prohibited in PPDDL.
For example, when thé&ad (b, t) action is executed, its effects are realized with
probability 0.9. When these effects are realized, then fgraity c that satisfies
BozIn(b,c) N TruckIn(t,c) in the pre-action state3oxOn(b,t) A ~BozIn(b, c)

11

e Domain Object Instantiation:

- Box = {boxi,boxs, boxs}, Truck = {trucky,trucks}, City =
{paris, berlin, rome}

e (S)tate-variable Atoms (i.e., binary state variables)

- Bozlin:
{BozIn(box1, paris), BoxIn(bozxs, paris), BoxIn(boxs, paris),
BoxIn(boxy, berlin), BoxIn(boza, berlin), BoxIn(boxs, berlin),
BozIn(box1, rome), BoxIn(boxa, rome), BoxIn(boxs, rome)}
- Truckln:
{ TruckIn(trucky, paris), TruckIn(trucky, berlin), TruckIn(truck;, rome),
TruckIn(trucks, paris), TruckIn(trucks, berlin), TruckIn(trucks, rome)}
- BoxOn:
{BozOn(box1, trucky), BoxOn(boxa, trucky), BorOn(boxs, trucky),
BoxOn(boxy, trucks), BoxOn(boxa, trucks), BorOn(boxs, trucks)}

e (A)ctions:

- load:
{load(boxy, trucky), load(boxs, trucky), load(boxs, trucky)
load(box1, trucks), load(boxy, trucks)}, load(boxs, trucks)}
- unload:
{unload(box1, trucky), unload(boxs, truck,), unload(boxs, trucky),
unload(boxy, trucks), unload(boza, trucks)}, unload(boxs, trucks)}
- drive:
{drive(trucky, paris), drive(trucky, berlin), drive(trucky, rome)
drive(trucks, paris), drive(trucks, berlin), drive(trucks, rome)

e (7)ransition Function:
Follows directly from ground instantiation of PPDDL actions in Figure 2.

e (R)eward:
if [BoxIn(boxy, paris)V BoxIn(boxa, paris)V BoxIn(boxs, paris)] then 10 else 0

Fig. 3. One possible ground MDP instantiation of theX@V/oRrRLD FOMDP.

will hold in the post-action state since both effects haveiedent when condi-
tions. When these effects are not realized on 10% ofdhé(b, t) executions, no
state changes occur and it is equivalent twap action.

One can easily see that this relationally specified domadependent specifica-
tion allows very compact MDP specifications when compared tmrrespond-
ing ground factored MDP representation. For example, demsnstantiating the
PPDDL problem in Figure 2 to the ground factored MDP repredem in Fig-

ure 3 where we assume a problem instance with a domain iretantof three

boxes, three cities, and two trucks. While this is a triviaglihgall domain instantia-
tion, we note that its factored MDP representation requifepropositional atoms
corresponding to over two million distinct states and 1&idc$ actions that can

12

be executed in each state. And the reward, which uses exadtgnantification in
the relational PPDDL specification must be grounded to alitee corresponding
factored MDP representation. Clearly, foobjects, the grounded factor for the for-
mula3Boz : b. BoxIn(b, paris) will contain | Box| state variables, but if the reward
were changed t9City : ¢ 3Box : b. BoxIn(b, ¢), the ground reward representation
would contain Boz| - | City| state variables—thus implying a combinatorial growth
in the number of nested quantifiers.

In general, the number of ground atoms for a factored MDPesgntation will
scale linearly in the number of relations, exponentiallyhia arity of each relation
(assuming more than one domain object), and polynomialthénnumber of do-
main objects that fill each relation argument. To see thisideassume for simplic-
ity that all object class instantiations havénstances. Then a single unary relation
would be represented by ground atoms, a binary relation iy atoms, and an
n-ary relation byk™ atoms. Similarly, the size of the grounding of any quantified
formula is exponential in the number of nested quantifiemealr in the number of
relations, and exponential in the size of the domain objlesises being quantified.
Assumingk instances for all object classes apdested (non-vacuous) quantifiers
over formulae containing relations, the resulting unsimplified ground representa-
tion of the formula would requirek? ground atoms.

For sufficiently small predicate arities and levels of qufartnesting (assuming
these remain constant for a problem as the domain size yahesspace require-
ments for representing a ground MDP may be acceptable. hveshave adequate
space to permit the grounding of a relational MDP to obtaiacdred MDPand
we have the time to find an optimal solution to this factoredMihen grounding
gives us one approach to representing and solving reldtb&s for specific do-
main instances. However we note that while solving MDPs & known to be
polynomial in the number of states (see Section 2.2.2), timeber of states is ex-
ponential in the number of ground atoms in a factored reptatien. This is Bell-
man’s (1957) well-known curse of dimensionality and sireenumber of ground
atoms is at least linear in domain size, it implies that thacesolution methods
discussed previously require time at least exponentidderdomain size. This pre-
cludes the general possibility of exact solutions to gradheklational MDPs for all
but the smallest domain sizes. While this suggests the uggpobamation meth-
ods for solving grounded MDPs, there are useful lifted aléves to representing
and solving relational MDPs that we discuss next.

3.1.2 Grounded vs. Lifted Solutions

In contrast to the grounded approach to representing saktMDPs as factored
MDPs, it is important to point out that no matter how many donabjects there
may be in an actual problem instance, the size of the PPDQitioekl planning
problem specification in Figure 2 remains constant. Congetyy¢his invites the

13

e if (3b.BozIn(b, paris))
then donoop (value = 100.00)

e else if (3b*, t*. TruckIn(t*, paris) A BoxOn(b*,t*))
then dounload(b*,t*) (value = 89.0)

e else if(3b, ¢, t*.BoxOn(b, t*) A TruckIn(t, c)
then dodrive(t*, paris) (value = 80.0)

o else if(3*, ¢, t*. BoxIn(b*, c) A TruckIn(t*,c))
then doload (b*, t*) (value = 72.0)

e elseif(3b, ¢}, t*, ca. BoxIn(b, ci) N TruckIn(t*, c2))
then dodrive(t*, ¢f) (value = 64.7)

e else donoop (value = 0.0)

Fig. 4. A decision-list representation of the expected discounted revedwd for an ex-
haustive partitioning of the state space in thexX®VoRLD problem. The optimal action is
also shown for each partition where the optimal bindings of the action vasiétdmoted
by a *) correspond to any binding satisfying those variable names in thefetatela.

following question: if we can avoid a domain-dependent hipwn the representa-
tion of a relational MDP as in PPDDL, can we avoid a domaineshelgnt blowup
in its solution too? Although we have yet to discuss the gjpsodf how we might
find a domain independent solution to this PPDDL represiemain Figure 4 we
provide an optimal domain-independent value function &mdaorresponding pol-
icy for the relational PPDDL specification of theoBWORLD problem in Figure 2
(using discount factoy = 0.9).

The key features to note here are the state and action aistracthe value and
policy representation that are afforded by the first-orghecgication and solution
of the problem. That is, this solution does not refer to amgcdr set of domain
objects, say jusCity = {paris, berlin, rome}, but rather it provides a solution
for all possible domain object instantiatiandnd while the BOXWORLD problem
could not be represented as a grounded factored MDP for iguiftiig large domain
instantiations, much less solved, a domain-independduati@o to this particular
problem is quite simple and applies to domain instancesys$ize due to the power
of state and action abstraction afforded by the first-orogickl representation.

Thus, an alternative idea to grounding a relational MDP #igation and solving

it for a particular domain instance is to translate the PPD&lational specifica-
tion to a first-order MDP representation that is directly aatde to solutions via
lifted symbolic dynamic programming. This approach olgaansolution that ap-
plies universally to all possible domain instantiationsl d&ras a time complexity
that is independent of domain size. As we will see, the povwehie lifted style

of solution is that it exploits the existence of domain olgecelations over these
objects, and the ability to express objectives and actitatesf using quantification.

14

3.2 Situation Calculus Background

Before we present the first-order MDP (FOMDP) formalism, wecdss the ba-
sics of the situation calculus, which in turn provides thgidal foundations for our
FOMDP representation. We begin by describing the necessaikground material
from the situation calculus and Reiter’'s default solutioth® frame problem (Re-
iter, 2001) required to understand FOMDPs. This includas@udsion of the basic
ingredients of the situation calculus formulation: acipsituations, and fluents
along with relevant axioms (e.g., unique names for actiord domain-specific
axioms). Next we introduce effect axioms and explain hovs¢hean be derived
from a PDDL specification. Then we show how effect axioms candmpiled into
the successor-state axioms that underly the default saltti the frame problem
of the situation calculus. We conclude by introducing tlgression operataRegr
that will prove crucial to our symbolic dynamic programmswjution to first-order
MDPs.

3.2.1 Basic Ingredients

The situation calculus is afirst-order language for axiozivag dynamic worlds (Mc-
Carthy, 1963). Its basic language elements consist of a;tsuations and fluents:

e Actions Actions are first-order terms consisting of an action figrcsymbol
and arguments. For example, an action for loadingtbax truckt in the running
BoxWORLD example is represented byud (b, t).

e Situations A situation is a first-order term denoting a specific statee initial
situation is usually denoted By and subsequent situations resulting from action
executions are obtained by applying thefunction,do(a, s) representing the sit-
uation resulting from executing actiarin situations. For example, the situation
resulting from loading bok on truckt in the initial situations, and then driving
truck ¢ to city c is given by the termio(drive(t, ¢), do(load(b, 1), s¢)).

e Fluents A fluent is a relation whose truth value varies from situatio situa-
tion. A fluent is simply a relation whose last argument is aatibn term. For
example, imagine an initial statg in which fluentBozOn(b,t, s¢) is false, but
fluents TruckIn(t, c, sg) and BoxIn(b, c, s¢) are true. Then under the semantics
of a deterministic version of thead (b, t) action (which we formally define in
a moment) BozOn(b, t, do(load(b,t), so)) holds. We do not consider functional
fluents in this exposition, but they are easily added to thguage without ad-
verse computational side effects (Reiter, 2001).

3.2.2 From PDDL to a First-order Logic Domain Theory

To axiomatize a PDDL domain theory in first-order logic, wesnfirst consider
how to describe the effects and non-effects of actions. Webegin by describing

15

positive and negative effect axioms that characterize hognfs change as a result
of actions. Note that in the following presentation, allateins that can change
between states in PPDDL have been rewritten as fluents witkxxa situation
term. In addition, we assume all axioms are implicitly unsadly quantified.

¢ Positive Effect Axiomgositive effect axioms state which actions can explicitly
make each fluent true; for example:

[Fc.a = load(b,t) A BoxIn(b,c,s) A\ TruckIn(t,c,s)] D BoxOn(b,t, do(a, s))
[3t. a = unload(b,t) N BoxOn(b,t,s) A TruckIn(t,c,s)] D BoxIn(b,c, do(a,s))
[Fei.a = drive(t,c) A TruckIn(t, c1,s)] D TruckIn(t,c, do(a, s))

¢ Negative Effect Axiomaegative effect axioms state which actions can explicitly
make each fluent false; for example:

[Jc. a = unload(b,t) A BoxOn(b,t,s) N TruckIn(t,c,s)] D =BoxOn(b,t, do(a, s))]
[Ft.a = load(b,t) A BoxIn(b,c,s) N TruckIn(t,c,s)] D —=BoxIn(b,c, do(a, s))]
[Fe.a = drive(t,c) A TruckIn(t, c1,s)] D = TruckIn(t, c1, do(a, s))

In general, positive and negative effect axioms can be Bpddy considering all
of the ways in which each action can affect each fluent. Fattly, these axioms
are easy to derive directly from the PDDL representatioeigivm Figure 2. In fact,
one can verify that these effect axioms are simply syntaetigites of the PDDL
effects where we have made the following transformations:

(1) The action name from the PDDL effect is placed in an etpah the LHS of
the D.

(2) All universal quantifiers for universal effects are doed as all unquantified
variables are assumed to be universally quantified in tleeedixioms.

(3) Thewhen conditions of the PDDL effect are conjoined on the LHS of the
with all fluents specified in terms of the situation

(4) Thethen portion of the effect (which should be a single literal) isged on
the RHS of thed and is parameterized by the post-action situatiofu, s).
Whether the literal is negated or non-negated respectieatBrohines whether
the resulting axiom should be negative or positive.

(5) Any free variables appearing only on the LHS of thandnot appearing free
in the action term are explicitly existentially quantifiedthe LHS.

This takes care of specifyingghat changeshowever we have not provided any
axioms for specifyingvhat does not changee., the so-callefame axiomsOb-
viously, if we want to prove anything useful in our theory, hgve to specify frame
axioms. Otherwise, we would never be able to infer the pittgsenf a successor
or predecessor state for an action as simpleasa. However, specifying exactly

16

what does not change ircampacimanner has been an extremely difficult problem
to solve for the situation calculus—this is, of course, tifamousframe problem

An especially elegant solution to tieame problemis that proposed by Reiter
(1991). In this solution, we specify all positive and negateffects for a fluent,
which conveniently, we have just done in our translatiomfidDDL above. We
use the following normal form for positive effect axioms whé’ is a fluent and
v (7, a, s) represents a first-order formula that, if truesjmesults inF(Z, do(a, s))
being true after action(%) is executed in situatios:

vE (%, a,s) D F(Z,do(a,s)) (12)

Likewise, we use the following normal form for negative eff@xioms where
v (%, a, s) represents a first-order formula that if truesirresults inF'(zZ, do(a, s))
being false after actioa(Z) is executed in situatios:

vr(Z,a,s) D ~F(Z,do(a, s)) (13)

We note that the potential difference between our previsasgntation of positive
and negative effect axioms and this normal form is that tiseeegactlyonepositive
effect axiom for each positive fluent andenegative effect axiom for each negative
fluent. This just happens to be the case in our example, duidrie otherwise, we
could use the simple logical equivalence

[(ClDF)/\(CQDF)]E[(Cl\/CQ)DF], (14)

to rewrite any set of effect axioms derived from the PDDL sleg PPDDL into
this normal form.

Next, we need to add inanigue name axionf®r all pairs of distinct action names
A andB stating that

A(Z) # B(y), (15)
and also that identical actions have identical arguments:

A(»’Uh7$k):A(yla7yk)3x1:3/1/\/\ﬂUk:yk (16)

From this normal form, unique names axioms, ardlanation closure axiontbat
state these are the only effects that hold in our world mdeieiter showed that we
can buildsuccessor state axioms (SS#&&t compactly encode both the effect and
frame axioms for a fluent. The format of the successor staterafor a fluentF' is

as follows:

F(Z,do(a,s)) = ®p(Z, a,s)

17

For our running BXWORLD example, we obtain the following SSAs:

BozxOn(b,t, do(a,s)) = ®pozon(b,t,a,s)
=[Jc.a = load(b,t) N BoxIn(b,c,s) N TruckIn(t,c, s)]
V BoxOn(b,t,s) A = [Jc.a = unload(b,t) A BoxOn(b,t,s) A TruckIn(t,c,s)]

BozIn(b,c, do(a, s)) = ®pogm (b, ¢, a, s)
= [3t.a = unload(b,t) A BoxOn(b,t,s) N Truckin(t,c, s)]
V BoxIn(b,c,s) A = [3t.a = load(b,t) A BoxIn(b,c,s) A TruckIn(t,c, s)]

TruckIn(t, c, do(a, s)) = @ pryckin(t, ¢, a, s)
=[3c1. a = drive(t, c) A TruckIn(t, c1, s))
V TruckIn(t,c,s) A —[3ec1.a = drive(t, c) A TruckIn(t,ci1, s)]

While the notation might seem a bit cumbersome, the meaninigeodxioms is
quite intuitive. For example, the successor state axion®tarOn (b, ¢, -) states that
a boxb is on a truckt after an actionff the action loaded bokon truckt or boxb
was already on truckto begin with and the action did not unload it.

3.2.3 Regression

An important tool in the development of first-order MDPs ig #bility to take a
first-order state description and “backproject” it through a deterministic action
to see what conditions must have held prior to executing thieraif) holds af-
ter executing the action. This is precisely the definitiomegfression Fortunately,
the SSAs lend themselves to a very natural specificationitiefirof regression:
if we want to regress a fluerit(%, do(a, s)) through an actiom, we need only re-
place the fluent with its equivalent pre-action formda(z, a, s). In general, we
can inductively define a regression operafeyr(-) for all first-order formulae as
follows (Reiter, 2001):

e o o o
T
Q
<

P e R
<

Using the unique names assumption for actions and thesessgn rules, we can
perform regression on any first-order logic formula. Fomegége, if

3b. BoxIn(b, paris, do(unload (b*,t*), s))

18

holds then we can use the regression operator to determiaermdst have held in
the pre-action situatios. Following is a derivation using the above rules:

Regr(3b. BoxIn(b, paris, do(unload(b*,t*),s)))
=3b. Regr(BoxIn(b, paris, do(unload(b*,t*), s)))
=3b. ® ouin (b, paris, unload (b*,t*), s)
=3b. [[3¢. unload (b*, t*) = unload(b, t) A BozOn(b,t,s) A TruckIn(t, paris, s)]
V BoxIn(b, paris, s)
A = [3t. unload (b*,¢*) = load(b,t) A BozIn(b, paris, s) A TruckIn(t, paris, s)] |

At this point, we can use the unique names axioms for actmssiplify, and ex-
ploit rules for distributing quantifiers and renaming vates with respect to equal-
ity to obtain the following equivalent representation:

=[3b,t.b=0b" ANt =t" A BoxOn(b,t,s) N\ TruckIn(t, paris, s)]
V 3b. BozIn(b, paris, s)

=[(3b.b=b") A (Tt.t =t") A BoxOn(b*,t*,s) A\ TruckIn(t*, paris, s)]
V 3b. BozIn(b, paris, s)

We will assume throughout the rest of this article that aJeobdomains are non-
empty.? This leads to the following fully simplified form of the regision:

Regr(3b. BoxIn(b, paris, do(unload(b*,t*),s))) (18)
= [BozOn(b*,t*, s) A\ TruckIn(t*, paris, s)| V 3b. BoxIn(b, paris, s)

This final result is very intuitive: it states that if thereigs a boxb in paris after
unloading some bok* from some truck*, then either the truck’ was inparis, or
a box was irparis to begin with.

3.3 FOMDP Representation

Having defined the deterministic situation calculus tratish of a simple PDDL
model, we use this as a building block to obtain a first-ord@PM(FOMDP)
(Boutilier et al., 2001) from the restricted PPDDL syntax felational MDPs that
we introduced earlier. A FOMDP can be thought of as a univévidaP that ab-
stractly defines the state, action, transition, and rewaptet(S, A, 7', R) for all
possible domain instantiations (i.e., an infinite numbegm@und MDPSs). In this
subsection we formalize the building blocks of FOMDPs. Wgiédy introduc-
ing the casenotation and operations and discuss the representatidreoktvard
and value function as case statements. Then we describetbcivastic actions are
represented by building on our previous situation calctdusalization. Once all

2 Logically, this requires a background theorem axiom for every objgm 8prt that
statesdo. Sort(o). With this, we can use the simplificatiggSort : 0. 0o = 0*) D T.

19

of these components are defined, we will have everythingetktxigeneralize the
dynamic programming solution of MDPs from the ground cagéédifted case of
symbolic dynamic programming for FOMDPs.

3.3.1 Case Representation of Rewards, Values, and Proledbilit

We introduce two useful variants ofcase notatioralong with its logical definition
to allow first-order specifications of the rewards, prolitieg, and values required
for FOMDPs:

o1t

Il
~
|

(t = case[pr,ti; -+ ;dn,tn]) =

bn
(\/ (g At = u-}) (19)

i<n

Here theg; arestate formulaavhere fluents in these formulae do not contain the
term do and thet; are terms. We note that in contrast to states, situationsctefl
the entire history of action occurrences. However, theifipatton of our FOMDP
dynamics is Markovian and allows recovery of state propsfftiom situation terms.
For this reason, we can always represent the situation teimg the free variable
without loss of generality. Often the will be numerical constants and thkeg will
partition state space.

We emphasize that the case notation for a logical formulatiadr in the syntactic
form ¢ = case|py,t1;- - ; ¢, t,) OF in the tabular form above) is simply a meta-
logical notation used as a compact representation of thedbigrmula itself. In the
meta-logical notation of cases, all formulag termst; and parameters of the case
statement such as the situation tesmefer to symbols of the underlying logical
language. At a meta-logical level, a case statement maydweed as a relation
since the case “partition” formulae may overlap and may moéxhaustive. Case
statements may be compared with (in)equalities and maatgailwith arithmetic
operations to produce other case statements (all at a wgital level).

To illustrate this notation concretely, we represent omxB/orRLD FOMDP re-
ward functionR(s) from our PPDDL representation in Figure 2 as the following
rCase(s) statement that reflects the immediate reward obtaineduat&ins:

3b. BoxIn(b, paris, s) : 10
rCase(s) = (20)
—3b. BoxIn(b, paris,s) : 0

For simplicity of presentation, we will assume the rewarch@d action depen-

20

dent, but such dependencies can be introduced withoutudifficThroughout the
text, R(s) will be used to represent a generic FOMDP reward case stateame
rCase(s) will refer to the specific reward function. Thus, foroBWORLD, we
write R(s) = rCase(s) and whereverR(s) occurs, we can substitute the logical
formula forrCase(s).

Here we see that the first-order formulae in the case statetinade all possible
ground states into two regions of constant-value: wheretbgists a box imparis,

a reward ofl0 is achieved, otherwise a reward®is achieved. Likewise the value
function V' (s) that we derive through symbolic dynamic programming caneipe r
resented in exactly the same case format. Inde€ds) = R(s) in the first-order
version of value iteration.

The case representation can also be used to specify teampitbbabilities (as we
will see below). We first discuss the operations that can blepeed on case state-
ments.

3.3.2 Case Operations

In this subsection we introduce various operations thabesapplied to case state-
ments providing both a formal logical definition and a graphexample that intu-
itively demonstrates the application of the case operation

We begin by formally introducing the following binary, ©, ando operators on
case statements (Boutilier et al., 2001):

case[di, t; i < n] @ case[j,vj 1 j < m] = case[p; AN, ti-vj i <n,j <m] (21)
case[pi,t; 11 < n] @ case[yj,vj 1 j < m] = case[dp; ANy, ti +vj i <n,j <m] (22)
case[pi, ti 1 < n| & case[j,vj 1 j < m] = case[p; AN, t; —vj i <n,j <m](23)

Intuitively, to perform an operation on case statementssingly perform the
corresponding operation on the cross-product of all cag@ipas of the operands.
Letting each¢; and; denote generic first-order formulae, we can perform the
“cross-sum’® of case statements in the following manner:

¢ ANYp 11
¢ 110 o Uyt 1 _ 01 N 112
0o 1 20 Wy 1 2 Pa Ny 21
Py Ny @ 22

Likewise, we can perforn®, ®, andmax operations by, respectively, subtracting,
multiplying, or taking the max of partition values. Note tHar a binary opera-
tion involving a scalar and a case statement, a scalar Valoey be viewed as

21

case[T,C| whereT is a tautology. We use th@® and® operators to, respectively,
denote summations and products of multiple case operands.

It is important to note that some partitions resulting frdra application of thep,
©, and® operators may be inconsistent; if we can identify such is&iancy, we
simply discard such partitions. When the case partitionsatogeneral first-order
logic formulae, inconsistency detection is undecidablewkver, for the symbolic
dynamic programming algorithm discussed in this sectids,not required that all
inconsistent partitions be discarded; failing to do so $ymgsults in a non-minimal
case representation that contains partitions not correbpg to any world state. In
practice, we rely on time-limited incomplete theorem pngyior inconsistency
pruning.

We define a few additional operations on case statementftghbeing the binary
U operation:

CaSQ[Qbi,ti 0 < n] U CQSE[ZZJ]',UJ‘] < m] = Case[¢1at1; e ;¢n7tn;wlavl; e ;wmyvm]
(24)

In this operation we simply construct the union of the pianis from each of the
case statements; for example:

¢ 10
o1 110 U (| _ 0y 1 20
¢o : 20 Wyt 2 Yoo 1
Wy i 2

Next we define two unary operations. TH&. case(r) operation simply existen-
tially quantifies thecase(z) statement. Sincease(Z) is defined logically with a
disjunction, we can can distribute tB& inside the disjunction:

¢1(f) .
Az |t = | : s = 37 \/{¢:(@) At =1t}

Su(Z) * b =

= V{37 4(@) Nt =1t}

1<n

7. gbl(f) .l
= t = : o (25)

7. ¢, (%) : tp

Normally we assume an implicit “=" for a case statement but show it above for
logical clarity.

22

The second unary operation is denoted “casemax” (andmaxk™) since it pro-
duces a case statement as opposed to a single numericalMaduesult of casemax
iIs a case statement where the maximal possible value ofsts @@gument is as-
signed to each region of state space in the resulting caserstat. Assuming that
the case partitions are pre-sorted suchthatt;; and all partitions of equal value
have been disjunctively merged we can formally define thesajon as follows:

casemaxcase(gy, t1; - ; Gn, tn] = case[d; A)\ —¢;,t; i < nl (26)
j<i

Following is a more intuitive graphical exposition of thereacasemax operation:

¢1 1t o1 Ct
Oy ¢ty P2 N\ 21 st
casemax - — = I :
(bn:tn Qﬁn/_‘qﬁl/_‘qﬁQ/\"'/_'gbnfl:tn

One can easily verify that if the partitions are sorted fréma highest value; to
the lowestt,,, then the highest value consistent with any state formuthennput
case statement is assigned to the unique partition consigith that state formu-
lae in the resulting case statement. (If thein the input are mutually exclusive,
then the casemax results in a case statement logically agqoivto the original.)
The application of casemax requires constructing newtgartiormulae, up to
times the length of the original formulae for a case statémeth n partitions.
Fortunately, the use of inconsistency detection discugsdously and first-order
ADDs (FOADD) that we introduce in the next section will maig the impact of
this blowup by respectively pruning inconsistent casetpams and simplifying the
representation of case formulae.

It is important to point out that all of the case operators uesly symbolic in
that thet; case partition values are not necessarily restricted tetaahnumerical
values, but can be arbitrary symbolic (possibly state-ddpet) terms (Boutilier

et al., 2001). However, the casemax operator (as definedl ingoécitly requires

an ordering on the;. We assume for the rest of this section that the case valaees ar
numeric rather than symbolic, and apply the naturaperator for our ordering.

3.3.3 Stochastic Actions and Transition Probabilities

To state the FOMDP transition function for an action, ststicad‘agent” actions
are decomposed intoallectionof deterministic actions, each corresponding to a
possible outcome of the stochastic action. We then use astateenent to specify

a distribution according to which “Nature” may choose a detristic action from
this set whenever the stochastic action is executed. Asseqoence we need only

23

formulate SSAs using the deterministidature’s choicegBacchus et al., 1995;
Poole, 1997; Boutilier et al., 2000; Reiter, 2001), thus ofovgathe need for a
special treatment of stochastic actions in SSAs.

Letting A(Z) be a stochastic action with Nature’s choices (i.e., deteistic ac-
tions) ny (&), - - -, ng(Z), we represent the probability of (Z) given A(Z) is ex-
ecuted ins by P(n;(Z), A(Z), s). Continuing with the translation of our simple
PPDDL example, we note that tthe:d (b, t) action has one set of effects that occurs
with probability 0.9. We use the deterministic actiandS (b, t) to denote the suc-
cessful occurrence of these effects, and we let the detistiniactionloadF (b, t)
denote the failure of these effects to execute. To do thismuet redefine our
SSAs from the previous PDDL case: néwd (b, t) is a stochastic action executed
by the agent withoadS (b, t) andloadF (b, t) being possible outcomes (i.e., deter-
ministic actions chosen by Nature). Similarly, we intetphe other two actions us-
ing unloadS (b, t)/unloadF (b, t) as the two deterministic outcomes fatload (b, t),
anddriveS(t, c)ldriveF (t, c) as the two deterministic outcomes féfrive(t, c). For
completeness and correctness, we redefine our SSASORWBRLD in terms of
these new deterministic actions for the8NoRrRLD FOMDP:

BozxOn(b,t, do(a,s)) = ®pezon(b,t,a,s)
=[3c.a = loadS(b,t) A BozIn(b, c,s) A TruckIn(t, c, s)]
V BozOn(b, t,s) A —[Jc.a = unloadS(b,t) A BoxOn(b,t,s) N TruckIn(t,c, s)]

BozxIn(b, ¢, do(a, s)) = ®pogin (b, ¢, a, s)
= [3t. a = unloadS(b,t) A BoxOn(b,t,s) N\ TruckIn(t,c,s)]
V BozIn(b, c,s) A= [3t.a = loadS(b,t) A BoxIn(b,c,s) N TruckIn(t,c, s)]

TruckIn(t,c, do(a, s)) = @ pruckin(t, ¢, a, s)
=[Jc1.a = driveS(t,c) A TruckIn(t,c1, s)]
V TruckIn(t, c,s) A = [3er.a = driveS(t, c) A TruckIn(t,cy, s))

Here, we have simply replaced our previous deterministioacames from the
PDDL version with the deterministisucceswersions of Nature’s choice actions
that we will use in our FOMDP. Note that since the “failuretsi®ns of the actions
correspond to the “no effects” case, they obviously do repg phy role in the SSAs.
The frame assumption present in the SSAs ensures that wisahataexplicitly
changed remains the same.

We can now specify a distributiof(n,(Z), A(Z), s) over Nature’s choice deter-
ministic outcome using case statements to specify fanolielstributions, where
the partitions in the case statements correspond to ditfelasses of states and
stochastic action parameters on which the distributioeasanditioned. We denote
specific instances d?(n; (%), A(Z), s) with the case statemepCase(n; (%), A(Z), s)

24

whereT is a tautology, for example:

pCase(loadS(b,t), load(b,t),s) = | T :0.9

pCase(loadF (b,t), load(b,t),s) = | T:0.1

pCase(unloadS (b,t), unload(b,t),s) = | T :0.9 (27)

pCase(unloadF (b,t), unload(b,t),s) = | T :0.1 (28)
pCase(driveS(b,t), drive(b,t),s) = | T :1.0
pCase(driveF (b, t), drive(b,t),s) = | T : 0.0

The above axiomatization does not fully illustrate the poafthe FOMDP rep-
resentation in that the probabilities are not state or aalependent, so we briefly
digress to demonstrate a slightly more interesting varfamppose that the success
of driving a truck to a city depends on whether the truck cimsta boxb with
volatile material denoted by the predicat®latile(b). Then we can specify the
family of distributions over Nature’s choices for this dtastic action as follows:

3b.BoxOn(b,t,s) A Volatile(b) :0.9
—(3b.BozOn(b,t,s) A Volatile(b)) : 1.0

pCase(driveS(t,c), drive(t,c),s) =

3b.BoxOn(b,t,s) A Volatile(b) :0.1
—(3b.BozOn(b,t,s) A Volatile(b)) : 0.0

pCase(driveF (t,c), drive(t,c),s) =

Here we see the transition probability @five(t, c) can be easily conditioned on
state properties of and action parametetsandc.

It is important to note that the probabilities over all deteristic Nature’s choices
for a stochastic action sum to one:

P(n;(Z),A(Z),s) =| T:1 |; VZ, s

j=1

In addition, eachP(n;(), A(Z), s) should be a disjoint partitioning of state space
such that no two case partitions ambiguously assign melppbbabilities to the
same state. These two properties are crucial to having adeéhied probability
distribution over all possible deterministic action outess for every possible state.

For this last example, the second property can be easilfiedri

pCase(driveS(t,c), drive(t,c),s) & pCase(driveF(t,c), drive(t,c),s) = | T:1

25

3.4 Symbolic Dynamic Programming (SDP)

Symbolic dynamic programming (SDP) (Boutilier et al., 20&La dynamic pro-
gramming solution to FOMDPs that produces a logical caserg®n of the op-

timal value function. This is achieved through the symbalperations of first-
order decision-theoretic regression and maximization peaform the traditional
dynamic programming Bellman backup at an abstract levelowitlexplicit enu-

meration of either the state or action spaces of the FOMDR#gmany possible
applications, the use of SDP leads directly to a domaingaddent value iteration
solution to FOMDPs.

We will assume a constant numerical representation of gatuerder to explicitly
perform the casemax during SDP in this article. However, ote that an appro-
priate generalization of casemax (c.f., Chapter 6 of Sar2@$g)) along withRegr
of functional fluents (Reiter, 2001) allows the definitions@®d here to apply to
general symbolic value representations using generakteather than constants,
hence the original use of “symbolic” in the name of the SDRatgm.

3.4.1 First-order Decision-theoretic Regression

Suppose we are given a value functidis). The first-order decision-theoretic re-
gression (FODTR) (Boutilier et al., 2001) of this value funatithrough an action
A(Z) yields a case statement containing the logical descripictates and values
that would give rise td/(s) after doing actiormd(Z). This is analogous to classical
goal regression, the key difference being that actigm) is stochastic. In MDP
terms, the result of FODTR roughly corresponds to a Q-famc(albeit one with
free variables for the action parameters), which corredpda the first half of a
Bellman backup operation given in Equatiort 6.

We define thdirst-order decision theoretic regression (FODT& the situation
calculus analog of Equation 6 where we note that differentassssor states only
arise through different Nature’s choice deterministicans:
k
FODTR[V (s), A(¥)] = R(s) &7 - |DAP(n;(¥), A(@), 5) @ V(do(n; (%), 5))}
j=1
(29)

FODTR uses a meta-logical notation that takes as arguméfitsrepresenting the
logical case statement for a value function with situatiariables and a parame-

3 We do not use an action dependent rew&rd, A(Z)), but could substitute it if needed.

26

terized stochastic action terd(%) with free variables?. All subsequently defined
operations on case statements in this article will be defamadogously.

The only problem with the#ODTR[V (s), A(Z)] operation as currently defined is
that the formulal/ (do(n;(Z), s)) refers not to the current situation but to the
future situationdo(n; (%), s), but this is easily remedied with regression:

FODTR[V (), A(Z)] =

s) @7 @{P(nj(f)aA(f),S)®Reg7“(V(d0(nj(ff),8)))} (30)

This is equivalent to th&"#ODTR operation in Equation 29 since theegr op-
eration preserves equivalence (by definition). Also on antof the equivalence
preserving properties dfegr, we note that ifi’(s) partitions the state space then
so must the resulting case statement f6rDTR[V (s), A(Z)]. Thus, from a log-
ical description ofV/(s) we can derive one for its decision-theoretic regression
FODTR|V (s), A(Z)]. This is key to avoiding state and action enumeration in dy-
namic programming.

We denote an instance of the value functio(s) by the case statemen€ase(s).
As defined previously, we also assume that the reward fumétie) and instances
of Nature’s choice probabilitie®(n;(Z), A(Z), s) are denoted by-Case(s) and
pCase(n;(Z), A(Z), s), respectively.

As an example, let us compute the FODTR f@Fase(s) =
the stochastic actiod(¥) = unload(b*,t*) whererCase(s) is the BOXWORLD
reward as previously defined in Equation 20. SinC&se(s) is logically defined,
we can push th&egr operator into the individualCase(s) partitions as follows:

rCase(s) through

FODTR[vCase(s), unload(b*,t*)] = rCase(s) @

@{pCa&e n;(Z), unload (b*,t*), s)

b2

Regr(3b. BoxIn(b, paris, do(n;(Z),s))) :10
Regr(—3b.BoxIn(b, paris, do(n;(Z),s))) : 0

Now, since the stochastic actioh(¥) = wunload(b*,t*), we know that Nature’s
deterministic action choices; (%) range ovetunloadS (b*, t*) andunloadF (b*, t*).
We now substitute theCase definitions for the deterministic actionsloadS (b*, t*)

27

andunloadF (b*,t*) from Egs. 27 and 28, respectively, obtaining:

FODTR[vCase(s), unload(b*,t*)] = rCase(s) &

Regr(3b.BozIn(b, paris, do(unloadS (b*,t*),s))) 10
¥ T:09 |®
Regr(—3b. BoxIn(b, paris, do(unloadS(b*,t*),s))) : 0
Regr(3b. BoxIn (b, paris, do(unloadF (b*, t* - 10
o, [Rear(0Bosingo.poris, dotuntondr o))
Regr(—3b. BozIn(b, paris, do(unloadF (b*,t*)))) : 0

We have already computeBegr(3b. BoxIn(b, paris, do(unloadS(b*,t*)))) from
Equation 18 where the deterministieload (b*, t*) from the PDDL case has been
renamed tainloadS (b*, t*). And by the properties aRegr, we know thatRegr(—¢)
= —Regr(¢) so we can easily obtain the regression of the negated pariiti
rCase(s). It is important to note that ifCase(s) partitioned the post-action state
space, theRegr operator preserves this partitioning in the pre-actiotesspace.
We note that

Regr(¢(Z, do(unloadF (b*,t*)))) = (&, s)

can be easily derived sinaenloadF (b*,t*) has no effects and is thus equivalent
to a noop action. Making these substitutions, explicitly multiplgi in the action
probabilities and discount facter= 0.9, and explicitly writing outrCase(s), we
obtain the following (where, for readability, we us€ to denote the conjunction
of the negation o&ll partitions above the given partition in the case statement)

3b. BoxIn(b, paris, s) : 10
- 0

FODTR[vCase(s),unload (b*,t")] =

[BoxOn(b*,t*, s) A TruckIn(t*, paris, s)]
©® | v3b. BoxIn(b, paris, s) 8.1
6 L0

3b. BoxIn(b, paris, s) : 0.9
- .0

Finally, explicitly carrying out thed's and simplifying yields the final result:

FODTR[vCase(s), unload (b*,t")]

3b. BozIn(b, paris, s) :19.0
= | =“A[BozOn(b*,t*,s) N TruckIn(t*, paris,s)] : 8.1 (31)
- 0

28

The case statement resulting from FODTR contains free hiasafor the action
parameters; in this cas&(7) = unload(b*,t*) so the free parameters dreandt*.
This result is intuitive: it states that if a box was alreaadlydris then we get reward
19 (10 for the current reward and 9 for the discounted 1-stejurd). Otherwise, if

a box is not inparis in the current state, but bdx was on truck* in paris and the
action was specificallynload (b*, t*), then we get an expected future reward of 8.1
taking into account the success probability of unloadirglibx and the discount
factor. Finally, if no box is iparis in the current state and we do not unload a box
then we get O total reward.

This case statement represents the value of taking staclason unload (b*,t*)
and acting so as to obtain the value givenrgjuse(s) thereafter. However, what
we really need for symbolic dynamic programming is a logagcription of a Q-
function (recall Equation 6) that tells us the possible galthat can be achieved
for any action instantiation ob* and¢*. This leads us to the following definition
Q(A, s) of a first-order Q-function that makes use of the previoudfireed 37
unary case operator:

Q'(A,s) = 37. FODTR[V'"!(s), A(Z)] (32)

We denote a specific instance @f(A, s) by the case statemenCase’(s, A). We
can think ofgCase’(s, A) as a logical description of the Q-function for actid(z)
indicating the values that could be achievedloy instantiation ofA(%). By using
the first-order case representation of states as well asnagtiantification via the
7 operation, FODTR effectively achievesth action and state abstraction

Letting vCase’(s) = rCase(s), we can continue our running example to obtain a
Q-function description for actiomnload where we have removed vacuous quan-
tifiers. Technically,gCase’ (unload, s) would not be an exhaustive partitioning of
the state space in that thealue partition from Equation 32 is not the same one im-
plied here from the-“ because the partition formulae above it have been quantified
However, throughout this article, we can exploit our asstimnpthat all FOMDPs
have anoop action to assume that the minimum value for any stabg@s opposed

to being undefined). Thus we can always show the finaédrtition as—* to indi-
cate that any partitions not explicitly assigned a valueh®ydabove partitions are
assigned a default valuwe Thus, we arrive at the following intuitive result:

qCase*(unload, s) = 3b*,t*. FODTR[vCase’(s), unload(b*,t*)]

3b. BoxIn(b, paris,) :19.0

= | 3b*, t*. [~ A BozOn(b*,t*,s) A TruckIn(t*, paris, s)] : 8.1

- 20

In words, this states if the box was alreadyinis then we get a discounted reward
of 19. Otherwise, if a box is not iparis in the current state, but theexistssome

29

box on a truck inparis, then we could unload it to get an expected discounted
reward of 8.1. Finally, if there is no box on a truck to unloadiris and there is
no box already iparis then we get O expected discounted reward. It is instructive
to compare this description to the prior description of FGDWithout existential
action quantification—the difference is subtle, but impattfor action abstraction.

3.4.2 Symbolic Maximization

At this point, we can decision-theoretically regress thkiedunction through a
single stochastic action to obtain a representation of its Q-fon¢tbut to com-
plete the dynamic programming (Bellman backup) step in tlé s Equation 7
from Section 2, we need to know the maximum value that can béeaed by
anyaction. For example, in the®&WOoRLD FOMDP, our possible action choices
areunload(b,t), load (b, t), anddrive(t, c) and our Q-function computations using
Equation 32 give ugCase' (unload, s), gCase' (load, s), andqCase’ (drive, s). In
general, we will assume that we hawvestochastic action§A, (1), ..., An(Zn)}
and a corresponding set of Q-functiofgCase’(A1,s),. .., qCase’ (A, s)} de-
rived from a common value functionCase' ™" (s).

We might try to obtain a case description of the value fumctiGase’ (s) by sim-

ply applying the case) operator to merge all partitions of the Q-functions, i.e.,
qCase’(s, A1) U ... U qCase'(s, A,,). While this provides us with a description
of possible values, it is not a valdenctionbecause the state spaces of each Q-
function may overlap, thus potentially assigning multipdéues to the same under-
lying state. What we really want instead is to assignhiuyhestpossible value to
each portion of state space. Fortunately, this is quite @éhythe casemax operator.
Thus we get the following equation for the symbolic maxintia of Q-functions:

Vi(s) = casemax[Qt(Al, s)U...UQ" A, s)] (33)

Recalling the way in which the casemax operation is computad Equation 26,
every resulting instanceCase’(s) of the value function/*(s) will have the fol-
lowing case statement format where value case partitiatorresponds to valug
andUZ' > Vit1-

¢1 LU
Py N =y D g

vCase'(s) =

Y A2 A= A - oo A hpy U,

This approach effectively gives us a decision-list repmegtéon of our value func-
tion (recall the optimal value function representatiomirbigure 4). Thus, to de-
termine the value for a state, we can simply traverse thé&dist highest to lowest

30

value and take the value for the first case partition thattisfssd. The casemax
operation guarantees that this value function will be aothsjpartitioning of the
state space and our previous assumption that all actiorexaceitable in all states
ensures that this value function exhaustively assigns @eval all possible states
(assumingCase' ™' was exhaustive).

3.4.3 First-order Value Iteration

One should note that the SDP equations given here are exhetlifted versions
of the classical dynamic programming solution to MDPs gipegviously in Equa-
tions 6 and 7 from Section 2. Since those equations were uaspdri to define a
value iteration algorithm, we can use the lifted versionddabne dirst-order value
iteration algorithm where: is our error tolerance:

(1) Initialize VO(s) = R(s), t = 1.
(2) Computelt(s) givenV*~!(s) using Equations 32 and 33.
(3) If the following Bellman error inequality holds

IVH(s) & VI (8)]oo < “2;’” (34)

then terminate and retufii’(s), otherwise go to step 2.

Here, we defingV!(s) & V'~1(s)| . as the maximal absolute value of any consis-
tent partition in the case statement resulting fighis) © V' =1(s).

For example, applying first-order value iteration to thed&ye-to-go value function
(i.e., vCase®(s) = rCase(s), given previously in Equation 20) yields the follow-
ing simplified 1- and 2-stage-to-go value functions in thexBVORLD problem
domain:

3b.BoxIn(b, paris, s) :19.0
vCase(s) = | =4 A 3b, t. TruckIn(t, paris, s) A BozOn(b,t,s) : 8.1
¢ : 0.0
3b.BozIn(b, paris, s) :26.1

=“A 3b, t. TruckIn(t, paris, s) A BoxOn(b,t,s) : 15.4

vCase?(s) =
=“A3b, e, t.BoxOn(b,t,s) \ TruckIn(t,c,s) : 7.3

- . 0.0

After sufficient iterations of first-order value iteratidhe¢t-stage-to-go value func-
tion converges, giving the optimal value function (and asdegve in a moment,
an optimal policy) from Figure 4.

31

Boutilier et al. (2001) provide a proof that SDP and thus ewtep of value itera-
tion produces a correct logical description of the valuecfiom. From this, we can
lift the error bounds from the ground MDP case in Equation 8tow domain-
independent error bounds on the first-order abstracte@ \estimate:

Corollary 3.4.1 LetV*(s) be the optimal value function for a FOMDP. Terminat-
ing according to the criteria given in Step 3 of first-ordefuaiteration guarantees
|[Vi(s) — V*(s)|ls < € for anydomain instantation (even infinite) of the FOMDP.

More generally, as a direct result of this corollary, we canve domain-independent
error bounds for the first-order representation of the valaetion produced bgny
first-order MDP algorithm (see Section 6 for other first-araigorithms).

Corollary 3.4.2 LetV(s) be an arbitrary first-order case representation of a value
function. Letf/’(s) be the result of applying Equations 32 and 33&@3) for a
FOMDP. Lete = 2-[[V'(s) © V(s)]lwo. Then|[V(s) — V*(s)[< e for any
domain instantiation of the FOMDP.

The difference ofy between the bounds of Corollaries 3.4.1 and 3.4.2 occurs be-
cause the former refers to a bounddf(s), while the latter refers to a bound on
V(s) = V'~!(s) and value iteration is known to contract the errorjpgn each
iteration.

3.4.4 Policy Representation

Given a value function, it is important to be able to deriveratforder greedy
policy representation from it, just as we did in the groundecen Section 2. This
policy can then be used to directly determine actions toyaplen acting in a
ground instantiation of the FOMDP, or it can be used to defis¢-@rder versions
of (approximate) policy iteration (Sanner and Boutilier0gD

Fortunately, given a value functidn(s), it is easy to derive a greedy policy from it.
Assuming we haver parameterized actiof{s4, (%), . . ., A,,,(Z) }, we can formally
derive the policyr(s)[-] using the: to denote the value representation from which
the policy is derived as follows (taking into account a fewdifications to the case
operators that we discuss in a moment):

m(s)[V(s)] = casemag | J 3z FODTR[V (s), 4;(Z))]) (35)

i=1...m

We often refer to a specific instance ofs) with the case statementCase(s).
For bookkeeping, we require that each partitignt) in 37 FODTRI[V (s), A;(Z)]
maintain a mapping to the actioty that generated it, which we denote(ast) —
A;. Then, given a particular world statewe can evaluate Case(s) to determine
which maximal policy partition¢,t) — A, is satisfied by and thus, which action
A; should be applied. If we retrieve the bindings of the exisédiy quantified

32

action variablesiz in that satisfying policy partition, we can easily determihe
parameterization of actioA; that should apply according to the policy.

To make this concrete, we derive a simple greedy policy fer BoxXWORLD
FOMDP assuming the value functidn(s) = rCase(s) and that we only have
two actionsunload (b*,t*) andnoop. Noting that we have already computed
FODTR[rCase(s), unload(b*,t*)] in Equation 31 and thafOD TR[rCase(s), noop]
will just be rCase(s) with 10 replaced byl9, we obtain the following policy:

mCase[rCase(s)]
= casemag{3b*,t*. FODTR[rCase(s), unload(b*,t*)]}
U{FODTRI[rCase(s), noop|})

3b. BozIn(b, paris, s) :19.0 — noop

= | 2“A[F*, t*. BozOn(b*,t*, s) A TruckIn(t*, paris,s)] : 8.1 — unload(b*,t*)

¢ 0 — noop

For a more interesting policy, we refer the reader back toftienal value function
and policy for BoxXWORLD given in Figure 4.

Technically, we note that there may be an infinite number tibas that can be
applied since there are an infinite number of ground insa#iatis ofunload (b*, t*)
depending on the domain instantiation. Thus, this poligyesentation manages to
compactlyrepresent the selection of an optimal action amongst antmBet.

4 Practical FOMDP Solution Techniques

The last section reviewed a symbolic dynamic programmimR)Salgorithm the-
oretically capable of producing aroptimal value function for a FOMDP that does
not require theorem proving to detect inconsistent cadtipas or logical simpli-
fication to maintain compact representations of case martiormulae. However,
in practice, both theorem proving and simplification aredaekto control the rep-
resentational blowup of the value function occurring atestep of value iteration.

To this end, the first half of this section introduces a prcattfirst-order exten-
sion of the algebraic decision diagram (ADD) (Bahar et al93)Qdata structure,
the first-order ADD (FOADD) for maintaining case statements in a simplified,
non-redundant format that facilitates theorem provingiieconsistency detection.
We show how FOADDs can be used to exploit structure in SDP foMBPs

in much the same manner that ADDs have been used to explodiste in dy-
namic programming for MDPs (Hoey et al., 1999). We concludté an illustra-
tive empirical results demonstrating that FOADDs enableatomated solution
to basic FOMDPs. We will discuss related work on first-ordecigion diagrams
(FODDs) (Wang et al., 2008), also applied to FOMDPs, in $ad.

33

In the second half, we introduce an additive decompositfgpr@ach for approx-
imately solving FOMDPs with universal reward specificatioihis approach is
motivated in part by previous decomposition methods antlesahe application
of FOMDP solution techniques to a reward specification thihemvise renders
SDP solution approaches intractable.

4.1 Representation and Solution with First-order ADDs

An algbraic decision diagranfADD) (Bahar et al., 1993) is a data structure for
compactly representing a function fraB%¥ — R using a directed acyclic graph.
ADDs have been used to compactly model transition functimsards, and value
functions in factored MDPs (Boutilier et al., 1999). Moregwalue iteration de-
fined in terms of ADD operations has yielded substantial swpments in time and
space complexity over enumerated state representatiaey (@t al., 1999).

To extend these ideas to the first-order framework, we defet@aals for breaking
down first-order case partition formulae into their boolgmapositional compo-
nents and create a compécst-order ADD(FOADD) representation of case state-
ments. Then we can apply known ADD algorithms to performsthey, ands case
operations. Once we have shown how to do this, we end withcuskson of the
practical use of FOADDs and a small example of a FOADD appboao SDP.

4.1.1 FOADD Construction and Operations

The first aspect of FOADDs concerns how to construct themnaatically from a
case representation. Since ADDs are propositional, we se@& method of find-
ing propositional structure in first-order formulae. We abnthis by permuting
quantifers at the same level of nesting (e[gx, y.¢| = [y, x.¢]) and by distribut-
ing quantifiers as deeply into case formulae as possiblg tisefollowing rewrite
rule templates«indicates variables other than those explicitly quant)fied

[Fz. A(z,0) V B(x,0)] — [(3x. A(z,0)) V (3x. B(z,0))] (36)
Va. A(z,0) A B(z,0)] — [(Vz. A(x,0)) A (Vz. B(z,0))] (37)
[Fz. A(z,0) A B(o)] — [(Fz. A(x,0)) A (B(0))] (38)
V. A(z,0) V B(o)] — [(Vz. A(x,0)) V (B(0))] (39)

We also perform equality simplification using the non-emgdynain assumption
with the following two rules:

[Fz.z =y N Az, 0)] — Ay,) (40)
Vo.x #£yV Alx,0)] — Ay, o) (41)

(a) Given case statement:

Jz.[A(z) V Vy.A(xz) A B(z) A —A(y)] |1
— 0

case =

(b) Push down quantifiers expose propositional structure:
[Fz. Az [Fz.A(z) A B(z) A Vy.—A(y

ED @ A

Var |Var - FOL Formula (b/\) n
-a
a_ [=[3z.A(z)] case = ~ 5
b |=[Fz.A(z) A B(z)] —

(c) Convert to first-order (A)ADD:

a.

“« Cl
case = b | First-order CSI! = /
[y) -

R}
Y 0
1 0

Fig. 5. An example conversion from a case statement to a compact FOAIEsentation
demonstrating first-order CSI.

The first rule is fairly straightforward while the secondetbllows simply from
the negation of the first rule with renaming.

In practice, we iteratively apply simplification rules (4d@)) followed by rewrite
rules (36)—(39) working from the innermost to the outernmsntifiers until no
more rewrites can be applied. While other orders may givesifit (potentially
smaller) results, we find that this deterministic approacpenerally sufficient to
expose most propositional structure in first-order forraula

We provide the following example application of these résveind simplification
rules to demonstrate their power:

Jz,z. [x =y A A(z,0) A B(y, 2)]

= dz.[x =y AN A(z,0) A (2. B(y,2))] [Apply rewrite rule (38) forz]

= (3z.x =y A A(x,0)) A (2. B(y,z)) [Apply rewrite rule (38) forz]

= A(y,o) A (3z. B(y, 2)) [Apply simplification rule (40) forz]

To build a FOADD, we first apply these rules to expose the psitjgmal structure

35

of a first-order formula. Consider the example in Figure 5(aye start with
dx.[A(z) V Vy.A(x) A B(z) A —A(y)] (42)
and apply rewrite rule (39) fay followed by (36) forx to obtain
[Fz. A(x)] V ([z.A(z) A B(x)] A [Vy.—A(y))). (43)
Once we have pushed quantifiers as far down as possible, vezette proposi-

tional structure of the formula by considering proposiéibconnectives over quan-
tified formulae as follows:

Jz. A(x) \/< [Fz.A(z) A B(z)] |A| Yy.—A(y) > (44)

Each of these boxes represents a formula that we cannoefudétompose into
propositional components. Consequently, we treat eachesithhoxed formulae
as propositions. To do this, we maintain a table of mappings fpropositional
variablesp, naming each first-order formula, to first-order formulae{p — }.

To convert a new formul® in a case statement to a propositional variable, we
examine each formula-to-proposition mapping in our talfle. =) for somey

in the table, we return its corresponding propositigif ¢ = —), we return—p;
otherwise, we add a new proposition lakehnd add the mapping — ¢ to our
table and returr. In our example, having built the table shown in Figure 5,
can convert the formula to its propositional counterpart:

aV (bA—a) (45)

At this point, we can build an ADD from a case statement whasmdilae are
purely propositional. What makes this ADD first-order is tddiéional proposition

to first-order formula mapping that gives each propositidimst-order definition.
Standard ADDs can explodontext-specific independence (C@putilier et al.,
1996) (i.e., where the value of a function is independennhahaut variable given
the assignment to other variables). There is, however, ditiadal form of CSI
that we can exploit in FOADDsHifst-order CSI This first-order CSI follows from
the structured and potentially overlapping nature of tlegpsitional variables. For
instance, in our exampleys O —b, S0 as we traverse its FOADD representation, we
can force the decision node fbin the context of:. This is shown in Figure 5(c).

The options for detecting first-order CSlI include:

(a) Do not perform any first-order CSI detection at all.

(b) Maintain information about all pairwise implicatiomsthe propositional map-
ping table and detect just this pairwise first-order CSI duthe application
of FOADD operations.

36

(c) Perform full simplification for all decision nodes in tieentext of the con-
junction of all decisions made for parent nodes during alrapons on the
FOADD.

Obviously (a) requires no additional computation, but cae gise to FOADDs
with potentially dead paths. In contrast, (c) requires tarigal computation in re-
turn for extensive simplication. In practice, we find (b) fieothe most reasonable
tradeoff between computation and simplification; timeHed theorem proving, al-
though incomplete, suffices to identify many pairwise nadglications that lead
to substantial first-order CSI pruning. It is trivial to extetne ADD algorithm to
do this additional consistency check in the presence ofnpaecisions when per-
forming the standard ADDI pply and Reduce operations. However, if (b) or (c) are
used, it is not sound to reorder the ADD nodes since the frdracontext of these
prunings may change and thus may no longer be valid after remidering.

Once we convert a case statement to an FOADD, we can apply,the ando
case operations to FOADDs by making direct use of the Ay operations of
multiplication, addition, and subtraction (Bahar et al93p We can reuse standard
ADD operations for FOADDs since they are just ADDs with augted variable
definitions in the propositional mapping table. Thus, thiy gmactical difference
between ADD and FOADD operations is that these augmenteablardefinitions
may lead to additional pruning of structure due to first-od8l.

In general, FOADDs may be treated as ADDs, except for theireapent to consult
the propositional mapping table in the following circunmstes:

(1) when constructing a FOADD;

(2) when converting a FOADD back to a case representationvaluating a
ground state; or

(3) when exploiting first-order CSI using method (b) or (c)&ave may consult
this table during the ADDReduce and Apply procedures.

4.1.2 Practical Considerations

Replacing case statements with FOADDs in the representatoinsolution of
FOMDPs has the potential to exploit a great deal of structiiae naturally oc-
curs in these representations. First, the disjunctiveraaifipositive effects in the
regression of FOMDP formulae introduces a number of digjans during the ap-
plication of algorithms such as SDP. Second, the existequiantification of the
action variables in these formulae introduce existenti@mgifiers that can be dis-
tributed through the disjunctions introduced Bygr. Consequently, every SDP
step introduces structure that can be directly exploitethbypreviously described
methods for exposing propositional structure of first-ofdemulae. As such, our
approach to representing FOADDs is well-suited to FOMDPw@slemonstrate
below with a small example.

37

However, if we were to define a complete SDP algorithm for FOMDhat only
uses FOADDs, we would need to define special unary FOADD tipesasuch as
Regr, casemax, andz used in the SDP algorithm. WhilRegr can be easily de-
fined (note that a FOADD is just a compact representation alsa statement and
thus Regr can still be applied), it changes the logical meaning of tddBD nodes
since they have a first-order definition. In general, maimtg a canonical repre-
sentation after performingegr on a FOADD requires expensive node reordering
operations. The application afr and casemax also generally require expensive
node reordering operations. For these reasons, we do nigt App-, casemax, or
J7 to FOADDSs in practice, instead opting for a pragmatic use @ABDs that
exploits their strengths.

The primary advantage of FOADDs is the provision of efficieimary operations
and formula simplification through the breakdown of proposeal structure and
the elimination of redundancy that occurs during their ¢mgsion. In doing this
simplification, FOADDs remove a lot of burden from the theorprover, which
must otherwise detect inconsistency with highly redundeptesentations. Thus,
in our SDP algorithms, we use FOADDs where they are most Laetlefficient—
binary operations and logical simplification—and reverthe case representation
to perform the unary operations &fgr, casemax, andx that can be expensive
due to the need for internal node rotations. This approaatisi¢o a viable SDP
algorithm, to which we now turn.

4.1.3 Symbolic Dynamic Programming with FOADDs

The use of FOADDs in the somewhat hybrid manner discussedeaditows the
development of a practical SDP algorithm.

We have implemented a fully automated first-order valuaiten algorithm and
tested it on several examples to develop a sense of itsigéfaess. One problem
tested is the running &WOoRLD FOMDP example. The FOADDs for the reward,
optimal value function and policy are given in Figure 6. Hoe variable ordering,
we simply maintain the order of formulae as they were addedewariable map-
ping table in the FOADD during the SDP algorithm. We use thepfie theorem
prover (Riazanov and Voronkov, 2002) for detecting equivedeand inconsistency.
The total running time for this solution until convergendéhm tolerance 1e-4 was
15.7s on a 2Ghz Pentium with 2Gb of RAM. Unsurprisingly, thalfihROADD for
this problem gives exactly the decision list structure thatwould expect for the
BoxWORLD problem as shown in Figure 4.

We have also used our FOADD value iteration algorithm to eather variants

4 While we do not discus®egr, casemax, andz for FOADDs further here, the reader
is referred to Sanner (2008) for additional information on how one mighiopm these
operations efficiently.

38

BoxWorld FOADD reward representation:

rCase(s) = | 3b, c. BozIn(b, Paris, s) |

%y
10 0

BoxWorld FOADD optimal value function and policy:

vCase(s) = | 3b. BoxIn(b, Paris, s) |
(TCase(s)) /%
100: moop [3p, ¢ TruckIn(t, Paris, s) A BozOn(b,t, s) |

/™

i
89 : unload(b, ?) [b, ¢,t. BoxOn(b,t,s) A TruckIn(t,c, s)]

/[

80 : drive(t, Paris) [3b, ¢, t. BozxIn(b,c, s) A TruckIn(t,c,s)]

L

72 : load(b,t) [Elb, c1,t,c9.BoxIn(b, c1,8) N T'ruckIn(t,cQ,S)]

s

64.7 : drive(t,c1) 0: noop

Fig. 6. An example FOADD representation of the reward oxBVoRLD and the FOADD
representation of the optimal value function and policy for this domain.

of the BoxXWORLD problem, including the version given in Boutilier et al. (200
with an extra fluent foRain(s) and action probabilities conditioned on this fluent.
We also used a 8xWoRLD reward with the following structure:

3b. BoxIn(b, paris, s) A\ TypeA(b) : 10
R(s) =| =“ A 3b.BoxIn(b, paris, s) A = TypeA(b) : 5 (46)
- 0

Here in addition to the&Rain(s) fluent, we have also added a non-fluent predicate
TypeA(b) to distinguish types of boxes and varying rewards for eapk tf box.
The FOADDs for these solutions are too large to display, beihwte that after a
small number of steps of value iteration, the value funckQADD stopped grow-
ing indicating that all relevant state partitions had begamtified. Value iteration
continued with this quiesced FOADD until all values at thavies converged. The
respective solution times to convergence within tolerdrecd for these more com-
plex problems were 70.4s and 489s on a 2Ghz Pentium with 2GbAM. For
comparison, the ReBel algorithm (Kersting et al., 2004) peeduthe same solu-
tion for the first FOMDP variant with th&ain(s) fluent in <6s on a 3.1Ghz ma-
chine. ReBel’s specialization for a less expressive subde®©dDPs (still captur-
ing BOXWORLD, however) results in a substantial performance edge. V\eisks
differences between ReBel and the work in this article in $adii

39

There appear to be at least two general criteria for problemains to demon-
strate finitely-sized optimal value functions with the @ntrcase representation as
occurred in these examples: (1) the non-zero reward caséiqres must be ex-
istentially quantified and (2) the FOMDP dynamics must naitoiduce transitive
structure that cannot be finitely bounded by domain axionssthds last require-
ment is vague, we provide an example. In thexBVORLD problem covered in
this section, we implicitly assume that all cities are ast@e from each other
via the drive action. If instead we had some underlying road topologycatd
by Conn(City : c1, City : c3) that restricted thelrive actionand we did not
know this topology in terms of prior knowledge specified amdm axioms, then
the SDP algorithm would likely need to generate represiemstfor all possible
topologies, thus likely leading to a value function of infani'size.” Infinite-sized
value functions can also occur when condition (1) is vialads we discuss in the
next subsection. We discuss potential research direditom&igate these observed
deficiencies of the case representation in Section 7.1.

Unfortunately, the FOADD solution approach has failed tals¢o more complex
problems used in the planning community (particularly peais from the ICAPS

2004 and 2006 International Planning Competitions) sineg tipically use more

complex rewards, including those with universal quansfiahereas problems
with existentially quantified rewards may exhibit a finiizgesoptimal value func-

tion, this is rarely the case with universal rewards. Thuditawhal techniques are
required to handle this problem, as we discuss next.

4.2 Decomposing Universal Rewards

In first-order domains, we are often faced withiversal reward expressioribat
assign some positive value to the world states satisfyimgradla of the general
form Yy ¢(y, s), and O otherwise. For instance, in oubBWNORLD problem, we
may define a reward as havial boxesb at their assigned destination citygiven
by Dst(b, c):

Vb, c. Dst(b,c) D BoxIn(b,c,s) : 1
R(s) = (47)
- .0

One difficulty with such rewards is that our case statemerusige a piecewise-
constant representation of the value function. Howevedh umiversal rewards, the
value function typically depends on timmberof domain objects of interest. In
our example, value at a state depends on the number of bokes thir proper
destination (since this can impact the minimum number gbssie will take to
obtain the reward). So &stage-to-go value function in this case would have the
following characteristic structure (where we use Englisplace of first-order logic

40

for readability):

Vb, c. Dst(b,c) D BoxIn(b,c,s): 1

One box not at destination Y

V'(s) = = | Two boxes not at destination 2

t — 1 boxes not at destination ~¢~!

Obviously, since there aredistinct values in an optimalstage-to-go value func-
tion, the piecewise-constant case representation regaingnimum oft case par-
titions to represent this value function. And when we corelilmese counting dy-
namics with other interacting processes in the FOMDP, wenoffee an uncon-
trollable combinatorial blowup in the number of case panti$ of value functions
for FOMDPs with universally defined rewards. As noted by @reand Thiebaux
(2004), effectively handling universally quantified redsis one of the most press-
ing issues in the practical solution of FOMDPs.

To address this problem we adopt a decompositional approaativated in part by
techniques for additive rewards in MDPs (Boutilier et al.919Singh and Cohn,
1998; Meuleau et al., 1998; Poupart et al., 2002). We diviglesolution into off-
line and on-line components where the on-line componeniires|a finite-domain
assumption in order to execute the policy.

4.2.1 Offline Generic Goal Solution

Intuitively, given a goal-oriented reward that assignsitpesreward if Vi G(y, s)

is satisfied, and zero otherwise, we can decompose it intd af ggound goals
{G(y1),...,G(yn)} for all possibley; in a ground domain of interest. If we reach
a state where all ground goals are true, then we have satigfiédy, s).

Of course, our methods solve FOMDPs without knowledge o§gexific domain,
so the set of ground goals that will be faced at run-time isnomin. Thus, in the
offine FOMDP solution, we assumeganericground goal&(y*) for a “generic”
object vectory*. Assuming that our universal reward takes an implicativenfas

it does in our reworked BXWORLD example, the conditions in the antecedent
(Dst(b, ¢)) indicate the goal objects of interest (all pajbsc) satisfyingDst (b, c))
and the consequent of the implication indicates the spegdid G(y,s) to be
achieved for these object®¢zin (b, c, s)).

It is easy to construct a generic instance of a reward fundiig;-)(s) given a
single goal. In our BXWORLD example we would introduce the distinguished

41

constant$* andc* to denote our goal objects of inter&stb*, c*):

BoxIn(b*,c¢*,s) 1
rC’aseG(b*’c*)(s) = (48)
—BoxIn(b*,c*,s) : 0

Given this simple reward, it is easy to derive a value fumctiQ,;-)(s) for this
FOMDP using SDP or the approximate FOMDP solution algorghhat we in-
troduce in subsequent sectiofg,;+)(s) and its corresponding policy assume that
i* is the only object vector of interest satisfying relevameyonstraints and goal
preconditions in the domain. In our runningpBWORLD example, the optimal
vCaseq(+ +)(s) would look very similar to Figure 4 (or 6) with some differexsc
owing to the fact that our reward is defined in terms of cortstéihandc* rather
than existentially quantified variablésandc.

We next derive Q-functions for each actidp() from the value functiog - (s)
for the “generic” domain:

Qa () (Aiy s) = 3T FODTR[Vg) (s), Ai(T)] (49)

For our running BXWOoRLD example, we would deriveCase -
A; € {unload, load, drive}.

)(AZ-, s) for

s«
,C

4.2.2 Online Policy Evaluation

With the offline solution (i.e., Q-function for each actiaf)a generic goal FOMDP
in hand, we address the online problem of action selectioa §pecific domain in-
stantiation given at run-time. We assume a set of groundsdédlyi), . .., G(y,)}
corresponding to a specific finite domain given at run-tiniewé assume that
(typed) domain objects are treated uniformly in the unimisééed FOMDP, as is
the case in many logistics and planning problems, then wairlthe Q-function
for any goalG(yj) by replacing all ground termg" in gCase) (A;, s) with the
respective termg; to obtaingCase (4, s).

Returning to our running example, from the value functigiise - .-y (s) we
derived a Q-functiomCaseq;+(A;, s) for each actiond;. If at run-time, we are
given the three goal®st(by, paris), Dst(be, berlin), and Dst(bs, rome), then we
would substitute these goals into our Q-functions to obtlaree goal-specific Q-
functions for each actiod;:

{qcaseG(bl,paris) (AH 8)7 quseG(bg,berlm) (AH 8)’ qcaseG(bg,mme) (Al? S)} (50)

Action selection requires finding an action that maximizaisi® with respect to the
original universal reward. Following (Boutilier et al., IB9Meuleau et al., 1998),
we do this by treating theum of the Q-valuesf any action in the subgoal MDPs as

42

Algorithm 1: EvalPolicy({ qCasegg (-,)}, {G (1), -, G(yn) }, 8) —Ai(C)

input : (1) For each action templatd;(Z¥) a set of (non-disjoint) Q-functions
qCaseq) (Ai, s) for a specific ground instantiatioff of a goalG.
(2) A set ofn unsatisfied goal$G(vi), . . ., G(yr)} to achieve.
(3) A ground state to find the best action for.

output :The optimal ground actionA;(¢) to execute with respect to the
given state and additive decomposition of unsatisfied godl§c) =

argmax, ;31 qCaseqy)(Ai(@).)
begin

/I In hash tableh, entries map ground actions to corresponding valdér) — v.
Initialize empty hash tablg;

/ Now, compute additive values for all matching ground actions
foreach (action 4;) do

foreach (goal G(yj)) do

Replace all occurrences 9t in gCaseg - (AZ, s) with g7;

)
foreach (case partition(3z ¢(Z), t) € qCaseqy;)(Ai, s)) do
foreach (ground binding = ¢ satisfying3z ¢(#)) do
if (4;(¢) — v is already inh for somev) then
Updateh to containA;(¢) — (v + L);
else
| Updateh to containA;(¢) — £;

Il Assumeéh tracks its maximal entryA;(¢) — v.
Return the maximal;(c) from h;

end

a measure of its Q-value in the joint (original) MDP. Speailii; we assume that
each goal contributes uniformly and additively to the redyaso the Q-function

for an entire set of ground goa{s+(v1), ..., G(y,)} determined by our domain
instantiation is jusg_7_, anaseg(+)(4i, s). Action selection (at run-time) in any
ground state is realized by choosmg the action with maxinaulditive Q-value.

Naturally, we do not want to explicitly create the joint Qafiiion, but instead use
an efficient “scoring” technique that evaluates potentiafeful actions by iterating
through the individual Q-functions as described in Algumit1.

While this additive and uniform decomposition may not be appate for all do-
mains with goal-oriented universal rewards (and certaaffgrs no performance
guarantees on account of its heuristic nature), we havedfdaun provide reason-
able results for domains such a®BNORLD as we empirically demonstrate in
the next section. While our approach only currently handé@grds with univer-
sal quantifiers, this reflects the form of many planning peotd. Nonetheless, this
technique could be extended for more complex universalngsy#he general open

43

guestion being how to assign credit among the constitudrsigain a reward.

5 Linear-value Approximation for FOMDPs

Perhaps the greatest difficulty with the symbolic dynamagpamming (SDP) ap-
proach and practical extensions discussed in the lasbséastthat the size of the
value function case representation grows polynomially achdteration and thus
exponentially in terms of the number of iterationsSimilar growth can occur for
the first-order formulae representing the state partitibeamselves. Once these for-
mulae become too large to practically detect equivalendeooinsistency, all hope
of obtaining a compact representation of the value funddost as the number of
partitions in the case representation grow unboundedly matpractical means for
simplification or pruning. Indeed, the SDP approaches ahwiag both FOADDs
and universal reward decomposition, are incapable of miaduvalue functions
and policies competitive with other planners from the ICAR82and 2006 Inter-
national Probabilistic Planning Competitions (Littman afodines, 2004; Gerevini
et al., 2006).

Given that approximate solution techniques such as linaarevapproximation
(Guestrin et al., 2002; Schuurmans and Patrascu, 2001;ra¢esFeand Roy, 2003)
have allowed MDP solutions to scale far beyond the limitsxafot algorithms, at
the same time offering reasonable error guarantees, thgests generalizing lin-
ear value approximation technigues to FOMDPSs. In this sective generalize the
LP methods for ground MDPs, discussed in Section 2, to thiediger case. This
reduces the task of solving an FOMDP to that of obtaining geeights for a set of
basis functions that approximates the optimal value fonctl his requires the gen-
eralization of linear programs to handle first-order caists and further requires
efficient extensions of solution methods such as constganération and variable
elimination in cost networks to exploit the first-order sture of these constraints.

To develop a completely automated linear-value approxonapproach to FOMDPs
we must address the issue of automatic basis function cmisin; to do this, we
adapt techniques proposed by Gretton and Thiebaux (200#).appropriate do-
main axioms defining legal states, our techniques provitlg fiist-order, non-
grounded solutions to FOMDPs derived from PPDDL and can etenwith plan-
ners from the ICAPS 2004 and ICAPS 2006 International ProiséibilPlanning
Competitions.

° In the worst case, a single case operation can yield a quadratic blowup nithber of
case partitions in terms of the maximum number of case partitions in its operands.

44

5.1 Benefits of Linear-value Approximation

Linear-value approximation for FOMDPs is attractive fovesal reasons:

e Given that much of the computation in linear value approxiamreduces to
solving LPs, this reduces the algorithm design space todtupsnd solution of
linear programs.

e Since the size of linear-value approximations is fixed, it ba used to moder-
ate the complexity of the resulting solution algorithm. §heads to a flexible
solution approach that trades off approximation accuracycmputation.

e Linear value approximation does not require extensiveckdgsimplification in
practice, just weight projections that make use of a thequeswer. This is a
tremendous advantage over exact techniques that reqlistastial simplifica-
tion in order to maintain a compact representation.

e Linear value approximation have yielded reasonable eogdiperformance for
ground and factored MDPs, suggesting promise for its agiitio to FOMDPs.

¢ If we do not use additive reward decomposition techniquéteation 4.2 (which
approximate the FOMDP model), then we can derive domaiegaddent error
bounds on our resulting value function using Corollary 3.4.2

5.2 First-order Linear-value Representation

We represent a value function as a weighted surh fafst-order basis functions
denoted);(s), each ideally containing smallnumber of formulae that provide a
first-order abstraction of state space:

Vi(s) = 6_9 w; - bi(s) (51)

Throughout this section, we assume that each individuaktaaction b;(s) is
represented by a case statement that is an exhaustive aoidtdpgrtitioning of
state space. This property will be useful when we define tokuyaoperators next.
However, two basis functions may assign non-zero valuegddapping regions of
state space; in fact this can be quite useful for represgatiditively decomposable
values.

Such a linear value function representation can often deogireasonable approx-
imation of the exact value function, especially given thditneke structure inherent
in many real-world problems. For example, as argued in ptesections, many
planning problems have additive reward functions or midtgoals, both of which
lend themselves to approximation via linearly additivei®&snctions. Unlike ex-
act solution methods where value functions can grow expaaibnin size during
the solution process and must be logically simplified, heeenvaintain the value

45

function in a compact form that requires no simplificatiarstjdiscovery of good
weights.

As an example, consider approximation of the value fundibormur BOXWORLD
FOMDP from the last section, using the following basis fimts (we refer to
specific instances d@f(s) asbCase;(s)):

3b. BozIn(b, paris, s) : 1
bCase;(s) =
e 0
db,t. BoxOn(b,t,s) : 1
bCasey(s) = (52)
- 0
3b, t. TruckIn(t, paris, s) A BoxOn(b,t,s) : 1
bCases(s) =
e 10

Then each instance &f(s) (denoted by Case(s)) has the form:
vCase(s) =[wy - bCasey(s)] & [wa - bCases(s)] @ [ws - bCases(s)] (53)

Each basis function is relatively small and represents #quoof state space to
which we would expect to assign some positive value in ord@piproximate the
BoxXWORLD value function.

5.2.1 Backup Operators

Suppose we are given a value functiofs). Backing up this value function through
an actionA(Z7) yields a case statement containing the logical descriptfstates
that would give rise td/(s) after doing actionA(Z), as well as the values thus
obtained.

However, due to the free variables in actidiiY), there are in fact two types of
backups that we can perform. The firBt}(®)[.], regresses a value function through
an action and produces a case statementfrethvariabledor the action parame-
ters. The second3[-], existentially quantifies over the free variabitim 5[],
Thus, the application o84[-] results in a case description of the regressed value
function indicating the values that could be achievedhyinstantiation ofA(%)

in the pre-action state.

The definition of BA®|[.] is almost the same as tffiest-order decision theoretic
regression(FODTR) operator from Equation 30, except that we do not eipli

46

add in the reward. Slightly modifying our definitions fromcBen 3.3.3, we let
n1(%), ..., n.(%) be the set of Nature’s deterministic actions for stochaestion
A(Z). Then we defineB4@[.] as follows:

BADV (s)]

=7 [D{P(n;(7), A(F), 5) @ Regr(V (do(n;(Z),5)))}] (54)

j=1

Defining BA@|.] in this way without the reward makes it a linear operator. < lifu
we apply this operator to our linear-value function repnégton, it distributes to
each first-order basis function:

BA@[V(s)] = BA@ lé w; - bi(s)]

=@ wi- B [b(s)] (55)

=1
Having defined34(® .}, we now use it to defingg4[]: ¢
BV (s)] = 3. { B"D[V(s)]} (56)

Unfortunately, if we applyB“[-] to our linear-value function representation, we see
that B4[-] is not necessarily linear:

BV =B i)

= 3z { é w; - BA® [bi(s)]} (57)

The difficulty is that the existential quantification &[] jointly constrains the
backup of all basis functions that contain the existentigilantified variable as a
free variable.

These problems can be mitigated, however. We begin with alédimitions.

Definition 5.2.1 We say that a deterministic action(z) affectsa fluent/" if there
is a positive or negative effect axiom that contains- n;(z) in the body of the
axiom andF' in the head (c.f., Section 3.2.2). We say that a stochasticrad (%)
affects a fluen#’ if at least one of Nature’s choices (%) for A(%) affectsF. Fi-
nally, a formula¢ is affected bya stochastic actiomA(Z) iff ¢ contains a fluent
affected byA(Z). Since a case statement is defined as a logical formula, #fis d
nition extends to case statements in the obvious way.

6 For simplicity, we assume that the reward is independent of the action artgimen
allowing us to exclude the reward from tB& operation ofB4. If required, such depen-
dencies could be added with appropriate adjustments to our definitions.

a7

Property 5.2.2 When a basis function case statenme() is affected by a stochas-
tic action A(Z), BA®@ [b;(s)] will contain the action argumentg as free variables.
The inverse of this property is also true: if a stochastid@ttd () does not affect
a basis functiorb;(s), BA@][b;(s)] will not contain the action arguments as free
variables.

To exploit this property, we let} denote the set of indicégor basis functions; (s)
that are affected by an actiot(%) (so that for alli € I}, BA®][b;(s)] contains at
least one of the free variablé3. Likewise, we let/; denote the set of indices of
basis function$;(s) not affected by an action (so that for ale I, BA®@ [b;(s)]
contains none of the free variabl&és We can exploit the fact that th&’ is vacuous
for case statements not containing free varialslasad remove these terms from the
scope of thel# quantification. This yields the following form fas:

BA [@ wibi(s)l = @ wiBA(f) [b,(s)] @ 3I7. EB ’(UZ‘BA(JE) [bz(s)]

(58)

Consequently, if no fluent occurs in more than a few basis fonstand no action
affects more than a few fluents then we can reasonably expecesult of apply-
ing B4 to retain some additive structure. The first property canderolled by
the appropriate design of basis functions. The second ésdfuypical planning
domains.

As a concrete example to demonstrate the backup operatbth@exploitation of
additive structure, let us compui&™<[.] for our previously specified linear-value
function from Equation 53:

BYe[yCase(s)] = It*, ¢* Bt [yCase(s)] (59)
= 3t*, ¢* By - bCasey (s) @ wa - bCasea(s) ® ws - bCases(s)]
— Elt*, C* {wl . Bdrive(t*7c*)[bcasel(s)] @ wy - BdT‘iUE(t*7c*)[bCase2(S)]

Sws - Bd””e(t*vc*)[bcasez),(s)]}

{ 3b. BoxIn(b, paris, s) : 0.9 3b,t. BoxOn(b,t,s) : 0.9
=3t c* {wy - D wy -

-« 0 -« L0

b, t. [t = t* A c* = paris A ey TruckIn(t, ¢y, s))
Qws - | VTruckIn(t, paris, s)] A BoxOn(b,t, s) :0.9

¢ 0

Here, we note that the first and second basis functions araffesited by the
drive(t*, c*) action and thus their backup through this action is equitaie a
backup through awoop. Since the third basis function is affected by the action
drive(t*, ¢*) and this introduces the action parametémndc* into the result of its

48

backup, we can push the quantifiers in to just this third ckdermment:

Bdri@e[vcase(s)} — Ht*, . Bdm've(t*’c*)[’ucase(S)]

3b. BoxIn(b, paris, s) : 0.9 3b,t. BoxOn(b,t,s) : 0.9
=wp - @ wa -
e L0 e L0

b, t. [t = t* A\ ¢* = paris A ey TruckIn(t, cq, s)]
©ws - I, ¢ | V TruckIn(t, paris, s)] A BozOn(b,t, s) :0.9

¢ 0

Finally, we carry out the explictit*, ¢* operation on the third case statement where
we distribute the quantifiers inside the case partitionssamgblify. This allows us

to remove thedt*, ¢* by rewriting equalities and exploiting the non-empty domai
assumption:

BY™¢[yCase(s)] = 3t*, ¢*. Bt <) [yCase(s)] (60)
3b. BoxIn(b, paris, s) : 0.9 3b,t. BoxOn(b,t,s) : 0.9

=wy - Dwa -
e L0 e L0

b, t. [(Jer. TruckIn(t,c1,s)) V TruckIn(t, paris, s)] A BoxOn(b,t,s) : 0.9
Dws -

L« o0

This example demonstrates best case performandg‘fpf, where an action only
affects one basis function thus allowing the other basistfans to be removed
from the scope of thélZ operator. Then thélZ operator can be easily applied
to a single case statement without incurring a representtblowup that would
otherwise occur if thelr ranged over a sum of case statements and the explicit
“cross-sum’® was required.

Of course, in many cases, more than one basis function wiliffected by an
action. For example, if we had computéd*d[yCase(s)], all three basis func-
tions would have been affected by the action and we would hadeto explicitly
compute the “cross-sun® of the backups of all three basis functions. While this
effectively counteracts many of the benefits of linear-gapproximation since ad-
ditive structure can no longer be exploited, we will see byagenerating our basis
functions in a restricted manner, we can often manage taaanputing the ex-
plicit @, even wherall basis functions are affected by an action. We will discuss
this further when we discuss basis function generation.

5.3 First-order Approximate Linear Programming

We now generalize the approximate linear programming (Adgproach for MDPs
(see Equation 11) to first-order MDPs. If we simply subsgitappropriate notation,

49

we arrive at the following formulation of first-order ALP (FAQP):
Variables: w; ; Vi <k

k
Minimize: > P w; - b(s)
s =1

k k
SUbjeCt to:0 > R(S) & BA [@ w; - bl<8)] S, @ w; - bZ(S) ; Y A, S (61)
=1

=1

As with ALP, our variables are the weights of our basis fumtsi and our objec-
tive is to minimize the sum of values over all statesWe have one constraint
for each stochastic actioA (e.g., in BOXWORLD, A € {unload, load, drive})

and each state. One advantage of FOALP over SDP is that it does not require a
casemayx, thus avoiding the representational blowup iaduy this step in SDP.
Unfortunately, while the objective and constraints in AldP & ground MDP range
over a finite number of states, this direct generalizatiaheéd=OALP approach for
FOMDPs requires dealing with infinitely (or indefinitely) mastatess.

Since we are summing over infinitely many states in the FOAbfdaiive, it is
ill-defined. Thus, we redefine the FOALP objective in a marthat preserves the
intention of the original approximate linear programmirgusion for MDPs. In
ALP (see Equation 11), the objective equally weights eaate stnd minimizes the
sum of the value function over all states. However, if we labkhe case partitions
(p:(s),t;) of each basis functiob(s) case statement, each case partition serves as
an aggregate representation of ground states assignebvedua Consequently,
rather than count ground states in our FOALP objective—attwkhere will gen-
erally be an infinite number per partition—we suppose thahdzasis function
partition is chosen because it represented a potentiadijubipartitioning of state
space, and thus weight each case partition equally. Constygjuee rewrite the
FOALP objective as follows:

S Pwi-bi(s) = E:Dlwi;bi(s) ~ Puwi Y |Z|

s =1 =1 (¢;,t;)€b;

We use|b;| to indicate the number of partitions in thith basis function. This ap-
proach can be seen as aggregating states within a basigfupettition into one
abstract state and then weighting each abstract staternntyfan importance. For
the case of 0-1 indicator basis functions as in Equation &g, tields a simple
objective of %, w;. Of course, this solution requires approximating the oagi
objective and thus FOALP does not represent an exact gezsgiah of the ground
ALP approach to the first-order case. Nonetheless, we shatvttis approximation
still leads to reasonable results in our empirical evatumati

7 The reasons for this are the same as for the lacknoi=in the ground case as discussed
in Section 2.2.3.

50

With the issue of the infinite objective resolved, this lesane with one final problem—
the infinite number of constraints (i.e., one for every statd-ortunately, we can
work around this since case statements are finite. Sinceallne & for each case
partition (¢;(s), t;) is constant over all situations satisfying thgs), we can ex-
plicitly sum over thecase;(s) statements in each constraint to yield a single case
statement representation of the constraints. The key wdits@n here is that the fi-
nite number of constraints represented in the single “fietté case statement hold

iff the original infinite set of constraints in Equation 61l¢tho

To understand this, consider the constraints fordhee action in FOALP, substi-
tuting our previously defined basis functiolSase;(s) from Equation 52 fob;(s),

the results of the3 ¢ operator for these basis functions from Equation 60, and
the reward definition for BXWORLD given byrCase(s) in Equation 20 forR(s).

We substitute all of these directly into the constraint & tbrm in Equation 61
above to obtain:

3b.BoxIn(b, paris, s) : 10 3b. BoxzIn(b, paris, s) : 0.9
0> Dwr -
e L 0 = L0
3b,t. BozOn(b,t,s) : 0.9
Dwa -
¢ 0
- 3b,t. [(Jer. TruckIn(t,c1,s)) V TruckIn(t, paris, s)] A BoxOn(b,t,s) : 0.9
ws -
_\“ 0
3b. BozIn(b, paris, s) : 1 3b,t. BozOn(b,t,s) : 1
© wy S ws -
e 10 e 10
3b, t. TruckIn(t, paris, s) A BozOn(b,t,s) : 1
O ws - Vs (62)
¢ 10

Next we perform an explicib ande for some of the case statements, simplify the
resulting partitions, and distribute the weights into tlaetion values:

0> 3b. BozIn(b, paris,s) : 10 — 0.1 - wy o 3b,t. BoxOn(b,t,s) : —0.1 - wy
_t 0 |- 0
b, t. TruckIn(t, paris, s) A BoxOn(b,t, s) :—0.1 - ws
@ | =“A3Tb,t,c1. TruckIn(t,ci,s) A BorOn(b,t,s): 0.9-ws |; Vs
_ 0
(63)

To maintain our representation in a compact and perspicfaoog we define the
following propositional renamings for the first-order farlae in these case state-

51

ments?

¢1(s) = 3b. BoxIn(b, paris, s)

¢o(s) = 3Tb,t. BoxOn(b,t, s)

¢3(s) = 3b,t. TruckIn(t, paris, s) A BoxOn(b,t, s)
¢4(s) = 3b,t,c1. TruckIn(t, c1, s) A BozOn(b,t, s)

Finally, we fully expand theb to obtain an explicit representation ali FOALP
constraints for therive action in our B> XWORLD example:

$1(5) A da(s) A d3(s) £0>10— 0.1 wy +—0.1-ws + 0.1 ws
P1(5) A @2(s) A =d3(s) A ¢als) : 0>10—-0.1 w; +—0.1-wy+ 0.9 ws
$1(5) A da(s) A ~d3(s) A —a(s) 0>10— 0.1 w; +—0.1-ws
P1(s) A =d2(s) A ¢3(s) ; 0>10—0.1-w; +—0.1- w3
$1(8) A —ga(s) A —¢3(s) A gals) 0>10—0.1-w; +0.9-ws
d1(8) A a(s) A —ps(s) A —pa(s) 0>10—-0.1-w; +—0.1-ws s
—p1(s) A Pa(s) A p3(s) ; 0>—-0.1 -wp+ —0.1-ws
—01(8) A d2(s) A =d3(s) A da(s) - 0>—0.1-wz+0.9- w3
—¢1(8) A @2(s) A =g3(s) A —da(s) 0>—0.1-wy
=¢1(8) A —ga(s) A ¢3(s) : 0> —0.1-ws
—1(s) A 2d2(s) A —g3(s) A dals) 0>0.9- w3
—¢1(s) AN —ga(s) A 3(s) A —da(s) 0=>0
(64)

Here, if we had detected that any partition formula had beeorisistent, we would
have removed it and the corresponding constraint.

While we note that technically there are an infinite numberasfstraints (one for
every possible statg, there are only a finite number distinctconstraints. In fact,
the case representation conveniently partitions the siadee into regions with
the same constraint. Thus, to solve the FOALP problem, wédcenumerate all
consistent constraints for every action and then direatlyesthe resulting LP. In
addition to the above constraints for tlh@ve action in BoxXWORLD, this approach
would require us to carry out a similar procedure for théoad, load, andnoop
actions; however, once we did this, we would have all of thestr@ints necessary
for solving the FOALP first-order linear program specifioati

8 One will note that the renaming of first-order formulae with “propositionatiatales is
in the same spirit as FOADDs. Consequently, we note that FOADDs proean bfficient
method for representing and performing operations on the constraintscthatin FOALP.

52

However, as the number of basis functions increases, thé&uof constraints can
grow exponentially in the number of case statements in tmstcaint. To tackle
this problem, we examine the underlying optimization peoblin the next section.

5.4 First-order Linear Programs

We can restate the FOALP problem as the optimal solution tengalfirst-order
linear program(FOLP) for which we provide a generic solution. A FOLP is roth
ing more than a standard linear program where the constraretwritten in terms
of a sum of case statements whose case partition values mspebédied as lin-
ear combinations of the weights. Efficiently solving FOLRsgs a number of
difficulties—and we tackle these difficulties next.

5.4.1 General Formulation
A FOLP is specified as follows:

Variables:w, ..., wy ;
k
Minimize:) c;w;
=1
Subject to0 > case1 (W, s) @ ... D caseyyq)(W,s) ; Vs (65)

0> casem1(W,s) ® ... B casem m)(W,s); Vs

The k variablesw = (wy, ..., w,) and objective weight8 = (cy, ...,) are de-
fined as in a typical LP, the main difference being the formhefc¢onstraints. Here
we havem different constraints of varying lengthij) (i.e., the number of case
statements in constraint 1 < j < n). We allow thet; in each partition{¢;, ¢;)
of case(w, s) to be linearly dependent on the weighis(e.g.,t; = 3w; + 2ws).
We note that the first-order LP for FOALP can be cast in thisegainform. As
previously discussed in our FOALP example, we could simglsnpute the ex-
plicit “cross-sum”& to flatten out each constrairitinto a single case statement
as in Equation 64. However, this could be inefficient as itescaxponentially in
the number of summed case statements. Fortunately, we tamdeconstraint gen-
eration methods used in factored MDPs (Schuurmans andseatra001) to the
first-order case as we show next.

5.4.2 First-order Cost Network Maximization

In the constraint generation approach to solving a FOLPytbst important op-
eration is to find a most-violated constraint given a cursaiution (i.e., setting

53

Algorithm 2: FOMazx(C,(R; ... R,)) — (S,v)

input 1 (1) AsetC = {caseq, ..., casey,}.
(2) An ordering(R; ... R,,) of all relations inC'.
output : (1) The maximum value achievable.
(2) AsetS = {{(¢;,t;) € case;}fori=1...nsStv=1t; +... +1tp.
begin
/I ConvertC' into CNF
for(i=1...n)do
foreach ((¢;,t;) € case;(s)) do
| Convertg; to a set of CNF formulae.

foreach (relation R € (R; ... R,) (in order))do

// Divide C into two sets of cases based on whether they corftain

C} = {case;|case; € C A Fj.((¢j,t;) € case;) A ¢; contains relatior}
Cp:=C\C}

/I Build explicit “cross-sum”a of its cases & convert to CNF

+._ ,
casep, 1= @Caseiecg case;

foreach ((¢;,t;) € case},) do
| Convertg; to CNF.

foreach ((¢;,t;) € casejg in order from highest to lowest valudp
Resolve all clauses ig; on relationR until quiescence or inference limit.
/I All resolvents ok derived so further resolution on these clauses
// cannot lead to the empty clause — thus clauses can be removed
Remove all clauses in; containingRR
/l Remove inconsistent partitions (i.e., those containing empty clause)
if (0 € ¢;) then

| Remove(;, t;) from case}, and continue with nexts;, ¢;).

/I Removeé-subsumed patrtitions that are dominated
foreach ((¢;, t;) € case}, wheret; > t;) do
L if (¢; Z¢ ¢i) then

| Remove(g;, t;) from case}; and continue with nexts;, ¢;).

| C:={case,} UC

v:i=0; S:=0
foreach (maximal value partitior(¢;, ¢;) of eachcase € C) do
| v:=wv+t; S:= 85U allpartitions from inputC contributing to(¢;, t;)

Return(v, S).

end

of weights). In this section, we formulate this problem as maximizatver a
first-order generalization of a cost network (Dechter, 398fresented as follows:

0> mgx[casel(w, S) @D ... D case, (W, s)] (66)

54

The use ofmax, indicates that we are only interested in the single valuel (an
corresponding case partitions contributing to this vathej maximizes the RHS.
casemax would be less efficient here since it would exhalgt@numeratall val-
ues and constraints when we only require the single maxialabvand constraint.

To determine thenax, with this form of the constraints, we define th& Max
algorithm (see Algorithm 2) to carry out this computatiansisimilar tovariable
elimination(Zhang and Poole, 1994) bucket eliminatior{Dechter, 1999) (which
makes a stronger connection to resolution), except thase@asimple ordered ver-
sion of first-order resolution in place of propositional @reld resolution. Thus, we
term this generalized variable elimination technique use#OMaz to berelation
elimination

Ostensibly, relation elimination and the techniqudist-order variable elimina-
tion (FOVE) (Poole, 2003; de Salvo Braz et al., 2005; de Salvo Brai. €2006)
appear similar since they both deal with lifted versions afiable elimination.
However, they fundamentally apply to different problem&®ME does not permit
guantified formulae in its representation, while relaticglanination permits full
first-order logic in its representation; furthermore, FOMEMIts the representation
of indefinite products and sums whereas relation eliminatioly permits finite
products and sums. Here we require full first-order logid, rimt indefinite prod-
ucts or sums. While it is beyond the scope of this article teal#ito a detailed dis-
cussion, we note that both relation elimination and FOVE lmacombined when
required; this occurs, for example, in FOALP approachesttofed FOMDP so-
lutions (c.f., Sanner and Boutilier (2007) and Chapter 6 oin®a2008)).

We provide a concrete example 6f)Max and relation elimination in Figure 7.
Relation elimination proceeds analogously to variable ieltion, except that we
choose a relatio® to eliminate at every step rather than a propositional éeia
Elimination order can affect the time and space requires@fOMaz since elim-
inating R requires the “cross-sunm of all case statements containiRgincurring

a polynomial blowup in the number of case statements beingrsad. In practice,
we greedily eliminate the relatioR at each step that minimizes this representa-
tional blowup, although this is not guaranteed to provideptimal order.

On any elimination step ofOMazx, once all of the case statements containihg
have been explicitly “cross-summed,” the next step is te@mheine whether any
case partitions are inconsistent (via resolutionp-@ubsumed and dominated in
value (using the generalizédsubsumption operatox, (Buntine, 1988) with re-
spect to our background theory, similar to the approach byeReBeL (Kersting
et al., 2004)); in both cases, these partitions may be redhewmee they will never
contribute to the maximally consistent partition. Oncealhtions have been elim-
inated, maximal case partitions and their values extraftted the remaining sum
of case statements are used to generate the maximal vatliegs@ partitions con-
tributing to this value).

95

We note that the ordered resolution strategy we usB(/az is not refutation-
complete: it may loop indefinitely at an intermediate relatelimination step be-
fore finding a latter relation with which to resolve a contction. This is an un-
avoidable consequence of the fact that refutation resmidor general first-order
theories is semi-decidable. From a practical standpaiistnecessary to bound the
number of resolutions performed at each relation elimomasitep (100 clauses per
elimination step in our experiments) to prevent non-teation of FOMaz due to
an infinite number of resolutions. This incomplete theoreovimg approach may
generate unnecessary constraints corresponding to sfreale regions of state
space; while these constraints serve to overconstrainethef $easible solutions,
this has not led to infeasibility problems in practice. Rermore, we often omit
the generalized-subsumption tesk, since the savings from this simplification
does not outweigh its computational cost. This does notaffempleteness since
simplification is not required for inconsistency detection

Finally, we remark that if the resolution procedure doeddlgiterminate before
the inference limit is reached on every stepiidMazx, then the conjunction of
case partition formulae returned YOMazx is guaranteed to be satisfiable as a
consequence of the completeness of refutation resolu®esearch on decidable
resolution procedures for expressive subsets of firstrdodgc (Motik, 2006) may
pave the way for stronger completeness guarantees@afax in future work.

5.4.3 First-Order Constraint Generation

We can use thé'OMazx algorithm to find the maximal constraint violation when we
have constraints of the form in Equation 66. This allows uddfine the following
first-order constraint generation algorithm where we hgecsied some solution
tolerance:

(1) Initialize LP withi = 0, @ = 0, and empty constraint set.

(2) For each constraint in the cost-network form of Equagénfind the maxi-
mally violated constraint’ (if one exists) using th&'OMax algorithm applied
to the constraint instantiated witf.

(3) If C’s constraint violation is larger than add C' to the LP constraint set,
otherwise returni as solution.

(4) Solve LP with new constraints to obtaifi*!, goto step 2

In first-order constraint generation, we initialize our LRRhwan initial setting of
weights, but no constraints. Note that the initial weighits= 0 will violate at least
one constraint in a FOMDP with non-zero reward. Then we @éiier between gen-
erating constraints based on maximal constraint violatianthe current solution
and re-solving the LP with these additional constraintss inocess repeats until
no constraints are violated and we have found the optimatisal. In practice, this
approach typically generatés fewer constraints than the full exhaustive enumer-

56

LS

Suppose we are given the following hypothetical constraint specificati@nffimt-order linear program:
0> (Vb, c. Dst(b,c) D BoxzIn(b,c,s) : 10 3b, c. Dst(b,c) N —BozIn(b,c,s): wy 3t, c. TruckIn(t, c, s) : wo >
2> max
S

%) S
-« 0 - D —wy - 0

Assume our last LP solution gaug = 2 andwy = 1. We can compute the most violated constraint (if one exists) by evaluagimgefghts in the

constraint and applying"OMaz. We begin by converting all first-order formulae to CNF wheye. . ., ¢g are Skolemized constants. Formulae

are negated prior to Skolemization and once in CNF are only resolved with @er (i.e., never negated).
0> ({=Dst(b,c) V BoxIn(b,c,s)} :10 {Dst(cs,cq), " BoxIn(cs,cq,8)}: 2 {TruckIn(cs,cg,s)} : 1)
2 max

S @
{Dst(c1,c2), "BoxIn(ci,ca,8)}: 0 {=Dst(b,c) V BozIn(b,c,s)} :—2 {=TruckIn(t,c,s)} : 0

Assume elimination ordeBoxIn, Dst, TruckIn. First we eliminateBoxIn: we take the cross-sum of case statements containirigpzin,
repeatedly resolve clauses in each partition®ww/n until quiescence, and remove all clauses contairfitag/» (indicated by struck-out text):

{=Dst{brey-Boxln{brersy,Dst(cs, c4), =Boxtntesser sy, Dst(cs, cq), 0 } 1 12
< { =Dst(b.c) v Boxln(b.c.s)} . 8| | {Truckn(es, ce,8)} 1 1)

{Dst(c1,c2), Dst(cs, ca), =Boxtaterrerysy, =Bozin{esers) } 2 {=TruckIn(t,c,s)} : 0
{=DsttbrepvBorlnbres), Dst(c1, ca), =Bozkrferess), | } -2

Because the partitions value@ and —2 contain the empty claugk(i.e., they are inconsistent), we can remove them. And because the pa
of value8 dominates the partition of valu(i.e.,2 < 8 and the empty clause set of the valupartition trivially 6-subsumes the clauses of tl
value2 partition), we can remove it as well. This yields the following simplified result:

TruckIn(cs,cg,8)} i 1
OZmax(18lo { (s, ¢6,5)})
® {~TruckIn(t,c,s)} : 0

From here it is obvious that th®st elimination step will have no effect and tl@uckin elimination step will yield a maximal consiste
partition with value9. Since this is a positive value and thus a violation of the original constraint,amegenerate the new linear constraif
0 > 10 + —w; + w9 based on the original constituent partitions that led to this maximal constvaitdtion.

0 > max

Fig. 7. An example use of FOMAto find the maximally violated constraint during first-order constraint geioera

rtition
ne

—

N

ation approach given by Equation 64. To provide intuitiomsthis, we refer back
to the example of finding the most violated constraint in FegtL.

Using first-order constraint generation, we now have a swiub the first-order
LP from Equation 65, thus providing a general solution forAE®. At this point,
the only step for FOALP that we have not automated is the geioerof basis
functions, which we discuss next.

5.5 Automatic Generation of Basis Functions

The effective use of linear approximations requires a “gaad of basis functions,
one that spans a space containing a good approximation tvu@ersalue func-
tion. Previous work has addressed the issue of basis fungé&oeration in ground
MDPs (Patrascu et al., 2002; Mahadevan, 2005), while otluek Wwas addressed
the inductive generation of first-order features or basigtions from sampled ex-
perience (Yoon et al., 2005; Wu and Givan, 2007). Here weidens deductive
first-order basis function generation method that draw$iemtork of Gretton and
Thiebaux (2004). Specifically, they use regressions ofé¢hard as candidate basis
functions for learning a value function. This technique &lémved them to generate
fully or t-stage-to-go optimal policies for a range af 8CKSWORLD problems.

We leverage a similar approach for generating candidatis basctions using re-
gression, except that rather than use these candidatdfinastions to learn a value
function, we fit their weights without sampling or groundimg using FOALP. Al-
gorithm 3 provides an overview of our basis function genenaalgorithm. The
motivation for this approach is as follows: if some portionstate space> has
valuev > 7 in an existing approximate value function for some nordtithresh-
old 7, then this suggests that states that can reach this reggorf@und by Regrf)
through some deterministic action) should also have reddenvalue. However,
since we have already assigned value tave want the new basis function to focus
on the area of state space not coveredbbthus we negate and conjoin it with

Regr(¢).

As a small example, given the initialeightedbasis functionbCase;(s) = wy -
rCase(s) from BOXWORLD,

3b. BoxIn(b, paris, s) : 10
bCasey(s) = wy -) (67)
- 0

we derive the following weighted basis function fréfiase; (s) when considering

58

Algorithm 3: BasisGen(FOMDP, 7,n) — B

input : (1) A FOMDP specification.
(2) a value threshold
(3) an iteration limitn
output : A setB of basis function® Case;(s) and corresponding weights;.
begin
/I Note: rCase(s) may be a sum of cases, so we can start with many basis functions.
B = {rCase(s)}
for i =1...n)do
foreach (bCase;(s) € B) do
foreach ({(¢;(s),t;) € bCase;(s)) do
foreach (deterministic actiom;()) do

i A 3T Regr((do(n(7), 5))) : 1
- 10

Solve for the weightsi using FOALP.
foreach (bCase;(s) € B) do
if (w; < 7)then
| DiscardbCase;(s) from B and ensure it is not regenerated.

if (no new basis functions generated on this iteratitren
| ReturnB, .

ReturnB, w.

end

deterministic actiomd; = unloadS(b*,t*) during basis function generation:

bCasea(s) = (68)
=[3b. BoxIn(b, paris, s)] A [3c. BoxOn(b*,t*,s) A TruckIn(t*, paris, s)] : 1

w9 -
_« 0

If one examines the form of these two basis functions, therigit “orthogonality”
between the new basis functions and the ones from which tieey derived allows
for significant computational optimizations. For exampgilace the top partition of
bCase;(s) takes the formp; and the top partition ofCases(s) takes the formmg, A
¢, these two partitions are mutually exclusive and could n@ietly contribute to
the value of a state. Thus, when two basis functions are gotina in this manner,
we can efficiently perform an explicit “cross-sur on them to obtain a single

59

compactcase statement representing both weighted basis functions

bCase12(s) = bCase1(s) @ bCases(s) (69)
3b. BoxIn(b, paris, s) twnp - 10
=| =[3b. BozIn(b, paris, s)] A [e. BoxOn(b*,t*, s) A TruckIn(t*, paris, s)] : wa
ﬁ“ : 0

This style of basis function generation also has many coatjouial advantages for
FOALP. To see this, we return to our original discussion eoning the fact that
the B“[-] operator as defined in Equation 58 will not be able to presadeitive
structure when all basis functions in the linear-value fiorcrepresentation are
affected by the stochastic actiof{#). Recalling Property 5.2.2, if all basis func-
tions are affected byl(z), then the backu@“[-] of a sum of basis functions will
require their explicit “cross-sum” since they will all hafree variablesr causing
them to be summed witHx is applied. However, in the best case, if the explicit
“cross-sum” was already pre-computed for orthogonal Hasistions by merging
them, then this blowup will not occur.

Of course, since different actions generate different odhegonal basis functions
from the same “parent” basis function, it will not generdilyld that all basis func-
tions are pairwise orthogonal to each other. Nonethelegs can exploit the mu-
tual orthogonality ofsubsetsof the basis functions to efficiently carry-out their
explicit “cross-sum”, then we can still achieve an exporatime speedup relative
to the worst-case of thB“[-] operator that requires the explicit computation of the
“cross-sum”. To see how subsets of basis functions can lwesffiy summed, we
refer back to Equation 69, which provides an example sum ofdithogonal ba-
sis functions. In general, any mutually orthogonal sub$égsis functions can be
merged in this way.

As a consequence, we can exploit properties of orthogorsas lbanction gener-
ation in FOALP to mitigate exponential space and time sgalinthe number of
basis functions, where worst-case exponential scalirsgsuat various points due
to the need to explicitly compute the “cross-sum” of thedirealue representation.
While we do not claim this method of basis function generatwdhbe appropriate
for all domains, we will demonstrate that it works reasogaie|l for the stochastic
planning problems evaluated in the next section.

5.6 Empirical Results

We evaluated FOALP on PPDDL planning problems from the ICA@®I4 Littman
and Younes, 2004) and ICAPS 2006 (Gerevini et al., 2006)rateynal Probabilis-
tic Planning Competitions (IPPC). We divide the discussiorestilts according to

60

each competition in order to reflect the differences in thepetition setup, the
data collected, and the specific planners that entered eacpetition.

We used the Vampire theorem prover and the CPLEX 9.0 LP sblveour FOALP
implementation and applieBasisGen (Algorithm 3) to our FOMDP translation
of these PPDDL domains, generated as described in Secfidh 3Ve additively
decomposed universal rewards using the technique deddnb®ection 4.2; we
note that doing so prevents us from obtaining any approxamauarantees on the
solution generated by FOALP.

We provided FOALP with additional background theory axidimst were not en-
coded in the PPDDL source: if a fluent was intended to havetifumal arguments
in PPDDL (PPDDL does not make provisions for specifying ftrigperty explic-
itly), we provide a background axiom stating this. So, foample, in our running
BoxWORLD example, we would provide the following functional consitaax-
ioms:

Vb, c1, o, 8. BoxIn(b, ¢y, s) A BoxIn(b, ca,s) D 1 = o
Vt, c1, co, 8. TruckIn(t, cy, s) A TruckIn(t, ce,s) D 1 = ¢3
Vb, t1,te, s. BoxOn(b,t1,s) A BoxOn(b,ta,s) D t; =ty

In words, these axioms state that a box can only be in oneaiyyjck can only
be in one city, and a box can only be on one truck. Any searslkar inductive
planner that is given an initial state respecting thesetcaings (which was always
the case in the competition instances) would never havertsider such erroneous
states violating these constraints since they are unrb&lfim non-erroneous
states satisfying these constraints. However, FOALP hasitial state knowledge
in its offline solution phase and will produce extremely ppapproximated value
functions if it cannot rule out such erroneous states agliaconsistent.

The need for these constraints may be viewed as a major dcavabéhe FOALP
approach and was the reason that, although FOALP enteré@ARS 2006 Prob-
abilistic Planning Competition, it did not compete on 6 of ilieproblem domains
(since these 6 problem domains were released at the stdré @ompetition and
rules prevented the planners from being modified beyondpttiist). On the other
hand, we note that functional constraints on fluents reptegseminimal type of
problem knowledge often easily encoded by the person gpegid PPDDL prob-
lem; the constraints for BXWORLD are a good example. As an aid to future non-
grounding planners, we recommend that the capability tei§p&inctional con-
straints on fluents be incorporated in future versions oPABDL specification. If
such constraints are known to hold on all initial statespenatted techniques based
on reachability analysis could also be used to prove sucktnts hold as well.

In the following sections, we present proof-of-concepuhsscomparing FOALP

9 http://www.ilog.com/products/cplex/

61

Problem Competing Probabilistic Planners
NMRDPP | mGPT | Humans | Classy | FF-Replan || FOALP
bx c10 b5 438 184 419 376 425 433
bx c10 b10 376 0 317 0 346 366
bx c10 b15 0 - 129 0 279 0
bw b5 495 494 494 495 494 494
bw b1l 479 466 480 480 481 480
bw b15 468 397 469 468 0 470
bw b18 352 - 462 0 0 464
bw b21 286 - 456 455 459 456

Fig. 8. Cumulative reward of 5 planning systems and FOALP (100 run angthe Box-
WORLD and BLOCKSWORLD probabilistic planning problems from the ICAPS 2004 IPPC
(-~ indicates no data). ®&WORLD problems are indicated by a prefix lo and followed

by the number of cities and boxe$ used in the domain. BoCKSWORLD problems are
indicated by a prefix obw and followed by the number of blocksused in the domain.

to other planners across a sampling of problems where FOAdsPbken able to
generate policies for IPPC problems.

5.6.1 ICAPS 2004 Probabilistic Planning Competition Probdem

We applied FOALP to the BXWORLD logistics and BoCkSWORLD probabilis-
tic planning problems from the ICAPS 2004 IPPC (Littman andnves, 2004). In
the BoxXWORLD logistics problem, the domain objects consist of truckangs,
boxes, and cities. The number of boxes and cities varieddh peoblem instance,
but there were always 5 trucks and 5 planes. Trucks and pkmeesestricted to
particular routes between cities in a problem instanceipenanner. The goal in
BoxWoORLD was to deliver all boxes to their destination cities andelveere costs
associated with each action. The transition functionsaadbbfor trucks and planes
to stochastically end up in destinations other than thanitd by the execution of
their respective drive and fly actionsLBCKSWORLD is just a stochastic version
of the standard domain where blocks are moved between tleeaat other stacks
of blocks to form a goal configuration. In this version, a lilotay be dropped with
some probability while picking it up or placing it on a stack.

We stopped our offline basis function generation algoritiftarateration 7 in
BasisGen (Algorithm 3) taking less than 2 hours for both problems oiGa2 Pen-
tium with 2Gb of RAM; iteration 8 could not complete due to megnoonstraints.
We note that if we were not using the “orthogonal” basis fiorcgeneration de-
scribed in Section 5.5, we would not get past iteration 2 sfdbfunction generation

62

(the system does not terminate within 10 hours at iterat)pth8s, these optimiza-
tions have substantially increased the number of basigingfor which FOALP
is a viable solution option.

We compared FOALP to the three other top-performing plasoarthese prob-
lems: NMRDPPis a temporal logic planner with human-coded control knowl-
edge (Thiebaux et al., 2006)1GPTis an RTDP-based planner (Bonet and Geffner,
2004); (Purdue-)Humanss a human-coded planneétlassyis an inductive first-
order policy iteration planner, arieF-Replan(Yoon et al., 2004) (2004 version) is
a deterministic replanner based on FF (Hoffmann and Neb@ll 2 Results for all

of these planners are given in Table 8.

Since FOALP was only able to complete 7 iterations of bagsistion generation,
this effectively limits the lookahead horizon of our basisdtions to 7 steps. A
lookahead of 8 would be required to properly plan in the finakBVORLD prob-
lem instance and thus FOALP failed on this instance. It isartgnt to note that in
comparing FOALP to the other planners, NMRDPP and Humans hesed-coded
control knowledge. FF-Replan was a very efficient searcledédsterministic plan-
ner that had a significant advantage because near-optiriakgan these specific
goal-oriented problems can be obtained by assuming thatghest probability ac-
tion effects occur deterministically and making use of siea search-based plan-
ning techniques. The only autonomdudly stochasticplanners were mGPT and
Classy (itself an inductive first-order planning approa@mngd FOALP performs
comparably to both of these planners and outperforms theandoysiderable mar-
gin on some problem instances.

5.6.2 ICAPS 2006 Probabilistic Planning Competition Proldem

We now present results for FOALP on three problem domaims fhee ICAPS 2006
IPPC (Gerevini et al., 2006):IB)ckSWORLD, TIREWORLD, and EHEVATORS. 1

In BLOCKSWORLD, there are blocks and a table and the goal is to stack andolinsta
blocks from each other in an effort to achieve a goal confignmeof the blocks
with respect to the table.IREWORLD is a relatively simple problem where the
goal is to drive from a goal city to a destination city, whileitg able to pick up a
spare tire in some cities. One stochastic outcome of dribigtgveen cities is that

a tire may go flat and can only be fixed when a spare tire is pte$shas, routes
with cities that contain spare tires are preferred to otbetas that do not. Finally,
ELEVATORS s a problem with a grid-like state space. The horizontaledision of

10'In the ICAPS 2006 IPPC, FOALP ran on the three problems reporteddsevee!l as
EXPLODING-BLOCKSWORLD (not reported here). We do not report th&HEODING-
BLOCKSWORLD results since the competition version of the FOALP planner was restricted
to use only the BOCKSWORLD subset of the KPLODING-BLOCKSWORLD problem de-
scription. In this section, we only show results for problems where FOARB able to
generate a policy for the full problem description.

63

:
*“

% Runs Solved
ol
o

: +
I |
+ +
+ I —l— I
FOALP FF-Replan FPG Paragraph
% x10°
é 4_ + T T T]
[}
£
= ot + -
(o))
§=
§ ot ———p——ro — — ———
[0 FOALP FF-Replan FPG Paragraph

B
NROOON

H]

Actions to Goal

+ +
FOALP FF-Replan FPG Paragraph
Fig. 9. A boxplot of performance of four planners on 15 instancessoTtREWORLD prob-

lem domain from the probabilistic track of the ICAPS 2006 IPPC. sfDP didonaduce
results for this problem; all other planners reported results for all ineg&anc

the grid corresponds to positions on a floor and the verticaédsion corresponds
to different floors. There may be elevators at each positiahdan move vertically
between floors. An agent can occupy one position on one flabcan move left
or right between positions or can move into or out of an etavdtit is at the
appropriate floor or position. Any elevator can be moved ugosvn independently
of whether the agent resides in it. There can be gates aircg@aaitions, which
probabilistically teleport the agent back to the start posiof floor 1, position 1.
Finally, there are a number of coins at different known posg and the goal is for
the agent to retrieve them all.

In all of the following results,BasisGen (Algorithm 3) was run for a four-hour
fixed time limit on a 2Ghz Pentium with 2Gb of RAM to generateusioins for
successively larger sets of basis functions. At the fowreark, we halted the so-
lution process and used the largest (most recent) set of hagitions and weights
for which FOALP had successfully terminated. Since theradfolution time of 4
hours can be amortized over an indefinite number of instaioc@sgiven problem,
we do not report this in the online policy evaluation timeshia following results.

In Figures 9, 10, and 11, we provide data for FOALP and compgailanners that

64

r
r
*

% Runs Solved
ol
o
+

0 C 1 1 + .
FOALP FF-Replan FPG
/U? T T
E 10000} + —
[} +
£ -
= L _
> 5000
= E N
% (0)= . — ; i
o FOALP FF-Replan FPG
(_ES + T T
& 2001 H + .
e
2 100r — _
S
M — —— —
ft (0]= | | -
FOALP FF-Replan FPG

Fig. 10. A boxplot of performance of three planners on 15 instancéiseoE_ EVATORS
problem domain from the probabilistic track of the ICAPS 2006 IPPC. siidPRaragraph
did not produce results for these problems; FF-Replan and FPG diépmt results for 2
and 3 problem instances, respectively.

specifies the number of problem instances solved, the osbhgion generation
time, and the average number of actions required to readjoflen each success-
ful problem. We compare to the following planners that esdehe competitioh' :
(1) FPG (Buffet and Aberdeen, 2006), which uses policy gradientctesr a fac-
tored representation of the Q-functions; &PP (Teichteil and Fabiani, 2006),
which uses ADD-based dynamic programming (Hoey et al., 198 reachabil-
ity constraints based on initial state knowledge;H8jagraph(Little, 2006), which
uses a probabilistic extension of Graphplan (Blum and Fug85) for probabilis-
tic planning; (4)FF-Replan(Yoon et al., 2007) (2006 version) is a deterministic
replanner based on FF (Hoffmann and Nebel, 2001). We notathplanners in
this competition aside from FOALP are ground planners ihtiey use a proposi-
tional representation of a PPDDL problem for a specific donvastantiation.

The results vary by problem, so we explain each in turn.IREWORLD, FOALP’s
policy allowed it to solve most problems although its polegts suboptimal in the
number of actions and % problems solved in comparison to R#aReln this case,

' Not all planners ran on all of the problems in the competition. Furthermoneg gtan-
ners did not provide results on all problem instances, this is noted farreaalt plot.

65

O - —_— —_— —_— =
o

) 1

2 50' + i
>

x

O\O] +]]

FOALP FF-Replan FPG sfDP

w x 10°

E 10 . — . .

(O]

£

F 5f .
=

§ ok —] e —
x FOALP FF-Replan FPG sfDP
& 250 . . + .

9 2001 1
= 1501 .
S 100 — .
REN = — -
FOALP FF-Replan FPG sfDP

Fig. 11. A boxplot of performance of four planners on 15 instancéiseoBLOCKSWORLD
problem domain from the probabilistic track of the ICAPS 2006 IPPC. Papagdid not
produce results for these problems; FF-Replan, FPG, and sfDP didpat results for 1,
5, and 10 problem instances, respectively.

it appears that the approximation inherent in the FOALP ag@gin fared poorly in
comparison to a deterministic replanner like FF-Replan ¢batd perform nearly
optimally on this problem. FOALP’s slow policy evaluation this problem is due
to the transitive nature of the road connection topologytardack of optimization
in FOALP’s logical policy evaluator. In EEVATORS, the top three planners includ-
ing FOALP all performed comparably with the determinisgplanner performing
consistently faster than the others, again due to the glityadf this domain for
deterministic replanning and the relative speed of that@gh. The goals in this
domain are highly decomposable and FOALP thus benefitedeastzly from
its additive goal decomposition approach. Ind&kKsWoRLD, FOALP shows the
best performance, solving more problems, taking less timéhe hard instances
(FPG did not report results for the 5 hardest instances, shewing its results),
and reaching the goal with the fewer actions (sfDP did noobrepesults for the
10 hardest instances, thus skewing its results). In this, d&ALP’s performance
owes to two advantages: (1) first-order abstraction ilo8KSWORLD consider-
ably helps the system avoid much of the combinatorial coriyi¢hat the ground
planners face, and (2) the additive goal decompositionpatih not optimal for all
BLOCKSWORLD problems, performed very well on these problem instances.

66

5.6.3 Summary of Results

In summary, the first-order representation of FOALP seenadféw robust perfor-
mance across a range of domain instance sizes and problemsvet, as discussed
at the end of Section 4.1.3, the case representation use®@BFFis a limiting
factor in its performance due to its inability to exploit walstructure in problems
requiring reasoning about universal rewards (for whicloptinal additive reward
decomposition techniques were used) or transitive realaiygbor which the defi-
ciency is quite clear from theIREWORLD results). We discuss potential research
directions to mitigate these observed deficiencies in 8edtil.

6 Related Work

In this section, we review work related to that presentedhis tarticle across
two important dimensions: deductive first-order decidio@eretic planners based
on symbolic dynamic programming (SDP), and inductive difteecision-theoretic
planners based on learning first-order representationslagvfunctions, control
knowledge, or policies from grounded domain instantiagion

6.1 Variants of Symbolic Dynamic Programming

There have been a variety of alternative exact approachssitong relationally
specified MDPs without grounding in the spirit of SDP. Eachlih&fse approaches
apply an SDP-like algorithm to their own first-order MDP regentation. Like
SDP, these algorithms all have guarantees on domain-indepé error bounds
for the value functions they produce and can produce exaoadsindependent
value functions when they exist. However, all of these apphes are restricted to
solve less expressive variants of relational MDPs than SDieadescribe below.

First-order value iteration (FOVIA) (Karabaev and Skvowvs, 2005; Hblldobler
et al., 2006) and the Relational Bellman algorithm (ReBel) (Kegset al., 2004)
are value iteration algorithms that solve a restricted dscof relational MDPs,
most notably disallowing combinedniversal conditionaleffects (as defined in
Section 3.1.1). Since universal conditional effects areoagsful planning for-
malism underlying the ADL extension to STRIPS, it can be adgthat this is a
significant limitation of these alternate SDP approachesh Bave provided fully
automated proof-of-concept results; we were able to dyrecdmpare SDP with
FOADDs and ReBel on the & WORLD problem in Section 4.1.3. ReBel’s spe-
cialization for a less expressive subset of FOMDPs (stiteang BoxWORLD,
however) results in a substantial performance edge foiptioislem although both
produce the same, exact solution. Results for ReBel and FO\@Aatr available

67

for the specific versions of the planning competition doradirat we examined in
Section 5.

First-order decision diagrams (FODDs) (Wang et al., 20@8lbeen introduced to
compactly represent case statements and to permit effegagfication of symbolic
dynamic programming operations to another restrictedadaselational MDPs via
value iteration (Wang et al., 2007) and policy iteration yand Khardon, 2007).

Since FODDs are very similar in spirit to the FOADDs we defire&ection 4.1,
we enumerate some of the major differences between thesetmalisms:

(1) FODDs disallow explicit universal quantification. Tipievents FODDs from
being applied to relational MDPs with universal precorutis or alternating
guantifiers in their effects, although importantly, thegn handle universal
conditional effects.

(2) Unlike FOADDs, which are maintained in a canonical fofR®DDs are main-
tained in a sorted format, but are not guaranteed to be in@nazal form. As
such, they rely on a range of simplification rules to maintzompact rep-
resentations. This approach has the advantage that sogramg&without a
strict order can be exponentially more compact than diagrasth a strict
order (Wang et al., 2007). However, rather than having a-defined sim-
plification algorithm leading to a canonical form, simpléton in FODDs is
somewhat open-ended and heuristic.

(3) Thereis no need to reorder internal decision nodes Afgrin FODDs in or-
der to maintain a canonical form. In this waegr is more efficientin FODDs
than in FOADDSs. This results in value and policy iteratiogalthms that can
be performed completely in terms of FODDs, unlike the curFEDADD rep-
resentation.

(4) FODDs assume an implicit semantics where the maximalevad assumed
for all instantiations of the free variables, thus preahgdihe need to perform
explicit 3 and casemax. In FOADDs, such operations would need to be per-
formed explicitly. As such, the use of FODDs can lead to vemnpact rep-
resentations for decision-theoretic planning, but threa®tics may interfere
with extensions of FODDs to handle universally quantifiecifolae.

Consequently, FODDs represent an interesting alternatitha design space of
data structures for the compact representation of casnstats. Nonetheless, the
major limitation with respect to the work we present in thiicée is their limi-
tations w.r.t. representing some forms of universal gqfiaation. Ideally the best
approach would be to combine the advantages of FOADDs witbetlof FODDs.
This is a non-trivial problem, however, and an interestungife research direction.

68

6.2 Alternative Lifted Approaches to Decision-theoretiarfhing

There are many alternative approaches to first-order decthieoretic planning
that reason inductively about sample domain instances amgls trajectories to
produce lifted value functions or policies. This stands msl#ernative to reason-
ing symbolically about actions and rewards directly at a-firsler level without

grounding as done in this article.

In one class of approaches, sampled experience from grdudawieain instantia-

tions is used to directly induce relational representatiminvalue or Q-functions in

a reinforcement learning approach. This can be done with iinforcement learn-
ing using relational decision or regression trees to leadw@e or Q-function (Dze-

roski et al., 2001), combining this with supervised guidafidriessens and Dze-
roski, 2002), or using Gaussian processes and graph kewvelgelational struc-

tures to learn a value or Q-function (Gartner et al., 2006).

A second approach uses experience sampled from ground nlonséantiations
to induce first-order policy representations. In one verspmlicies can be learned
directly from sampled experience trajectories generasgwjother planners (Yoon
et al., 2002). In a different vein, policies can be learnednrapproximate policy
iteration framework (Yoon et al., 2006) that combines thjey sampling with
policy updates derived from these trajectories. In thigagagh, sample experience
trajectories can be generated using planning heuristies(Et al., 2003) and/or
random walks on problem sizes that are adaptively scalethasgr performance
improves (Fern et al., 2004).

A third inductive approach (that could also be used in cocjon with FOALP)
allows first-order features to be learned from experientegerahan symbolically
deriving them directly from the relational MDP specificatias described in Sec-
tion 5.5. In one approach, heuristic control knowledge @sented in a first-order
taxonomic syntax can be learned from solution trajectares given problem (Yoon
et al., 2005). In another recent approach, relational Haaistions can be learned
from sampled trajectories and then used in an approximatbe vieration frame-
work (Wu and Givan, 2007).

Since the approaches in this subsection also produce fast-galue functions or
policies, it is important to compare and contrast them whithngymbolic deductive
approach we adopt. In this approach, m@al objectives are threefold:

(1) Obtaining domain-independent exact or bounded apprata solutions where
possible while exploiting natural relational and first-@rglanning structure.

(2) Avoiding potential pitfalls of value functions and pogs specific to biases
from (small) sampled domain instantiations.

(3) Avoiding an intractable representational blowup byuging in the solution
algorithm.

69

In practice the approaches advocated in this article are unable tctigféy achieve
objective (1): the heuristics (such as universal rewarduagosition from Sec-
tion 4.2) required to apply our techniques to planning catitipa problems pre-
vent the derivation of bounds. Objective (2) may be met irciiea, although the
approximations required for practical applications idtroe their own representa-
tional biases. Finally, objective (3) may also be satisfregractice, although the
domain-independent approach introduces its own reprasemal blowup by ef-
fectively planning for every possible domain instantiatio

In comparison, inductive first-order approaches outlinealva share a goal similar
to (1) in exploiting natural relational planning structunrea domain-independent
manner, but cannot claim to support (2) since they must sarmjpleoretical com-

plexity results by Khardon (1999a,b) indicate that (3) aed possible to achieve
for inductive approaches in some settings. We further r@eih practice, the bias
and computational complexity inherent in sampling a snetlio$ possible ground

domain instantiations of an MDP is not generally problemaince policies that

work on one domain instantiation often generalize to simalalarger domains

given an appropriate representation language (Yoon é1G05).

So we may then ask: which first-order approach is bettergtiviior deductive?®
Empirically, recent results (Wu and Givan, 2007) show tinguctive first-order
approaches outperform FOALP. Is this the final answer? Holyeiot; but clearly
there is still a great deal of work to be done in order to makst-brder deduc-
tive approaches fully competitive with recent state-ad-#rt first-order inductive
approaches. Perhaps even more promising though is thetipbptencombine ad-
vances among both approaches; Gretton and Thiebaux (20G#)sdn work that
combines inductive logic programming with first-order dsmn-theoretic regres-
sion, showing that optimal policies can be induced from femining samples if
using deductive methods to generate candidate policytateicSuch approaches
offer the hope of combining the best of both worlds while stgthe goal of ex-
ploiting first-order structure in relational decision-tietic planning problems.

7 Future Directions and Concluding Remarks

In this article, we have motivated the need to exploit relzdi structure in decision-
theoretic planning problems. To this end, we have providdtbeough review of

12 To clarify, we use the term inductive to refer to any algorithm with an indeatiom-
ponent. However, it should be noted that all of the inductive appreactestioned above
incorporate some form of deduction by sampling from the Bellman equationsugieg
induction to obtain a symbolic representation from these samples. In cahiee8DP and
FOALP approaches advocated in this article can be viewed as pure syrdbdliction
since they deduce their value representations from a lifted version olhredh equation.

70

the FOMDP representation of Boutilier et al. (2001) and shibWwew to trans-
late an expressive subset of PPDDL to this particular FOM&drasentation. We
reviewed the solution of FOMDPs via symbolic dynamic progmang and con-
tributed additional practical solution techniques basadttee use of first-order
ADDs (FOADDs), additive value decomposition of universalvards, and first-
order approximate linear programming (FOALP). Combinirig&ihese ideas, we
have provided proof-of-concept results from the probatiditrack of the ICAPS
2004 and 2006 International Planning Competitions.

We outline some interesting directions for future work, affér some concluding
remarks on decision-theoretic planning in the framework©@MDPs.

7.1 Future Directions

There are a number of open issues raised by our work that fuehier exploration.
We enumerate a few of them:

(1) Aninteresting approach for the practical applicatioff@MDPs to decision-
theoretic planning is to combine their approximate offlioéugon with on-
line methods for enhancing their performance. We need ool &t the range
of successful planners used in planning competitions feasd Perhaps one
of the most useful approaches would be to use offline methamdsdiving
FOMDPs to generate a first-order approximated value funcliben we could
use such a value function as a heuristic seed for online ls@aethods such
as RTDP (Barto et al., 1993; Dearden and Boutilier, 1997). Aeioapproach
would be to consider domain-specific control knowledge dedas temporal
logic constraints as in TLPlan (Bacchus and Kabanza, 2006yram con-
straints as in Golog (Levesque et al., 1997) (both TLPlan@oldg are deter-
ministic planners) or decision-theoretic extensions sisdd T-Golog (Boutilier
et al., 2000). We discuss the use of program constraintsduimm a moment.

(2) We did not explore approximate extensions of value ftenafor FOMDPs.
Given the success of the APRICODD planner (St-Aubin et al.,02@bat
performs approximate value iteration using ADDs, this apph is quite ap-
pealing for first-order approximate value iteration usif@¥bDDs. When the
FOADD representing the value function becomes too largecave simply
prune out nodes in the FOADD in an effort to reduce the sizehefvalue
function while minimizing the approximation error.

(3) One promising use of FOMDPs is at the highest level of atrabtion hierar-
chy for agent-based decision-theoretic planning. DeaaderBoutilier (1997)
demonstrate that an MDP model can be approximated to a @teuttiat is
efficiently solvable and that error bounds can be obtainetthemesulting op-
timal policy in the abstracted model with respect to theroptipolicy in the
non-abstracted version. If we lift such results to FOMDRentthis offers a

71

very appealing paradigm for their use: we can approximatnail FOMDP
model to a level that we know we can solve efficiently whileaaing er-
ror bounds on the performance of the optimal policy in thipragimated
model. Or, further afield, we can use a solution to this appmated model
as guidance for other more computationally expensive dhgos like ground
heuristic search or as seed values (Dearden and Boutili@7)) 1® shaped re-
wards (Ng et al., 1999) for value iteration in the non-aledegd MDP model.

In addition to these immediate open problems posed by otnigues, we have
only touched on the surface of FOMDPs and the vast array chasiic decision
processes and symbolic solution methods that are possiee remain a number
of promising directions for the exploitation of structure relationally-specified
decision-theoretic planning problems that we briefly digchere:

(1)

(2)

3)

One of the original goals in the FOMDP and symbolic dyraptbgramming
frameworks (Boutilier et al., 2001) was to allow for very gealesymbolic
representations. While most current FOMDP research haswaska constant
numerical representation of the values in case statemetitiqgrss, there are
many situations where we might obtain non-constant valuesir case state-
ments, e.g., compactly representing value functions in BESIwith univer-
sal rewards that depend on the count of objects satisfyimggepty in a given
situation, or in the context of modeling continuous statepprties, perhaps
combined with discrete state properties in a first-orderegaization ofhy-
brid MDPs (Hauskrecht and Kveton, 2004; Guestrin et al., 2004). Hanev
as the case statement is generalized to handle non-consiaetrical repre-
sentations, case operators like the casemax must be ajgpedpgeneralized
to efficiently handle such value representations (see @e6t2.3 of Sanner
(2008) for one example of such a casemax generalizationhé&mnore, the-
orem provers must also be capable of reasoning about cgymtoperties or
(constrained) continuous variables in such symbolic ctgersent enhance-
ments in order to detect the inconsistency of state panrstio

In many FOMDPs there is an element of underlying topaalggraph struc-
ture. For example, in logistics planning, this graph stitetmay involve the
accessibility of different cities via roads and flight raat€urrently, this graph
structure is not exploited by our solution methods. Yetetgularity, if known
a priori, could likely be exploitable by solution methods that colddmpile”
out this graph structure. This approach would be far morauaidgeous than
relying on the first-order case representation to extrdevaat graph prop-
erties using the cumbersome specification of transitivelpgosed relations
(i.e.,3cy, co. Road(cy, c2) A Jes. Road(co, c3) A Jeg.Road(cs, cq) A ..).

We often have a predefined set of constraints on the bethaelvan agent and
we need to optimize the agent’s policy with respect to thasetaints. If we
can specify the program constraints in the form of a Gologram (Levesque
etal., 1997), then we can generalize the hierarchy of atistrachines (HAM)
architecture (Parr and Russell, 1998; Andre and Russell,)20Ghe case of

72

solving FOMDPs with respect to Golog program constraintechSa solu-
tion would permit the (approximately) optimal executionaof incompletely
specified program over all possible domain-instantiatidvasious approaches
in the decision-theoretic DT-Golog framework (Boutilieragt 2000; Ferrein
et al., 2003) have provided an initial investigation intedh ideas.

The above suggestions are but a few of the many possiblestatento the work
presented in this article and first-order decision-theomanning in general.

7.2 Concluding Remarks

For a few years immediately succeeding the publication efsymbolic dynamic
programming solution (Boutilier et al., 2001) to relatidgadpecified MDPs, this
domain-independent non-grounding approach was disparagyeeing unrealistic
for practical applications due to the complexity of valuedtions or due to the need
for logical simplification and theorem proving (Yoon et 2002; Gardiol and Kael-
bling, 2004; Guestrin et al., 2003). While these are all in $gnificant obstacles to
be overcome in the practical application of first-order M@®slecision-theoretic
planning, this article has aimed to show that these obstacéenot insurmountable.
It has provided a substantial step in the direction of dermatisg that with careful
attention paid to the first-order representation and algms specifically designed
to exploit that representation, non-grounded lifted sohg are viable in practice as
we demonstrated with our proof-of-concept results from@®PS 2004 and 2006
International Planning Competitions. Our hope is that thigcla lays the foun-
dations for further exploration of these non-groundingrapphes and permits the
integration of these ideas with other lines of research aisiten-theoretic planning.

Acknowledgements

We are grateful to the three anonymous reviewers for thaégrnswe comments
and suggestions: these have vastly improved the presemtatd discussion of our
work. We are also grateful to Kee Siong Ng who provided marggsations and
corrections. This work was supported by the Natural Scierasel Engineering
Research Council (NSERC) of Canada. This research was conduuiledive first
author (now with NICTA) was at the Department of Computer Sméetuniversity
of Toronto. NICTA is funded by the Australian Government’s Biag Australia’s
Ability and the Centre of Excellence programs.

73

References

Andre, D., Russell, S., 2001. Programmable reinforcemanhlag agents. In: Ad-
vances in Neural Information Processing Systems (NIPSMail)13. pp. 78-85.

Bacchus, F., Halpern, J. Y., Levesque, H. J., 1995. Reasohmg aoisy sensors in
the situation calculus. In: International Joint Conferemcdrtificial Intelligence
(IJCAI-95). Montreal, pp. 1933-1940.

Bacchus, F., Kabanza, F., 2000. Using temporal logics toesspsearch control
knowledge for planning. Artificial Intelligence 116 (1-223-191.

Bahar, R. I., Frohm, E., Gaona, C., Hachtel, G., Macii, E., PaikdpSomenzi,
F., 1993. Algebraic Decision Diagrams and their applicaidn: IEEE /ACM
International Conference on CAD. pp. 428-432.

Barto, A. G., Bradtke, S. J., Singh, S. P., , 1993. Learning taiamg real-time
dynamic programming. Tech. Rep. UM-CS-1993-002, U. Mass. dusth

Bellman, R. E., 1957. Dynamic Programming. Princeton Unitsefress, Prince-
ton, NJ.

Bertsekas, D. P., 1987. Dynamic Programming. Prentice Halljlewood ClIiffs,
NJ.

Bertsekas, D. P., Tsitsiklis, J. N., 1996. Neuro-DynamigjPaxonming. Athena Sci-
entific, Belmont, MA.

Blum, A. L., Furst, M. L., 1995. Fast planning through graplalgsis. In: [JCAI
95. Montreal, pp. 1636—-1642.

Bonet, B., Geffner, H., 2004. mGPT: A probabilistic plannesdxh on heuristic
search. In: Online Proceedings for The Probablistic Plagnfiirack of IPC-04:
http://www.cs.rutgers.edu/"mlittman/topics/ipcO4-pifeedings/

Boutilier, C., Brafman, R. I., Geib, C., 1997. Prioritized goatdeposition of
Markov decision processes: Toward a synthesis of clasaialdecision the-
oretic planning. In: International Joint Conference on fiaital Intelligence
(IJCAI-97). Nagoya, pp. 1156-1162.

Boutilier, C., Dean, T., Hanks, S., 1999. Decision-theorptanning: Structural
assumptions and computational leverage. Journal of Adiflatelligence Re-
search (JAIR) 11, 1-94.

Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D., 1996ontext-specific
independence in Bayesian networks. In: Uncertainty in Ar#fiIntelligence
(UAI-96). Portland, OR, pp. 115-123.

Boutilier, C., Reiter, R., Price, B., 2001. Symbolic dynamic pesgming for first-
order MDPs. In: International Joint Conference on Artifi¢raklligence (IJCAI-
01). Seattle, pp. 690-697.

Bouitilier, C., Reiter, R., Soutchanski, M., Thrun, S., 2000.iBiea-theoretic, high-
level agent programming in the situation calculus. In: AARI. Austin, TX, pp.
355-362.

Brachman, R., Levesque, H., 2004. Knowledge RepresentatidrRaasoning.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Buffet, O., Aberdeen, D., 2006. The factored policy grad@atner (ipc-06 ver-
sion). In: Proceedings of the Fifth International Plann@mmpetition.

74

Buntine, W., 1988. Generalized subsumption and its apphicab induction and
redundancy. Artificial Intelligence 36, 375-399.

de Farias, D., Roy, B. V., 2003. The linear programming apgréa@pproximate
dynamic programming. Operations Research 51:6, 850—865.

de Salvo Braz, R., Amir, E., Roth, D., 2005. Lifted first-ordeolpabilistic infer-
ence. In: 19th International Joint Conference on Artificraelligence (IJCAI-
2005). Edinburgh, UK, pp. 1319-1325.

de Salvo Braz, R., Amir, E., Roth, D., 2006. MPE and partial is\er in lifted
probabilistic variable elimination. In: National Confepenon Artificial Intelli-
gence (AAAI-06). Boston, USA.

Dearden, R., Boutilier, C., 1997. Abstraction and approxintkgeision-theoretic
planning. Artificial Intelligence 89 (12), 219-283.

Dechter, R., 1999. Bucket elimination: A unifying framewoik freasoning. In:
Artificial Intelligence. Vol. 113. pp. 41-85.

Driessens, K., Dzeroski, S., 2002. Integrating experiu@n and guidance in rela-
tional reinforcement learning. In: International Conferelon Machine Learning
(ICML). pp. 115-122.

Dzeroski, S., DeRaedt, L., Driessens, K., 2001. Relationafaeement learning.
Machine Learning Journal (MLJ) 43, 7-52.

Fern, A., Yoon, S., Givan, R., December 2003. Approximatécgoteration with
a policy language bias. In: Advances in Neural Informatioocessing Systems
16 (NIPS-03).

Fern, A., Yoon, S., Givan, R., June 2004. Learning domaircifipecontrol knowl-
edge from random walks. In: International Conference onrittegnand Schedul-
ing (ICAPS-04). pp. 191-199.

Ferrein, A., Fritz, C., Lakemeyer, G., 2003. Extending DT&gplvith options.
In: 18th International Joint Conference on Artificial Inigénce (IJCAI-2003).
Acupulco, Mexico, pp. 144-151.

Fikes, R. E., Nilsson, N. J., 1971. STRIPS: A new approach tapmpication of
theorem proving to problem solving. Al Journal 2, 189-208.

Gardiol, N. H., Kaelbling, L. P., 2004. Envelope-based plag in relational
MDPs. In: Advances in Neural Information Processing Systé® (NIPS-03).
Vancouver, CA, pp. 1040-1046.

Gartner, T., Driessens, K., Ramon, J., 2006. Graph kerneélganssian processes
for relational reinforcement learning. Machine Learningithal (MLJ) 64, 91—
119.

Gerevini, A., Bonet, B., Givan, B. (Eds.), 2006. Online Proceed
ings for The Fifth International Planning Competition IPC-05
http://www.ldc.usb.ve/ bonet/ipc5/docs/ipc-2006-booté.gz Lake Dis-
trict, UK.

Gretton, C., Thiebaux, S., 2004. Exploiting first-order esgion in inductive policy
selection. In: Uncertainty in Artificial Intelligence (UA)4). Banff, Canada, pp.
217-225.

Guestrin, C., Hauskrecht, M., Kveton, B., 2004. Solving feetoMDPs with con-
tinuous and discrete variables. In: 20th Conference on Waiogy in Artificial

75

Intelligence. pp. 235-242.

Guestrin, C., Koller, D., Gearhart, C., Kanodia, N., 2003. &ahzing plans to
new environments in relational MDPs. In: 18th Internatioh@int Conference
on Artificial Intelligence (IJCAI-2003). Acapulco, Mexicpp. 1003-1010.

Guestrin, C., Koller, D., Parr, R., Venktaraman, S., 2002 ckffit solution methods
for factored MDPs. Journal of Artificial Intelligence ResgafJAIR) 19, 399—
468.

Hauskrecht, M., Kveton, B., 2004. Linear program approxioret for factored
continuous-state Markov decision processes. In: Advaindgsural Information
Processing Systems 16. pp. 895-902.

Hoey, J., St-Aubin, R., Hu, A., Bouitilier, C., 1999. SPUDD: Stastic planning us-
ing decision diagrams. In: Uncertainty in Artificial Intgilence (UAI-99). Stock-
holm, pp. 279-288.

Hoffmann, J., Nebel, B., 2001. The FF planning system: Faat gleneration
through heuristic search. Journal of Artificial IntellenResearch (JAIR) 14,
253-302.

Holldobler, S., Karabaev, E., Skvortsova, O., 2006. FluCaFhedristic search
planner for first-order mdps. Journal of Artificial Intekigce Research (JAIR)
27,419-439.

Howard, R. A., 1960. Dynamic Programming and Markov ProceddéT Press.

Karabaev, E., Skvortsova, O., 2005. A heuristic searchrilkgo for solving first-
order MDPs. In: Uncertainty in Artificial Intelligence (UAJ5). Edinburgh,
Scotland, pp. 292-299.

Kersting, K., van Otterlo, M., de Raedt, L., 2004. Bellman geadational. In: Inter-
national Conference on Machine Learning (ICML-04). ACM Preps465-472.

Khardon, R., 1999a. Learning action strategies for plandmmgains. Artificial In-
telligence 113 (1-2), 125-148.

Khardon, R., 1999b. Learning to take actions. Machine Legrb (1), 57-90.

Koller, D., Parr, R., 1999. Computing factored value funcior policies in struc-
tured MDPs. In: International Joint Conference on Artifi¢rgklligence (IJCAI-
99). Stockholm, pp. 1332-1339.

Koller, D., Parr, R., 2000. Policy iteration for factored MERn: Uncertainty in
Atrtificial Intelligence (UAI-00). Stockholm, pp. 326-334.

Levesque, H. J., Reiter, R., Lés@nce, Y., Lin, F.,, Scherl, R., 1997. GOLOG: a
logic programming language for dynamic domains. Journalagjfic Program-
ming 31 (1-3), 59-83.

Little, 1., 2006. Paragraph: A Graphplan-based probafilglanner. In: Proceed-
ings of the Fifth International Planning Competition.

Litman, M. L., Younes, H. L. S. (Eds.), 2004. Online Pro-
ceedings for The Probablistic Planning Track of IPC-04:
http://lwww.cs.rutgers.edu/ mlittman/topics/ipcO4-pifeedings/ Vancou-
ver, Canada.

Mahadevan, S., 2005. Samuel meets Amarel: Automating ahuaion approx-
imation using global state space analysis. In: National @amfce on Atrtificial
Intelligence (AAAI-05). Pittsburgh, pp. 2000-1005.

76

McCarthy, J., 1963. Situations, actions and causal lawsh.Trep., Stanford Uni-
versity, reprinted in Semantic Information Processing (Mnsky ed.), MIT
Press, Cambridge, Mass., 1968, pages 410-417.

Meuleau, N., Hauskrecht, M., Kim, K.-E., Peshkin, L., Kdelg, L. P., Dean, T.,
Boutilier, C., 1998. Solving very large weakly coupled Markaecision pro-
cesses. In: National Conference on Atrtificial Intelligena@Al-98). Madison,
WI, pp. 165-172.

Motik, B., January 2006. Reasoning in Description Logics gigResolution and
Deductive Databases. Ph.D. thesis, Unidditarlsruhe (TH), Karlsruhe, Ger-
many.

Ng, A. Y., Harada, D., Russell, S., 1999. Policy invariancderreward transfor-
mations: theory and application to reward shaping. In: Pi6th International
Conf. on Machine Learning. Morgan Kaufmann, San Francisco, [ipA 278—
287.

Parr, R., Russell, S., 1998. Reinforcement learning with heéras of machines. In:
M. Jordan, M. K., Solla, S. (Eds.), Advances in Neural Infatibn Processing
Systems 10. MIT Press, Cambridge, pp. 1043—-1049.

Patrascu, R., Poupart, P., Schuurmans, D., Boutilier, C.,1@0eS., 2002. Greedy
linear value-approximation for factored Markov decisiongesses. In: National
Conference on Artificial Intelligence (AAAI-02). Edmontapp. 285—-291.

Pednault, E. P. D., 1989. ADL: Exploring the middle groun¢ieen STRIPS and
the situation calculus. In: KR. pp. 324-332.

Poole, D., 1997. The independent choice logic for modeltmdtiple agents under
uncertainty. Artificial Intelligence 94 (1-2), 7-56.

Poole, D., 2003. First-order probabilistic inference.lOCAI. pp. 985-991.

Poupart, P., Boutilier, C., Patrascu, R., Schuurmans, D., .2B@ewise linear
value function approximation for factored MDPs. In: Na@bi€Conference on
Artificial Intelligence (AAAI-02). Edmonton, pp. 292—299.

Puterman, M. L., 1994. Markov Decision Processes: Disc®&tehastic Dynamic
Programming. Wiley, New York.

Reiter, R., 1991. The frame problem in the situation calcuAusimple solu-
tion (sometimes) and a completeness result for goal ragreds: Lifschitz, V.
(Ed.), Artificial Intelligence and Mathematical Theory of i@putation (Papers
in Honor of John McCarthy). Academic Press, San Diego, pp-380.

Reiter, R., 2001. Knowledge in Action: Logical Foundations &pecifying and
Implementing Dynamical Systems. MIT Press.

Riazanov, A., Voronkov, A., 2002. The design and implemeoadf vampire. Al
Communications 15 (2), 91-110.

Rintanen, J., 2003. Expressive equivalence of formalismpléoning with sens-
ing. In: 13th International Conference on Automated Plagrind Scheduling.
pp. 185-194.

Sanner, S., March 2008. First-order Decision-theoretofhg in Structured Rela-
tional Environments. Ph.D. thesis, University of Toronforonto, ON, Canada.

Sanner, S., Boutilier, C., 2005. Approximate linear prograngnfor first-order
MDPs. In: Uncertainty in Atrtificial Intelligence (UAI-05Edinburgh, Scotland,

e

pp. 509-517.

Sanner, S., Boutilier, C., 2006. Practical linear evaluatsmhniques for first-order
MDPs. In: Uncertainty in Artificial Intelligence (UAI-O6Boston, Mass.

Sanner, S., Boutilier, C., 2007. Approximate solution teghas for factored first-
order MDPs. In: 17th International Conference on Automaté&hiitng and
Scheduling (ICAPS-07). pp. 288 — 295.

Schuurmans, D., Patrascu, R., 2001. Direct value approxmdor factored
MDPs. In: Advances in Neural Information Processing 14 @HF). Vancou-
ver, pp. 1579-1586.

Schweitzer, P., Seidmann, A., 1985. Generalized polynloaparoximations in
markovian decision processes. Journal of Mathematicalyaisaand Applica-
tions 110, 568-582.

Shapley, L. S., 1953. Stochastic games. Proceedings of dtiertdl Academy of
Sciences 39, 327-332.

Singh, S. P., Cohn, D., 1998. How to dynamically merge Markegislon pro-
cesses. In: Advances in Neural Information Processinge8ys{NIPS-98). MIT
Press, Cambridge, pp. 1057-1063.

St-Aubin, R., Hoey, J., Boutilier, C., 2000. APRICODD: Approxitmaolicy con-
struction using decision diagrams. In: Advances in Neurgdrimation Process-
ing 13 (NIPS-00). Denver, pp. 1089-1095.

Teichteil, F., Fabiani, P., 2006. Symbolic stochastic fsmidynamic programming
with decision diagrams. In: Proceedings of the Fifth Ingéional Planning Com-
petition.

Thiebaux, S., Gretton, C., Slaney, J., Price, D., KabanzaJ&nuary 2006.
Decision-theoretic planning with non-markovian rewardisurnal of Artificial
Intelligence Research 25, 17-74.

Tsitsiklis, J. N., Van Roy, B., 1996. Feature-based methodsfge scale dynamic
programming. Machine Learning 22, 59-94.

Veloso, M., August 1992. Learning by analogical reasonmgeneral problem
solving. Ph.D. thesis, Carnegie Mellon University.

Wang, C., Joshi, S., Khardon, R., 2007. First order decisiagrdims for relational
MDPs. In: Twentieth International Joint Conference on Aci#i Intelligence
(IJCAI-07). Hyderabad, India, pp. 1095-1100.

Wang, C., Joshi, S., Khardon, R., 2008. First order decisiagrdims for relational
MDPs. Journal of Artificial Intelligence Research (JAIR) 3314472.

Wang, C., Khardon, R., 2007. Policy iteration for relationdDRk. In: Uncertainty
in Artificial Intelligence (UAI-07). Vancouver, Canada.

Wu, J., Givan, R., 2007. Discovering relational domain fesgufor probabilis-
tic planning. In: 17th International Conference on Autordai®anning and
Scheduling (ICAPS 2007). pp. 344-351.

Yoon, S., Fern, A., Givan, R., 2002. Inductive policy selaatifor first-order
Markov decision processes. In: Uncertainty in Artificiatdiigence (UAI-02).
Edmonton, pp. 569-576.

Yoon, S., Fern, A., Givan, R., 2004. Learning reactive pekcfor probabilistic
planning domains. In: Online Proceedings for The ProbablRlanning Track

78

of IPC-04:http://www.cs.rutgers.edu/ mlittman/topics/ipcO4-pifeedings/

Yoon, S., Fern, A., Givan, R., July 2005. Learning measurggagress for plan-
ning domains. In: 20th National Conference on Artificial Ingence. pp. 1217—
1222.

Yoon, S., Fern, A., Givan, R., 2006. Approximate policy iteya with a policy
language bias: Learning to solve relational markov degigimcesses. Journal
of Artificial Intelligence Research (JAIR) 25, 85-118.

Yoon, S., Fern, A., Givan, R., 2007. FF-Replan: A baseline fobgbilistic plan-
ning. In: 17th International Conference on Automated Plagrind Scheduling
(ICAPS-07). pp. 352—-359.

Younes, H. L. S, Littman, M. L., Weissman, D., Asmuth, JQ20The first prob-
abilistic track of the international planning competitidournal of Artificial In-
telligence Research (JAIR) 24, 851-887.

Zhang, N. L., Poole, D., 1994. A simple approach to bayese&waork computa-
tions. In: Proc. of the Tenth Canadian Conference on Atrtificigdlligence. pp.
171-178.

Zhang, N. L., Poole, D., 1996. Exploiting causal indeperéen bayesian network
inference. Journal of Atrtificial Intelligence Research @Ab, 301-328.

79

