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1 Motivation and introduction

The key feature that makes combinatorial auctions (CAs) most appealing

is the ability for bidders to express complex preferences over collections of

items, involving complementarity and substitutability. It is this generality

that makes providing the input to a CA extremely difficult for bidders. In

effect, each bidder must provide her valuation function over the space of all

bundles of items. More precisely, with m items for sale, there are 2m − 1

bundles over which a bidder may have to provide bids.

Requiring all of this information from all bidders is undesirable for sev-

eral reasons. First, determining one’s valuation for any specific bundle can

be computationally demanding (Sandholm, 1993, 2000; Parkes, 1999b; Lar-

son and Sandholm, 2001), thus requiring this computation for exponentially

many bundles is impractical. Second, communicating exponentially many

bids can be prohibitive (e.g., w.r.t. network traffic).1 Finally, agents may

prefer not to reveal their valuation information for reasons of privacy or

long-term competitiveness (Rothkopf et al., 1990).

Several approaches have been proposed for addressing the problem. As-

cending CAs—see, for example, Parkes (1999a), Wurman and Wellman (2000),

Ausubel and Milgrom (2002), Parkes (Chapter 2), and Ausubel and Milgrom

(Chapter 3)—provide one means of minimizing the information requirements

on bidders by posting prices (sometimes implicitly) on all bundles and ask-
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ing bidders to reveal their demands at the current prices.2 A more general

approach has recently been proposed (Conen and Sandholm, 2001), where

the auctioneer (or elicitor), instead of requesting bids on all bundles, asks

bidders for very limited, and ideally relevant, information about their valu-

ations. Through incremental querying, the auctioneer gradually builds up

a partial model of bidder valuations, one that becomes more refined with

each query, until an optimal allocation can be determined. By adopting a

query strategy in which previously revealed information guides the selection

of subsequent queries, elicitation is focused on pertinent information. Ideally,

an optimal allocation can be determined despite the fact that each bidder’s

valuation function has only been partially revealed. Ascending CAs can be

viewed as a special case of this model.

The preference elicitation problem in CAs is in many ways the same

as that faced in decision analysis and multiattribute utility theory (Keeney

and Raiffa, 1976). Indeed, the preferences expressed by bids can be seen

as a multiattribute utility function in which each item is an attribute. One

way to deal with the exponential bid space is to assume some structure in

utilities. For instance, it is common to assume utility can be expressed as the

additive combination of independent local value functions for each attribute;

much more flexible, yet compact representations have also been proposed

and used (Keeney and Raiffa, 1976) including graphical models (Bacchus

and Grove, 1995; Boutilier et al., 2001). The use of structured models that

exploit the same intuitions has been developed in CAs under the guise of

bidding languages (Nisan, Chapter 9). In such models, one takes advantage of

the fact that a utility function over an exponential outcome space (or bundle

space) can sometimes be expressed with far fewer parameters. Toward the

end of this chapter we present methods for elicitation in CAs that exploit

such structure in individual valuation functions.

Compact models still do not address the issue of the cost of precisely com-
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puting the parameters of the model in question. Again, the analogous prob-

lem in decision analysis—the fact that humans have a hard time precisely as-

sessing utilities—has drawn considerable attention (Keeney and Raiffa, 1976;

Kahneman and Tversky, 1979; Saaty, 1980; Dyer, 1972; White et al., 1984;

Salo and Hämäläinen, 2001; Chajewska et al., 2000; Boutilier, 2002; Wang

and Boutilier, 2003). Typically, in practical decision analysis, comparison

queries of various sorts are asked (which require only yes/no responses) rather

than direct evaluation queries. These impose bounds on utility parameters,

and a number of these queries are asked until a single decision is proven to

be optimal, or a manageable Pareto optimal set can be presented to the user

for selection. In practice, optimal decisions can be found with very limited

elicitation of the utility function.

A key feature that distinguishes the preference elicitation problem in CAs

from traditional preference elicitation is the fact that certain information

about the preferences of one bidder may be irrelevant given the preferences

of others. For instance, suppose bidder b has expressed that she prefers bun-

dle X to bundle Y , and that bundle X is worth no more than $100. Should

the auctioneer have information about other agents that ensures revenue

greater than $100 can be obtained for Y , asking for b’s valuation for Y serves

no useful purpose. Thus, careful interleaving of queries among different bid-

ders can offer potential reductions in the amount of information that needs

to be elicited (Conen and Sandholm, 2001). This is not always the case—as

we discuss below, worst-case results exist that show, in general, the amount

of communication required to realize an optimal allocation is exponential,

equivalent to at least one bidder revealing her entire valuation for all bun-

dles (Nisan and Segal, 2005). But we will see that careful elicitation, can, in

practice, offer significant savings. Such multiagent considerations give most

work on elicitation in CAs a rather different character than techniques in

decision analysis.
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The multiagent considerations naturally apply to the more standard single-

item auctions as well. Recent work has focussed on the question of how to

limit the amount of valuation information provided by bidders, for example,

by (adaptively) limiting the precision of the bids that are specified (Grig-

orieva et al., 2002; Blumrosen and Nisan, 2002). The motivation for the

work can be seen as largely the same as work on preference elicitation in

CAs. Of course, the problem is much more acute in the case of CAs, due to

the combinatorial nature of valuation space.

We begin in Section 2 with a discussion of a general framework for elic-

itation, and describe relevant concepts such as certificates and incentives.

Section 3 deals with a class of elicitation algorithms that use the concept

of a rank lattice. We discuss instantiations of the more general framework

in Section 4, focusing on methods that make no assumptions about valua-

tion structure, while Section 5 deals with methods that exploit structured

valuations. We conclude with discussion of future directions.

2 A general elicitation framework

We begin by describing the basic CA setting, and propose a general model

in which most forms of incremental elicitation can be cast. We also describe

several concepts that have a bearing on most elicitation techniques.

2.1 The setting

Consider a setting with one benevolent seller (auctioneer or arbitrator) and

n buyers (bidders). The seller has a set M = {1, . . . , m} of indivisible,

distinguishable items to sell (we assume no reservation value). Any subset

of the items is called a bundle. The set of bidders is N = {1, . . . , n}
Each bidder has a valuation function vi : 2M → IR that states how valuable

any given bundle is to that bidder. Let vi(∅) = 0 for all i. These valuations

are private information. We make the standard quasilinearity assumption:
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the utility of any bidder i is ui(Xi, pi) = vi(Xi) − pi, where Xi ⊆ M is the

bundle he receives and pi is the amount that he has to pay.

A collection (X1, . . . , Xn) states which bundle Xi each bidder i receives.

If some bidders’ bundles overlap, the collection is infeasible. An allocation is

a feasible collection (i.e., each item is allocated to at most one bidder).

We will study elicitors that find a welfare maximizing allocation (or in

certain settings, a Pareto efficient allocation). An allocation X is welfare

maximizing if it maximizes
∑n

i=1 vi(Xi) among all allocations. An allocation

X is Pareto efficient if there is no other allocation Y such that vi(Xi) ≥ vi(Yi)

for each bidder i and strictly greater for at least some bidder i.

2.2 Elicitors

By preference elicitation in CAs we refer to a process by which the auctioneer

queries bidders for specific information about their valuations. If we think

of elicitation as a distinct process, we can view the auctioneer as augmented

with an elicitor (most practically embodied in software) that determines

what queries to pose. Given any sequence of responses to previous queries,

the elicitor may decide to ask further queries, or stop and (allow the auc-

tioneer to) determine a feasible (possibly optimal) allocation and payments.

Most models and algorithms of elicitation in CAs that have been studied to

date can be cast as instantiations of the following general algorithm:

1. Let Ct denote information the elicitor has regarding bidder valuation

functions after iteration t of the elicitation process. C0 reflects any

prior information available to the auctioneer.

2. Given Ct, either (a) terminate the process, and determine an allocation

and payments; or (b) choose a set of (one or more) queries Qt to ask

(one or more) bidders.

3. Update Ct given response(s) to query set Qt to form Ct+1, and repeat.
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This framework is, of course, too general to be useful without addressing

some key questions. All specific algorithms for elicitation that we survey take

a concrete stance on each of the following issues.

First, what queries is the elicitor allowed to pose? Examples considered

in the literature include: rank queries (“What is your second-most preferred

bundle?”); order queries (“Is bundle a preferred to bundle b?”); bound queries

(“Is bundle a worth at least p?”); value queries (“What is bundle a worth?”);

and demand queries (“If the prices for—some or all—bundles were ~p, which

bundle would you buy?”). When evaluating the effectiveness of elicitation,

we generally care about the number of queries required to determine an

optimal allocation. This must be considered carefully, since powerful queries

like “What is your valuation?” trivialize the problem. Thus it is natural to

compare the number of queries asked by the elicitor on a specific problem

instance to the number of the same type of queries needed to realize full

revelation.

Second, how is information about bidder valuations represented? This is

tied intimately to the permitted query types, since different queries impose

different types of constraints on possible valuations. For instance, if only

bound queries are used, then upper and lower bounds on valuations (and

allocations) must be maintained. This question also depends on structural

assumptions that the elicitor makes about valuations. The query types above

exploit no structural information (since they ask only about bundles); but if

one can assume, say, that a bidder’s valuation function is linear, then queries

can be directed toward parameters of the valuation function. Furthermore,

the representation of the consistent valuation functions can be much more

compact. Finally, one might use probabilistic representations to reflect priors

over valuations, for instance, to decide which queries are most likely to be

useful.
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Finally, the issue of termination is critical: when does the elicitor have

enough information to terminate the process? Naturally, determination of

an optimal or approximately optimal allocation (w.r.t. the responses offered)

should be possible. However, incentive properties must also be accounted for

(see below). Ideally, mechanisms should also account for the costs of elici-

tation (e.g., communication costs, or computational/cognitive costs imposed

on the bidders).

2.3 Certificates

Since the aim of incremental elicitation is to determine optimal allocations

without full valuation information, it is critical to know when enough infor-

mation has been elicited. A certificate is a set of query-answer pairs that

prove that an allocation is optimal.3 The form of certificates naturally de-

pends on the types of queries one is willing to entertain. For example, when

the objective is to find a welfare-maximizing allocation, the elicitor clears

the auction if, given the information it has received, it can infer that one

allocation is worth at least as much as any other. A minimal certificate is

a certificate that would cease to be a certificate if any query-answer pair

were removed from it. A shortest certificate for a specific problem instance

is a certificate that has the smallest number of query-answer pairs among all

certificates.4

2.4 Handling incentives

Motivating the bidders to answer elicitor queries truthfully is a key issue; if

the bidders lie, the resulting allocation may be suboptimal. It is well known

that the Vickrey-Clarke-Groves (VCG) mechanism (Vickrey, 1961; Clarke,

1971; Groves, 1973) makes truth-telling each bidder’s dominant strategy.5

(See Ausubel and Milgrom (Chapter 1) and Ronen (Chapter 15) for discus-

sions of incentives.) However, the VCG mechanism, as generally defined,
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requires complete “up front” revelation of each bidder’s valuation (in sealed-

bid fashion).

When incremental elicitation is used, motivating bidders to answer queries

truthfully is more difficult, since elicitor queries may leak information to the

bidder about the answers that other bidders have given (depending on the

elicitor’s query policy). For instance, a bidder may condition her response on

the precise sequence of queries asked by inferring that the current query is

deemed necessary by the elicitor given responses to queries by other bidders.

This makes the bidders’ strategy spaces richer, and can provide incentive to

reveal untruthfully.

Conen and Sandholm (2001) describe a methodology by which incremen-

tal elicitation mechanisms can be structured so that answering queries truth-

fully is an ex post equilibrium: bidding truthfully is each bidder’s best strat-

egy given that the other bidders bid truthfully. The elicitor asks enough

queries to determine not only the welfare-maximizing allocation, but also

VCG payments.6 Using the welfare-maximizing allocation and VCG pay-

ments so constructed, the elicitor induces all bidders to answer their queries

truthfully.7

A related approach to handling incentives in auctions involves proving

that myopic best-responding is an ex post equilibrium in ascending auctions

(Gul and Stacchetti, 2000). This approach has also been used in multi-

unit (Ausubel, 2005) and combinatorial auctions (Ausubel, 2002). Another

related approach uses proxy bidders in CAs: the proxies carry out myopic

best response strategies in an ascending auction. In that case, revealing

valuation information to the proxies truthfully on an as-needed basis is an

ex post equilibrium (Parkes, 2001).
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2.4.1 Incentive-compatible push-pull mechanisms

To improve revelation efficiency, the elicitor can, apart from querying (or

pulling information), allow bidders to provide unsolicited information (i.e.,

push information), and treat it as if he had asked the corresponding query.

Revelation through bidder push can be effective because the bidder has in-

formation (about her own valuation) that the elicitor does not. Revelation

through elicitor pull can be effective because the elicitor has information that

the bidder doesn’t (about others’ valuations). Because both modes have their

strengths, the hybrid push-pull method can help reduce the amount of reve-

lation compared to pure push or pull.

Bidders can also refuse to answer some of the elicitor’s queries (e.g., if

they are too hard to answer). As long as enough information is revealed to

determine the optimal allocation and VCG payments, truth-telling is an ex

post equilibrium. Thus, incentive properties remain intact despite the fact

that the bidders can pass on queries and “answer” queries that the elicitor

did not ask.8 In the rest of this chapter, we only consider pull mechanisms.

2.5 Constraint network

While different elicitation algorithms may require different means of repre-

senting the information obtained by bidders, Conen and Sandholm (2001)

describe a fairly general method for representing an incompletely specified

valuation functions that supports update with respect to a wide variety of

queries, and inference by the elicitor. A constraint network is a labeled

directed graph consisting of one node for each bundle b representing the elic-

itor’s knowledge of the preferences of a bidder. A directed edge (a, b) indicates

that bundle a is (known to be) preferred to bundle b. Each node b is labeled

with an interval [LBi(b),UBi(b)], where LBi(b) is the greatest lower bound

the elicitor can prove on the true vi(b) given the answers received to queries

so far, and UBi(b) is the least upper bound. By transitivity, the elicitor
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knows that a is preferred to b, denoted a º b, if there is a directed path from

a to b or if LBi(a) ≥ UBi(b).

The free disposal assumption allows the elicitor to add the edges (a, b)

to any constraint network for any a ⊆ b, as shown in Fig. 1. Responses

to order queries can be encoded by adding edges between the pair of bun-

dles compared, while value and bound queries can be encoded by updating

the bounds. When bounds are updated, new lower bounds can readily be

propagated “upstream” and new upper bounds “downstream.”

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

∅

Figure 1: A constraint network for a single bidder with 3 items a, b, and c
encoding free disposal.

The constraint network representation is useful conceptually, and can be

represented explicitly for use in various elicitation algorithms. But its explicit

representation is generally tractable only for small problems, since it contains

2m nodes (one per bundle), and an average outdegree of m/2.

3 Rank lattice-based elicitors

We begin with discussion of a class of elicitors that use the notion of a

rank lattice (Conen and Sandholm, 2001, 2002c). Rank-lattice elicitors adopt

specific query policies that exploit the topological structure inherent in the

problem to guide the elicitation of bidders’ preferences.
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Conceptually, bundles can be ranked for each bidder from most to least

preferred. This gives a unique rank for each bundle for each bidder (assuming

no indifference). Let bi(ri) be the bundle that bidder i has at rank ri. In other

words, bi(1) is the bidder’s most preferred bundle, bi(2) second-most, etc. A

rank vector r = [r1, r2, . . . , rn] represents the allocation of bi(ri) to bidder i.

Naturally, some rank vectors correspond to feasible allocations and some to

infeasible collections. The value of a rank vector r is v(b(r)) =
∑

i vi(bi(ri)).

A rank vector [r1, r2, . . . , rn] dominates rank vector [r′1, r
′
2, . . . , r

′
n] if ri ≤ r′i

for all bidders i ∈ N . The set of rank vectors together with the domination

relation define the rank lattice as depicted in Figure 2.

 

= infeasible[1,1]

[1,2] [2,1]

[2,3]

[3,1]

[3,2]

[2,4]

[3,4] [4,3]

[3,3] [4,2]

[4,4]

[1,4] [4,1]

[2,2][1,3]

Dominated

17

14 13

9 10 12

98

Figure 2: Rank lattice for two bidders, 1 and 2, and two items, A and B, with
the following value functions: v1(AB) = 8, v1(A) = 4, v1(B) = 3, v1(∅) = 0,
v2(AB) = 9, v2(B) = 6, v2(A) = 1, v2(∅) = 0. Gray nodes are infeasible.
The shaded area is the set of nodes dominated by feasible nodes. Above each
node is its value.

If a feasible collection (i.e., allocation) is not dominated by another al-

location in the rank lattice, it is Pareto efficient (i.e., if the elicitor knew

only the ranks of all bundles of all bidders, but had no valuation informa-

tion, each such nondominated allocation is potentially optimal; see the three

white nodes in Figure 2). Welfare-maximizing allocations (in this example,
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rank vector [2, 2]) can be determined using the values only of allocations in

this set.

Since no allocation that lies below another in the rank lattice can be

a better solution to the allocation problem, Conen and Sandholm (2001,

2002b,c) propose a series of search algorithms to find optimal allocations

that exploit this fact to guide the elicitation process. Intuitively, rank-based

elicitors construct relevant parts of the rank lattice by traversing the lattice

in a top-down fashion, asking queries in a “natural” order. Since the rank

lattice has 2mn nodes, careful enumeration is critical, since the entire rank

lattice cannot be examined in any but the smallest problems. Within the

general elicitation model, these methods rely on rank, value, and “relative”

bound queries; and assume no structure in valuations.

3.1 Using rank and value queries

The PAR (Pareto optimal) algorithm (Conen and Sandholm, 2002c) is a

top-down search algorithm that uses rank queries to find all Pareto-efficient

allocations. It initially asks every bidder for her most preferred bundle,

constructing the collection (1, . . . , 1) that sits atop the rank lattice. As the

search progresses, the elicitor asks one new query for every successor that

it “constructs” in the rank lattice by asking one of the bidders for her next

most preferred bundle. Specifically, starting with (1, . . . , 1) in the fringe,

PAR chooses a node from the fringe, adds it to the Pareto-efficient set if it is

feasible; if not, its children are added to the fringe. At each stage, all nodes

in the fringe that are dominated by a Pareto optimal node are removed. The

algorithm terminates when the fringe is empty. At termination, all Pareto

optimal solutions have been identified.9 PAR can be augmented to produce

a welfare-maximizing outcome by asking value queries of all bundles that

occur in the Pareto efficient set. This variant is called MPAR (maximizing

PAR).
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The EBF (efficient best first) algorithm (Conen and Sandholm, 2002c)

is designed to find a welfare-maximizing allocation under the standard as-

sumption of transferable and quasi-linear utility. Like PAR, it asks for each

bidder’s bundles in most-to-least-preferred order. However, EBF also asks

for bundle values. These values give the search algorithm additional guidance

as to which nodes to expand. The algorithm starts from the root and always

expands the fringe node of highest value, while pruning provably dominated

nodes. The first feasible node reached is optimal.

Unlike typical best-first search, EBF cannot always determine which node

on the fringe has highest value (and thus should be expanded) given its

current information; thus further elicitation is generally required. Conen and

Sandholm define a simple (nondeterministic) subroutine for node expansion

that defines an elicitation policy where the elicitor picks an arbitrary node

from the fringe and elicits just enough information to determine its value,

until it can prove which node on the fringe has highest value. Interestingly,

since the elicitor uses constraint network inference to propagate value bounds,

the best node in the fringe can be determined without knowing its precise

value or the identity of the bundles that make it up. Determining feasibility

then requires that rank queries be asked to determine each unknown bi(ri).

Conen and Sandholm show that MPAR and EBF are, in a sense, as

effective as possible in their uses of information, within the restricted class

of admissibly equipped elicitors. An elicitor is admissible if it always finds

a welfare-maximizing allocation; both EBF and MPAR are admissible. An

elicitor is admissibly equipped if it can perform only the following operations:

(a) determine the welfare of a given collection (by asking bidders for their

valuations for relevant bundles); (b) determine whether a given collection

is feasible or not (by asking bidders for the bundles at that rank vector);

and (c) determine the next unvisited direct successors of a collection in the

lattice.
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Theorem 3.1 (Conen and Sandholm, 2002c) No admissible, admissibly equipped,

deterministic elicitor requires fewer feasibility checks on every problem in-

stance than EBF.

This result does not depend on the specific instantiation of the nondetermin-

istic node-expansion strategy used by EBF.

Theorem 3.2 (Conen and Sandholm, 2002c) No admissible, admissibly equipped,

deterministic algorithm that only calls the valuation function for feasible col-

lections requires fewer calls than MPAR.

This result restricts elicitors to asking for the valuation of feasible collections.

It also counts valuation calls to collections, as opposed to individual bundle-

bidder pairs. In practice, we care about the latter and have no reason to

restrict the elicitor to queries about feasible collections.

While EBF and MPAR are as effective as any admissible, admissibly

equipped elicitor, Conen and Sandholm (2002c) show that worst-case be-

havior for both algorithms (hence for any algorithm in this class) is quite

severe. Specifically, MPAR needs to query the value of nm allocations in the

worst case, while EBF must call the valuation routine on (2mn − nm)/2 + 1

collections.

The practical effectiveness of these algorithms is strongly dependent on

the number of items and agents. Maintaining an explicit constraint network

for each bidder and rank lattice can be problematic, since the former (i.e.,

number of bundles) grows exponentially with the number of items, and the

latter grows exponentially with the number of relevant bundles. The hope is

that by clever elicitation, EBF will obviate the need to construct anything

but a very small portion of the rank lattice. Unfortunately, EBF shows

rather poor empirical performance in this regard (Hudson and Sandholm,

2004): the elicitation ratio—the ratio of the number of queries asked by an
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elicitor to the total number of queries required by full revelation—is rather

poor. On small problems (from two to four bidders, two to eleven items),

the ratio drops with the number of items, but quickly approaches 1 as the

number of bidders increases (and is close to one with as few as four bidders).

This is not surprising, since bidders tend to win smaller, low-ranked bundles

when the number of participants is large, forcing enumeration of large parts

of the lattice.

One benefit of examining the lattice top-down occurs when considering

VCG payments. Once EBF terminates, no additional queries are needed to

determine VCG payments.

Theorem 3.3 (Conen and Sandholm, 2002c) No information in addition to

the information already obtained by EBF is necessary to determine the VCG

payments.

3.2 Differential elicitation

Conen and Sandholm (2002b) propose variants of the EBF algorithm in which

the elicitor asks bidders for the differences between valuations rather than

absolute valuations. Such differential elicitation methods require bidders to

reveal less about their valuations. The elicitor asks rank queries (i.e., what

bundle has rank k), and either differential value queries of the form “What is

the difference between the value of bundle b and your most preferred bundle?”

or differential bound queries of the form “Is the difference between the value

of bundle b and your most preferred bundle greater than δ?”

The general differential elicitation algorithm is a modification of EBF.

The key observation is that the optimal allocation minimizes the aggregated

loss in utility of each bidder relative to her most preferred bundle. The

algorithm therefore iteratively elicits differences between valuations relative

to the (unspecified, maximum) valuation for the highest ranking bundle. We

focus on the use of differential bound queries, and suppose that there is some
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small “accounting unit” ε such that all valuations must differ by some integral

multiple of ε.

The algorithm EBF-DE proceeds like EBF differing only in its use of

differential bound queries rather than value queries, and its strategy for ex-

panding nodes. For any specific bundle-bidder pair, EBF-DE asks queries

for that bundle in increasing order of difference (e.g., is the difference be-

tween the value of b and your most preferred bundle greater than 0? ε? 2ε?

etc.). If the bidder responds yes, this establishes a lower bound on the differ-

ence; if she responds no, this establishes the precise difference. These lower

bounds can be used to reason about domination in the rank lattice, since the

lower bounds on loss (relative to the optimal bundle) for each bidder can be

summed to obtain a lower bound on the aggregate loss.10 EBF-DE ensures

a welfare-maximizing allocation is found. Furthermore, like EBF, we have:

Proposition 3.4 (Conen and Sandholm, 2002b) No information in addition

to that obtained by EBF-DE is necessary to determine VCG payments.

4 Elicitation with unstructured valuations

Elicitors that exploit rank lattices have a very restricted, inflexible form of

query policy, intimately intertwined with the elicitor’s lattice representation

of the information gleaned from bidders. In this section, we describe work

that offers more flexible approaches to elicitation along the lines of the general

elicitation framework described in Section 2.2. We focus here on the case

of unstructured valuations, deferring discussion of structured valuations to

Section 5.

Conen and Sandholm (2001) describe a general framework for unstruc-

tured preferences in which the elicitor’s knowledge is organized as a set of

candidates. A candidate c = 〈c1, c2, . . . , cn〉 is any allocation (i.e., feasible

collection) that, given the responses to queries so far, is potentially optimal.

Given the nature of the queries considered below, one can generally impose
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upper and lower bounds on the value associated with each allocation in the

candidate set.

One can obviously view the problem of elicitation as a game against

nature, in which an optimal elicitor constructs an optimal strategy (or con-

tingency plan) where nature chooses valuations for the bidders, thus dictat-

ing responses to the queries prescribed by the optimal policy.11 This can

be solved using tree search, but this is clearly impractical except for tiny

problems (Hudson and Sandholm, 2004). This has led the development of

heuristic methods for elicitation, as we now describe.

4.1 Value queries

Hudson and Sandholm (2004) consider various instantiations of the general

elicitation framework in which the elicitor is restricted to asking value queries,

in which a bidder is asked to reveal her valuation vi(b) of a specific bundle b.

This sets the value of b for bidder i and can be used to set upper and lower

bounds on other bundles using constraint network inference (Section 2.5).

Note that without edges in the constraint network (e.g., due to free disposal),

information about the value of one bundle provides no information on the

value of others. All of the value-query policies considered ask each bidder for

the value of the grand bundle M consisting of all items, since it imposes an

upper bound on the value of all bundles—formal justification for eliciting the

grand bundle is given by Hudson and Sandholm (2004). They also investigate

the potential savings of several elicitation policies relative to the Q = n(2m−
1) value queries required by full elicitation. We let qmin denote the shortest

certificate for a specific problem instance (here, the fewest value queries an

omniscient elicitor could ask).

The random elicitation policy simply asks random value queries (whose

answers cannot yet be inferred given the answers so far) until a optimal

allocation can be determined.
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Theorem 4.1 (Hudson and Sandholm, 2004) For any given problem in-

stance, the expected number of value queries q that the random elicitation

policy asks is at most qmin

qmin+1
(Q + 1).

This upper bound guarantees relatively minor savings in elicitation since

qmin increases with the number of agents and items. However, the pessimistic

nature of the proof—that there is one minimal certificate—gives hope that in

practice random elicitation may perform better than suggested. Experiments

(see Fig. 3) show that, while the elicitation ratio q/Q is less than 1, and slowly

decreases with the number of items, it generally offers little savings over full

elicitation (Hudson and Sandholm, 2004).
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Figure 3: Top lines: Random elicitation policy. Bottom lines: Random allo-
catable policy.

The random allocatable policy improves on the random policy by restrict-

ing the set from which a query will be randomly selected. Note that the

elicitor might know that a bundle b will not be allocated to bidder i before

he knows the bidder’s precise valuation for the bundle. This occurs when

the elicitor knows of a different allocation which it can prove will generate at

least as much value as any allocation that allocates b to agent i. If the elicitor

cannot (yet) determine this (i.e., if there is a candidate in which ci = b), then

the bundle-bidder pair is deemed allocatable. The random allocatable policy
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is identical to the random policy with a restriction to allocatable bundle-

bidder pairs. Hudson and Sandholm (2002, 2004) provide a characterization

of situations in which restricting queries to allocatable pairs can and cannot

lessen the effectiveness of the random policy. This restriction can never lessen

the effectiveness by more than a factor of 2. Empirically, they show that

the random allocatable policy performs dramatically better than the random

policy, that the proportion of queries asked drops quickly with the number

of items, and is unaffected by the number of bidders (see Figure 3).

The high-value candidate policy (Hudson and Sandholm, 2004) relies on

the following intuition: to prove an allocation is optimal, we require a suffi-

ciently high lower bound on it, and sufficiently low upper bounds on all other

allocations. By only picking from high-value candidates, the high-value can-

didate elicitor is biased towards queries that (we expect) need to be asked

anyway. In addition, by picking from those queries that will reduce as many

values as possible, it is also biased toward reducing upper bounds.

More precisely, let Cmax be the set of high-value candidates, those with

the greatest upper bound. For each (b, i) ∈ Cmax, let sub-bundles(b, i) be the

number of other bundles in Cmax whose value might be affected upon eliciting

vi(b), that is, those (b′, i) ∈ Cmax for which b ⊃ b′ and LBi(b) < UBi(b
′).

The elicitor asks value queries by choosing uniformly at random among the

(b, i) with the most sub-bundles. Empirically, Hudson and Sandholm (2004)

show that the high-value candidate elicitor performs better than the random

allocatable elicitor (see Fig. 4 for illustrative results); it achieves an elicitation

ratio of only 24% with 8 items and 3 agents, as opposed to 30% for the random

allocatable policy and 78% for the random policy.

Hudson and Sandholm (2004) also evaluate the performance of an om-

niscient elicitor, one that knows each bidder’s valuation function, but must

ask a set of queries whose responses constitute a minimal certificate for the

instance in question.12 The performance of the omniscient elicitor provides
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Figure 4: High-value candidate elicitation policy. The legend is in the order
of the plot lines at 2 items. The elicitation ratio falls with increasing number
of items, but grows with increasing number of agents, when there are more
items than agents (see (Hudson and Sandholm, 2004) for details).

an instance-specific lower bound on that of any real elicitor.

The policies described above require intensive computation, especially if

the candidate set is represented explicitly, since this scales poorly with the

number of agents. Pruning of dominated candidates after any query response

requires time quadratic in the number of candidates, while determining the

best query (e.g., in the high-value candidate policy) and termination requires

linear time, a tremendous burden since there may be as many as nm candi-

dates.13

Candidates need not be represented explicitly. Query selection can be

accomplished by repeatedly solving an efficient integer program (IP) to com-

pute the value of the highest-valued candidate (Hudson and Sandholm, 2004).

With reasonable caching, the implicit approach can be several orders of mag-

nitude faster than the explicit candidate representation.

Finally, Hudson and Sandholm (2004) address the question of whether

there exist universal elicitors, that is, elicitors that save revelation on all

instances (excluding those where even the omniscient elicitor must reveal

everything).
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Definition 1 A universal revelation reducer is an elicitor with the following

property: given any problem instance, it guarantees (always in the determin-

istic case; in expectation over the random choices in the randomized case)

saving some elicitation over full revelation—provided the shortest certificate

is shorter than full revelation. Formally: if qmin < Q, the elicitor makes

q < Q queries.

By Theorem 4.1, the unrestricted random elicitor is a universal revelation

reducer. In contrast:

Theorem 4.2 (Hudson and Sandholm, 2004) No deterministic value query

policy is a universal revelation reducer.

4.2 Order queries

In some applications, bidders might need to expend great (say, cognitive

or computational) effort to determine their valuations precisely (Sandholm,

1993; Parkes, 1999b; Sandholm, 2000; Larson and Sandholm, 2001), but

might easily be able to see that one bundle is preferable to another. In

such settings, it is natural to ask bidders order queries, that is, which of

two bundles b or b′ is preferred. A response to this query induces a new

(direct) domination relation in the constraint network for the bidder. Nat-

urally, by asking only order queries, the elicitor cannot compare the valua-

tions of one agent with those of another, so it generally cannot determine a

welfare-maximizing allocation. However, order queries can be helpful when

interleaved with value queries.

Hudson and Sandholm (2004) propose an elicitation policy that combines

value and order queries by simply alternating between the two, starting with

an order query. Whenever an order query is to be asked, the elicitor computes

all tuples (b, b′, i) where bundles b and b′ are each allocated to bidder i in

some candidate, and where the elicitor knows neither b′ º b nor b º b′, and
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asks the order query corresponding to a random such tuple. Value queries

are chosen randomly from among allocatable bundle-bidder pairs (as in the

random allocatable policy above).

To compare the effectiveness of this policy against value-query-based poli-

cies, one needs to assess the relative “costs” of order and value queries. If

order queries are cheap, it is worth mixing the two; otherwise using value

queries alone is better. An experiment by Hudson and Sandholm suggests

that (when the random allocatable policy is used to select value queries) the

break-even point occurs when an order query costs about 10% of the cost of

a value query.

An advantage of the mixed value-order policy is that it does not depend

as critically on free disposal. Without free disposal, any policy that uses

value queries only would have to elicit all values. Order queries, on the other

hand, can create useful edges in the constraint network which the elicitor can

use to prune candidates.

Conen and Sandholm (2001) present several other algorithms within the

general elicitation framework that use combinations of value, order, and rank

queries. Effectiveness of elicitation has also been demonstrated in combina-

torial reverse auctions (Hudson and Sandholm, 2003) and in combinatorial

exchanges (Smith et al., 2002).

4.3 Bound-approximation queries

In many settings, the bidders can more readily estimate their valuations than

accurately compute them; and often the more accurate the estimate, the more

costly it is to determine. This might be the case, for example, if bidders

determine their valuations using anytime algorithms (Larson and Sandholm,

2001). To account for this, Hudson and Sandholm (2004) introduce the use

of bound-approximation queries for CAs, where the elicitor asks a bidder i

to tighten it’s upper bound UBi(b) or lower bound LBi(b) on the value of a
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given bundle b.14 This allows for elicitation of a more incremental form than

that provided by value queries. The model studied by Hudson and Sandholm

is one in which the elicitor can provide a hint as to how much time to spend

refining this bound.

The bound-approximation query policy considered is one in which the elici-

tor determines the best query as follows: for each (b, i) pair, it (optimistically)

assumes that the answer z = UBi(b) will be provided to a lower bound query

(thus moving the lower bound maximally); conversely, it (optimistically) as-

sumes that the answer z = LBi(b) will be provided to an upper bound query.

The best query is that whose sum of (assumed) changes over all candidates

is maximal. The policy was tested using a model of bound refinement that

allowed for diminishing returns of computational effort: the marginal rate at

which the bound is tightened reduces with the amount of computational ef-

fort expended. Experiments in (Hudson and Sandholm, 2002) show on small

problems that this policy can reduce overall computation cost as the number

of items grows (and is independent of the number of agents).

The question of VCG payments in the general elicitation framework has

been studied empirically for value, order and bound-approximation queries

(Hudson and Sandholm, 2003). Unlike the EBF elicitor, in which VCG

payments are obtained as a side effect due to the rigid query order, additional

queries will generally be required in the general model. Experimentally, once

a specific elicitor found the optimal allocation (and its value), each bidder i

was removed from consideration in turn, and the elicitation algorithm was

continued without candidates that allocated items to i, thus allowing the

optimal allocation opt−i (and value) without i, hence VCG payments, to be

computed.

In the 2-agent case, almost no additional elicitation is required: opt−i

simply allocates the grand bundle M to the agent that was not removed.

Thus at most 4 additional values are needed over what is necessary to com-
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pute the optimal allocation: v1(opt1), v1(M), v2(opt2), and v2(M). While

this argument does not generalize to more than 2 agents, in practice, rela-

tively little extra information is needed. For example, the elicitation ratio of

the bound-approximation policy is 60% at 3 agents and 5 items, and deter-

mining VCG payments only increases the elicitation ratio to 71%. Similarly,

that of the value and order policy only increases from 48% to 56%.

4.4 Demand queries

Demand queries form another interesting, naturally occurring class of queries.

In a demand query the elicitor asks bidder i: “If the prices on bundles S ⊆ M

were pi (where pi : 2M → IR), which bundle S would you buy?” In practice,

prices are explicitly quoted only on a small subset of the bundles; the price

of any other bundle is implicitly defined based on the prices of its subsets,

for example, pi(S) = maxS′⊆S pi(S
′). The bidder would answer with the

profit-maximizing bundle maxS⊆M vi(S)− pi(S).

Demand query elicitors can be distinguished along several dimensions:

1. Does the elicitor adopt anonymous pricing, by offering the same prices

pi(S) = p(S) to all bidders, or discriminatory pricing, offering different

prices pi(S) to different bidders i?

2. Are bundle prices used, or item prices? Item prices associate a price

pi(k) with each item k, with pi(S) =
∑

k∈S pi(j).
15

3. How does the elicitor chooses the next query to ask?

Ascending (combinatorial) auctions—in which prices increase during the

auction—can be seen as a special case of the general elicitation framework

in which demand queries are used in a very specific way. There has been

considerable research on on ascending CAs, much of it focused on struc-

tured valuations of various types. Indeed, most work on elicitation using

demand queries arises in the context of ascending CAs. We briefly overview
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here results dealing with general, unstructured valuations, and return to the

question of structured valuations in the next section. Ascending CAs are

discussed in further detail by Parkes (Chapter 2) and Ausubel and Milgrom

(Chapter 3). Elicitation using demand queries is also addressed by Segal

(Chapter 11).

An important strand of research is the design of ascending CAs for gen-

eral valuations (e.g., Parkes, 1999a; DeMartini et al., 1999; Wurman and

Wellman, 2000). There are ascending discriminatory bundle-price auctions

that yield optimal allocations in this general setting. They can be under-

stood as linear programming algorithms for the winner determination prob-

lem: primal-dual algorithms (de Vries et al., 2003) or subgradient algorithms

(Parkes and Ungar, 2000; Ausubel and Milgrom, 2002). Additional condi-

tions on the valuation functions need to be satisfied for the auctions to also

yield VCG prices (de Vries et al., 2003) (see also Parkes (Chapter 2) and

Ausubel and Milgrom (Chapter 3)). It is unknown whether any anonymous

bundle-price auction guarantees optimality (Nisan, 2003), though for restric-

tive definitions of “auction”, the insufficiency of anonymous prices has been

shown (Parkes Chapter 2). (See Bikhchandani and Ostroy (2002) for a dis-

cussion of competitive equilibria with anonymous bundle-prices.) Item-price

demand queries can be used to efficiently simulate any value query (the con-

verse is not true) (Nisan, 2003). (However, to answer a demand query, a

bidder may need to solve his planning problems for a large number of bun-

dles, if not all of them; a value query can be answered based on one plan.)

Therefore, the optimal allocation can always be found using item-price de-

mand queries, but the number of queries needed (shortest certificate) is ex-

ponential in some instances. Furthermore, even in some instances where a

polynomial number of item-price demand queries constitutes a certificate, no

ascending item-price auction (even a discriminatory one) can find the optimal

allocation (Nisan, 2003).
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Taken together, Blum et al. (2004) and Lahaie and Parkes (2004) show

that bundle-price queries have drastically more power than item-price queries.

As pointed out by Nisan (2003), any reasonable ascending bundle-price auc-

tion will terminate within a pseudopolynomial number of queries:

s · n · (highest-bid/minimum-bid-increment).

Here s is the number of maximum number of terms required to express any

bidder’s valuation in the XOR language (introduced in Sandholm (2002), see

also Nisan (Chapter 9)). Furthermore, using bundle-price demand queries

(where only polynomially many bundles are explicitly priced) and value

queries together, the optimal allocation can be found in a number of queries

that is polynomial in m, n, and s (Lahaie and Parkes, 2004), using techniques

from computational learning theory (see Section 5.3). On the other hand,

there is a nontrivial lower bound for item-price demand queries:

Theorem 4.3 (Blum et al., 2004) If the elicitor can only use value queries

and item-price demand queries, then 2Ω(
√

m) queries are needed in the worst

case to determine the optimal allocation. This holds even if each bidder’s

valuation, represented in the XOR-language, has at most O(
√

m) terms.

Nisan and Segal (2005) address the communication complexity of CAs,

in particular, the possibility that clever elicitation can reduce the need for a

bidder to specify a valuation function over all bundles. Their main results are

negative: reduction in communication complexity is not (generally) possible.

While they do not rely on specific query types, these results demonstrate

the importance of supporting, “personalized” prices for all bundles.16 In

particular, Nisan and Segal demonstrate that any communication protocol

must reveal supporting prices; stated very roughly:

Proposition 4.4 (Nisan and Segal, 2005) A communication protocol with

message space M realizes an efficient allocation rule iff there exists a (per-
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sonalized) price vector (over bundles) for each m ∈ M realizing a price equi-

librium.

This generalizes an earlier result of Parkes (2002), who considers a more

restricted query language (and explores the relationship to ascending auctions

and demand queries). The notion of dual utilities (under mild normalization

and quasi-linearity assumptions) is then used to provide a lower bound on

communication. More precisely, assume a two-bidder problem and let V1 be

space of valuations of the first bidder and V2 the second. For any v1 ∈ V1,

we say v2 ∈ V2 is the dual of v1 iff the social welfare of every allocation is

identical given 〈v1, v2〉.

Theorem 4.5 (Nisan and Segal, 2005) If for each v1 ∈ V1, there is a dual

v2 ∈ V2, then any efficient communication protocol requires at least log |V1|
bits.

For a CA, the dual notion can be applied to show that:

Theorem 4.6 (Nisan and Segal, 2005) The dimension of the message space

in any efficient protocol for a CA with m items (with general valuations) is

at least 2m − 1.

This means that the communication required is at least that of one agent

revealing her full valuation. This bound is tight for two agents, but an upper

bound for more than n > 2 agents of (n − 1)(2m − 1) is known not to be

tight. Nisan and Segal also describe a wide variety of approximation results

(see Segal (Chapter 11) for further details).

We have seen that in practice, full revelation is sometimes prevented by

careful incremental elicitation. These results show, however, that in general,

this cannot be the case (relative to the entire valuation of one agent). We

will see the impact of these results in the case of structured valuations below.
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5 Elicitation with structured valuations

Despite the worst-case complexity of preference elicitation for general val-

uations, for certain restricted classes, the elicitor can learn the function vi

(even in the worst case) using a number of queries that is polynomial in the

number of items. Many of these results build upon work in computational

learning theory (COLT) (Angluin, 1988; Angluin et al., 1993; Bshouty et al.,

1994, 1995).

Many of these classes are rich enough to exhibit both complementarity

and substitutability. When valuations can elicited with polynomially many

(reasonable) queries, a natural approach to elicitation is to first determine

each bidder’s valuation completely, and then determine an allocation (and

payments), rather than attempt to save elicitation effort (relative to full

revelation). We will, however, see approaches that attempt to save elicitation

effort even when valuations are themselves compactly specifiable.

5.1 General results

Nisan and Segal (2005) provide some very powerful worst-case results for gen-

eral valuations, as discussed above. They also provide results for a number

of restricted valuation classes. Significantly, using the notion of a dual valu-

ation, they are able to show that any restricted valuation class that includes

its dual valuations requires a message space that allows the specification of a

full valuation in the restricted space. Thus specific results are derived for ho-

mogeneous valuations, valuations, submodular valuations (using a modified

notion of dual) and substitute valuations (a lower bound based on additive

valuations).

5.2 Value queries

Zinkevich et al. (2003) define the class of read-once valuations and show

that elicitation of such a valuation is effective with value queries. A read-
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once valuation, analogous to a read-once formula, is a function that can

be represented as a tree, where the items being auctioned label the leaves,

together with the bidder’s valuations for the individual items. The function’s

output value is obtained by feeding in a bundle S of items to the leaves and

reading the valuation vi(S) from the root. A leaf sends the item’s valuation

up the tree if the item is included in S, otherwise the leaf sends 0. Different

types of gates can be used in the nodes of the tree. A SUM node sums the

values of its inputs; a MAX node takes the maximum value of its inputs; an

ALL node sums its inputs unless one of the inputs is zero, in which case the

output is 0. Read-once valuations can capture many natural preference, but

are not fully expressive.

Theorem 5.1 (Zinkevich et al., 2003) If a bidder has a read-once valuation

with SUM, MAX, and ALL gates only, it can be learned using O(m2) value

queries.

Consider also the setting where a bidder’s valuation function is a δ-

approximation of a read-once function: given that the valuation function

is v, there exists a read-once function v′ such that for all sets S, we have

|v(S)− v′(S)| < δ.

Theorem 5.2 (Zinkevich et al., 2003) Let v be a δ-approximation of a read-

once function consisting of MAX and SUM gates only. Then a function v′

can be learned in m(m− 1)/2 value queries such that for any set of items S ′,

we have |v′(S ′)− v(S ′)| < 6δ|S ′|+ δ.

Zinkevich et al. (2003) consider more general gates from which to build

valuation circuits: MAXl gates, which output the sum of the l highest inputs;

ATLEASTk gates, which output the sum of its inputs if there are at least k

positive inputs, and 0 otherwise; and GENERALk,l gates, which generalize

all of these gates by returning the sum of its highest l inputs if at least k of

its inputs are positive, and returns 0 otherwise (we assume k ≤ l.)
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Theorem 5.3 (Zinkevich et al., 2003) If a bidder has a read-once valuation

with GENERALk,l gates only, it can be learned using a polynomial number

of value queries.

While read-once valuations can be exactly learned in a polynomial num-

ber of queries, finding the optimal allocation of items to just two bidders

with known read-once valuations is NP-hard (Zinkevich et al., 2003). It

is polynomially solvable if one of the two bidders has an additive valuation

function.

Another restricted, but polynomially elicitable valuation class is that

of toolbox valuations. Here, each bidder has an explicit list of k bundles

S1, . . . , Sk, with values ν1, . . . , νk respectively. The value given to a generic

set S ′ is assumed to be the sum of values of the Si contained in S ′, that is,

v(S ′) =
∑

Si⊆S′ νi. These valuations are natural if, for example, the items

are tools or capabilities and there are k tasks to perform that each require

some subset of tools. The value of a set of items to the agent is the sum of

the values of the tasks that the agent can accomplish with those items.

Theorem 5.4 (Zinkevich et al., 2003) If a bidder has a toolbox valuation, it

can be learned using O(mk) value queries.

Other valuation classes learnable in a polynomial number of value queries

were introduced by Conitzer et al. (2003) and Santi et al. (2004). These in-

clude valuations where items have at most k-wise dependencies, and certain

other valuations. Furthermore, if two classes of valuations are each learn-

able in a polynomial number of queries, then so is their union—even though

the elicitor does not know in advance in which of the two classes (or both)

the bidder’s valuation belongs. Santi et al. (2004) also present severely re-

stricted valuation classes where learning nevertheless requires an exponential

number of value queries. First steps toward a characterization of polynomial

learnability of valuation functions are also given.
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5.2.1 Power of interleaving queries among agents

Since read-once and tool-box valuations can be elicited efficiently, we may be

inclined to simply elicit the entire valuation of each bidder and then optimize.

However, as with the elicitation algorithms discussed above, we might also

consider how to exploit the existence of multiple agents to obviate the need

for full elicitation. Blum et al. (2004) consider a two-bidder setting in which

each bidder desires some subset of bundles, where each of the desired bundles

contains at most log2 m items. Each bidder’s valuation is 1 if he gets at least

one of the desired bundles, and 0 otherwise. Observe that there are
(

m
log m

)

bundles of size log m, so some members of this class cannot be represented

in poly(m) bits. So, a valuation function in this class can require a super-

polynomial number of value queries to learn. However, a polynomial number

of value queries suffices for finding the optimal allocation:

Theorem 5.5 (Blum et al., 2004) In the setting described above, the optimal

allocation can be determined in a number of value queries polynomial in m.

The approach involves randomly proposing even splits of the items between

the two bidders. Because they prefer small bundles, an allocation where

both bidders are satisfied is found in a small number of proposals, with

high probability. Blum et al. (2004) also present a way to derandomize this

protocol.

Another example by Blum et al. (2004) shows that for some valuation

classes, learning the bidders’ valuations is hard while eliciting enough to

find the optimal allocation is easy—even though the valuation functions have

short descriptions. Consider an “almost threshold” valuation function. It is

defined by specifying a bundle S ′. This bundle in turn defines a valuation

function that is 1 for any bundle of size greater than or equal to |S ′|, except

for S ′ itself, and is 0 otherwise.
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Proposition 5.6 (Blum et al., 2004) If a bidder has an almost threshold

valuation function, it can take at least
(

m
dm/2e−1

)
value queries to learn it.

Theorem 5.7 (Blum et al., 2004) In a setting with two bidders, if both of

them have almost threshold valuation functions, then the optimal allocation

can be determined in 4 + log2 m value queries.

This demonstrates that there is super-exponential power in deciding what

to elicit from a bidder based on the answers received from other bidders so

far.17 On the other hand, Blum et al. also present a sufficient condition on

valuation classes under which the ability to allocate the items optimally using

a polynomial number of value queries implies the ability to learn the bidders’

valuation functions exactly using a polynomial number of value queries.

5.3 Demand queries

As mentioned, most research on demand queries takes place in the context

of ascending CAs. In this setting, considerable research has focused on val-

uation classes under which ascending item-price auctions yield an optimal

allocation. For example, suppose items are substitutes : increasing the price

on one item does not decrease the demand on any other item. It is well known

that in this setting, some vector of anonymous item prices (i.e., Walrasian

prices) constitutes a certificate. Several ascending CAs have been developed

for (subclasses of) substitutes (Kelso and Crawford, 1982; Gul and Stacchetti,

2000; Ausubel, 2002). Furthermore, a novel mechanism for substitutes exists

that requires polynomial number of item-price demand queries in the worst

case (Nisan and Segal, 2005), it asks queries in an unintuitive way that does

not resemble ascending auctions.

Lahaie and Parkes (2004) provide a novel use of demand queries for elic-

itation of concisely representable valuations. Again drawing parallels with

work in COLT, they show how any query learning model can be used to
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elicit preferences effectively. Specifically, they use the results of Nisan and

Segal (2005) to argue that complexity of preference elicitation should exhibit

dependence on the size of the representation of a bidder’s valuation function

in a suitable representation language. By drawing a strong analogy between

value queries and membership queries in COLT (as do Blum et al. (2004)) and

demand queries and equivalence queries, Lahaie and Parkes show that any

class of valuations can be elicited effectively if they can be learned efficiently:

Definition 2 (Lahaie and Parkes, 2004) Valuation classes V1, . . . Vn can be

efficiently elicited using value and demand queries iff there is an algorithm L

and polynomial p such that, for any 〈v1, . . . , vn〉 ∈ V1× . . .×Vn, L outputs an

optimal allocation for 〈v1, . . . , vn〉 after no more than p(size(v1, . . . , vn), n, m)

value and demand queries.

Theorem 5.8 (Lahaie and Parkes, 2004) Valuation classes V1, . . . Vn can be

efficiently elicited using value and demand queries if each Vi can be efficiently

learned using membership and equivalence queries.

Lahaie and Parkes describe an algorithm that basically simulates an ef-

ficient concept learning algorithm on each of the classes Vi until a point is

reached at which an equivalence is required of each bidder by the algorithm.

Then a demand query is posed using (individualized) bundle prices using

current hypothesized valuations. This continues until all bidders accept the

proposed bundles at the proposed prices. As a result, this algorithm does

not necessarily determine each agent’s valuation fully, and thus genuinely

relies on the joint valuations of all bidders to guide the interaction process.

Polynomial communication complexity is also shown for efficiently elicitable

valuation classes. Lahaie and Parkes apply these results to show that various

classes of valuation functions can be efficiently elicited.

Among the classes of functions considered by Lahaie and Parkes (2004)

are t-sparse polynomials where each bidder i has a valuation that can be ex-
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pressed as a polynomial (over variables corresponding to items) with at most

ti terms. This representation is fully expressive, but is especially suitable for

valuations that are “nearly additive,” and can thus be represented with few

terms. Drawing on existing algorithms from learning theory, they show that

only polynomially many queries are needed to learn each valuation.

The power of bundle-price demand queries is exhibited in their treatment

of XOR valuations. In contrast to the results of (Blum et al., 2004) which

use only item-price demand queries (and value queries), we have:

Theorem 5.9 (Lahaie and Parkes, 2004) The class of XOR valuations can

be elicited with polynomially many value and (bundle-price) demand queries.

Finally, linear-threshold representations are considered, involving the r-of-S

expressions: a bundle has value 1 if it contains at least r of the items specified

in S, and 0 otherwise (majority valuations are a special case). These can also

be learned efficiently using demand queries only (no value queries)

6 Conclusion

Preference elicitation for CAs is a nascent research area, but one of critical

importance to the practical application of CAs. Though strong worst-case

results are known, preliminary evidence suggests that, in practice, incremen-

tal elicitation can sometimes reduce the amount of revelation significantly

compared to direct mechanisms. In certain natural valuation classes, even

the worst-case number of queries is polynomial. Furthermore, as we pre-

sented, in some settings there is super-exponential power in deciding what to

ask a bidder based on what other bidders have expressed so far. This offers

considerable promise for research in the area, and new developments that

will push the use of incremental elicitation into practice.

Future research should study concise, yet powerful (and potentially application-

specific) query types and new elicitation policies. Most importantly, elicitors
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must be designed that address the tradeoffs among a number of different

problem dimensions. Among these are:

(1) Bidder’s evaluation complexity. In many CAs, the main bottleneck

is to have the bidders determine (through information acquisition or

computation of plans) their valuations. The mechanism should be fru-

gal in requiring such effort. This requires a model of how hard alter-

native queries are to answer (see, e.g., bound-approximation queries,

Section 4.3). More sophisticated and strategic models are presented,

for example, by Sandholm (2000) and Larson and Sandholm (2001).

(2) Privacy A: Amount of information revealed to the auctioneer (less

seems better). This gets addressed to some extent by optimizing (1).

However, when there is a tradeoff between (1) and (2), one might be

able to tune the elicitor for (1), and obtain privacy using complemen-

tary techniques. For example, the elicitor could be run as a trusted

third party that only reveals the optimal allocation (and payments)

to the auctioneer. Alternatively, it is sometimes possible to avoid the

auctioneer’s learning unnecessary information by using cryptographic

techniques such as secure function evaluation (e.g., Naor et al., 1999).

(3) Privacy B: Amount of information revealed to other bidders. There

is a tradeoff between revelation to the elicitor and revelation to other

bidders. If the elicitor decides which query to ask based on what other

bidders have stated so far, less information needs to be revealed to

the elicitor. Yet it is exactly that conditioning that causes the elicitor

to leak information across bidders (Conitzer and Sandholm, 2002b).

An elicitor could control that tradeoff by controlling the extent of the

conditioning.

A different idea is to determine the outcome without an auctioneer,

that is, via the agents communicating with each other directly. When
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relying on computational intractability assumptions, it is possible to de-

vise protocols that accomplish this fully privately: no coalition of agents

can learn anything about preferences of the remaining agents (except

which outcome is chosen overall) (Brandt, 2003). Without intractabil-

ity assumptions, fully private protocols only exist for a restricted class

of mechanisms. There are protocols for first-price sealed-bid auctions,

but none can exist for second-price (Vickrey) auctions (Brandt and

Sandholm, 2004). It is also possible for agents to emulate a preference

elicitor fully privately (Brandt and Sandholm, 2004b).

(4) Communication complexity. Reducing the number of bits transmitted

(Nisan and Segal, 2005) is useful, and is usually roughly in line with

(1). However, when there is a tradeoff between (1) and (4), it seems

that in practice it should be struck in favor of (1): if a bidder can afford

to evaluate a bundle, he will also be able to communicate the value.

(5) Elicitor’s computational complexity. There are two potentially complex

activities an elicitor will necessarily face: deciding what query to ask

next, and deciding when to terminate (and which allocation(s) to re-

turn). In the elicitor designs presented in the general elicitation frame-

work of this chapter, these operations required determining the undom-

inated candidate allocations (complexity can creep in at the stage of

assimilating a new answer into the elicitor’s data structures, or in us-

ing those data structures to determine domination, or both). In some

elicitation policies, determining the next query to ask can be complex

beyond that. For example, even for the omniscient elicitor, finding a

shortest certificate (which, in turn, allows one to ask an optimal query)

seems prohibitively complex. For some elicitors, determining when to

terminate may also be hard beyond the hardness of maintaining the

candidates.
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(6) Elicitor’s memory usage. For example, maintaining the list of candi-

dates explicitly becomes prohibitive at around 10 items for sale. The

implicit candidate representation technique that we discussed exempli-

fies how memory usage can be traded off against time in order to move

to larger auctions.

(7) Mechanism designer’s objective. The designer could settle for a second-

best solution in order to benefit along (1)–(6). For example, one might

terminate before the optimal allocation is found, when the cost of fur-

ther elicitation is likely to outweigh the benefit. (Handling the incen-

tives in that approach seems tricky because the VCG scheme requires

optimal allocation.) Furthermore, the mechanism could even be de-

signed for the specific prior at hand, and it could be designed automati-

cally using a computer, (e.g., Conitzer and Sandholm, 2002a). While re-

search on automated mechanism design has focused on direct-revelation

mechanisms so far, the approach could be extended to sequential mech-

anisms with an explicit elicitation cost. When communication and/or

computational complexity becomes prohibitive, the revelation principle

ceases to apply, and there can even be benefit in moving to mechanisms

with insincere equilibrium play (Conitzer and Sandholm, 2004).
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Notes

1See Blumrosen and Nisan (2002) for a discussion of this point even in
the case of single valuations.
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2Ascending CAs are detailed in Parkes (Chapter 2) and Ausubel and
Milgrom (Chapter 3).

3This differs slightly from the notion of certificate defined by Parkes
(2002), where a certificate is a subspace of valuation functions that are con-
sistent with the queries and their answers.

4With multiple query types, we could account for the “cost” of different
queries.

5This ceases to hold if bidders can decide how much effort to invest in
determining their own valuations (e.g., via information acquisition or com-
puting) (Sandholm, 2000).

6The elicitor has to ask enough queries to be able to determine the welfare-
maximizing allocations (among the remaining bidders) with each bidder re-
moved. This imposes an additional elicitation burden (see the discussion of
certificates above).

7Reichelstein (1984) already studied implications of incentive compati-
bility constraints on certificate complexity, and used the VCG mechanism.
That work was very different because 1) it only studied single-shot commu-
nication, so the issue of the elicitor leaking information across bidders did
not arise, 2) it assumed a nondeterministic communication complexity model
where, in effect, the elicitor is omniscient: it knows all the bidders’ prefer-
ences in advance, 3) there was only one good to be traded, and 4) that good
was divisible.

8However, if agents can endogenously decide whether to use costly delib-
eration to determine their own and others’ valuations, then, in a sense, there
exists no truth-promoting mechanism that avoids counterspeculation unless
the mechanism computes valuations for the agents, or is trivial i.e., ignores
what agents reveal (Larson and Sandholm, 2004).

9This assumes no indifference; otherwise, a subset of Pareto optimal allo-
cations is found.

10Other variants of EBF-DE are also considered by Conen and Sandholm
(2002b), e.g., using differential value queries to request the precise difference
or using bisection search on difference size. Some variants of EBF-DE are
very similar to the iBundle(3) iterative auction (Parkes, 1999a).
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11We contrast an optimal elicitor, which does not know the responses a
priori, with an omniscient elicitor, which does and simply needs to produce
a certificate.

12In the worst case exponential communication is required to find an (even
approximately) optimal allocation in a CAs—no matter what query types
and elicitation policy is used (Nisan and Segal, 2005).

13Techniques for speeding up the determination of domination are pre-
sented in (Hudson and Sandholm, 2003).

14Such queries were proposed for 1-object auctions in Parkes (1999b).

15One idea is to use coherent prices, where the price for a bundle may
not exceed the sum of prices of the bundles in any partition of the bundle,
and the prices for super-bundles of the bundles in the optimal allocation are
additive (Conen and Sandholm, 2002a).

16Because of this connection, we discuss these general results in the context
of demand queries, though the results do not rely on the use of demand
queries for elicitation.

17An exponential communication and computation gap has been demon-
strated in settings other than CAs (Conitzer and Sandholm, 2004).
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