Computability of Models for Sequence Assembly

Paul MedvedeV, Konstantinos Georgidiy Gene Myer$, and Michael Brudnb

LUniversity of Toronto, Canad&lanelia Farms, Howard Hughes Medical Institute, USA
{pashadag, cgeor g, brudno}@s. t oront 0. edu, nyersg@ anel i a. hhm .org

Abstract. Graph-theoretic models have come to the forefront as sonbeof
most powerful and practical methods for sequence asseBibtyltaneously, the
computational hardness of the underlying graph algorithessremained open.
Here we present two theoretical results about the complexithese models for
sequence assembly. In the first part, we show sequence dgderble NP-hard
under two different models: string graphs and de Bruijn gsafdogether with
an earlier result on the NP-hardness of overlap graphsdémsnstrates that all
of the popular graph-theoretic sequence assembly paradigerNP-hard. In our
second result, we give the first, to our knowledge, optimdympamial time al-
gorithm for genome assembly that explicitly models the dexstrandedness of
DNA. We solve the Chinese Postman Problem on bidirectedhgraping bidi-
rected flow techniques and show to how to use it to find the shbrouble-
stranded DNA sequence which contains a given sétlohg words. This algo-
rithm has applications to sequencing by hybridization dmaftsread assembly.

1 Introduction

Most current technologies for sequencing genomes rely erstiotgun method — the
genome (or its portion) is broken into many small segmergads) whose sequence
is then determined. The problem of combining these readedonstruct the source
genome is known as sequence (or genome) assembly, and if treefandamental
algorithmic problems within bioinformatics. One basicuasption made by assembly
algorithms is that every read in the input must be presertérotiginal genome. This
follows from the fact that it was read from the genome. Mdtdbby parsimony, some
methods made another, less justifiable assumption: thatriimal genome should be
the shortest sequence that contains every read as a sgb§tris assumption lead to the
casting of the genome assembly problem as the Shortest CorBonuerstring (SCS)
problem, which is known to be NP-hard [4].

The problem of modeling genome assembly as the SCS probtéatisiost genomes
have repeats wultiple identical, or nearly identical, stretches of DNA, while tRES
solution would represent each of these repeats only onbe iassembled genome. This
problem is known as over-collapsing the repeats. One waplefrg this problem is
to build representative strings or structures for eachagad allow the assembly al-
gorithm to use these multiple times. Pevzner et al. [12] hadrisight that by dividing
the reads into shortédr-long stretches (called-mers), all of the instances of a repeat
collapse into a single set of vertices. They represent ezahas a walk on a de Bruijn
graph (defined below), and the assembly could then be repisgbas a superwalk — a

A T No9D "
1T — O—0O

_ATTGCC O

Fig. 1. A. An example of double stranded DNA. The sequence read fraDiNA can be either
ATTGCC or GGCAAT.B. Three possible types of overlaps between two reads: eachcan
be in either of two orientations, but two of the cases (botthleft and both to the right) are
symmetric.C. The three corresponding types of bidirected edges. Thadefe corresponds to
the lower read. Note that the arrow points into a node if argl ifrihe overlap covers the start
(5") of the read.

walk that includes all of the input walks. In this formulatievery edge of the de Bruijn
graph has to be present in any solution and can be used raditipés. The solution
to the assembly problem is formulated as a variation on fogpdim Eulerian tour, and
because the Eulerian tour problem is solvable in polynotima this lead to the hope
of a polynomial algorithm for sequence assembly. This apgiavas later expanded to
A-Bruijn graphs [13], where the initial subdivision intemers is not necessary, but the
basic algorithmic problem of searching for a superwalk riesa

Myers [10] provides for an alternative model of sequencemsdy, using a string
graph. Instead of dividing the reads irtemers, he builds an overlap graph — a graph
where nodes correspond to reads and edges correspond tapsvghe prefix of one
read is the suffix of the other). Through the process of rengprédundant edges he is
able to classify all edges as either required or optional,tha goal of the assembly is
to find the shortest walk which includes all of the requiredesd The main algorithmic
difference between the de Bruijn / A-Bruijn and the stringmt models for sequence
assembly is that while in the latter some edges are requitdcbthers are optional,
in the former all edges are required, but walks have beersjpeeified and must be
included in the solution. In our first result, we show thatisstge assembly with both
string graphs and de Bruijn graphs is NP-hard by reductimmfidfamiltonian Cycle and
Shortest Common Superstring, respectively. Togetheseti@o proofs demonstrate
that both of the popular graph-theoretic sequence assepalohdigms are unsolvable
by optimal polynomial-time algorithms unlegs= NP.

Another algorithmic problem faced by assembly algorithsghe treatment of
double-stranded DNA (see Figure 1A). A DNA molecule corssigttwo strands which
are reverse compliments of each other. The start (calledfSone strand is comple-
menting the end (called 3’) of the other. Whenever DNA is seqed, the molecule
is always read in the same direction, from 5’ to 3’, but it ipimssible to know from
which of the two strands the sequence is read. Many sequseemaly algorithms use
heuristics to determine the strand for each read. The EULER®d [12] uses both the
reads and their reverse-complements to build the de Brugjplgand searches heuristi-
cally for two “complementary” paths. In the work of Kececlognd Myers [6] strand
selection for a read is formulated as the NP-hard maximurghteiut problem.

In 1992, Kececioglu [8] introduced an elegant method forlidgawith double-
strandedness by modeling overlaps between DNA moleculeg asidirected graph.
Each read is represented by a single node, and each ovedigg) (@as an orientation
at both endpoints. The three types of bidirected edgessmorel to the three possible
ways in which the overlap can occur (see Figure 1B & C). Bitigd graphs were
further used for sequence assembly in [9, 10] and to modekbpnt graphs in [7].
Remarkably, however, bidirected graphs have been studibihwhe context of graph
theory already in the 1960s when Edmonds formulated thd@moof bidirected flow (a
generalization of network flow to bidirected graphs) andagbit equivalent to perfect
b-matchings [1]. Edmonds’ work was later extended by Gal8jywho gave the fastest
to-date algorithm for bidirected flow. In our second resule extend Gabow’s and
Edmonds’ work to give a polynomial time algorithm for solgithe Chinese Postman
Problem in bidirected graphs. By combining this algorithithwevzner’s work on de
Bruijn graphs [11, 12] and Kececioglu's work on modelingatiedness with bidirected
graphs [8], we show how it can be used to find the shortest (destbtanded) DNA
sequence with a given set bflong DNA fragments. To the best of our knowledge, this
is the first optimal polynomial time assembly algorithm whexplicitly deals with the
double-stranded nature of DNA.

2 Preliminaries

In this section, we give the background and definitions nééalethe rest of this paper.

2.1 Strings, Overlap Graphs, de Bruijn Graphs, and Moleculs

Let v andw be two strings over the alphab&t The concatenation of these strings is
denoted aw - w. The length ofv is denoted byv|. Thei" character ofy is denoted
by v[i]. If 1 < i < j < |v|, thenul[i, j] is the substring beginning at tti# position
and ending at thg'" position, inclusive. If there exists j such thaty = w[i, j], then
we sayv is asubstring of w. Forz € ¥, 2* is 2 concatenated with itself times if
k > 1, ande otherwise. A string of lengtt is called ak-mer. Thek-spectrum of v
is the set of alk-mers that are substrings of A k-moleculeis a pair ofk-mers which
are reverse compliments of each other. We s&ymaoleculecorrespondsto each of
its two constitutivek-mers. Thek-molecule-spectrumof a DNA molecule is the set
of all k-molecules corresponding to tlkemers of thek-spectrum of either of the DNA
strands.

We sayw overlapsw if there exists a maximal length non-empty stringvhich
is a prefix ofw and a suffix ofv (notice this definition is not symmetric). The length
of the overlap isov(v,w) = |z|. If w does not overlap thenov(v,w) = 0. Let
S ={s1,..., s, be asetof non-empty strings over an alphabef\n overlap graph
of S is a complete weighted directed graph where each strirfji;na vertex and the
length of the edge — y is |y| — ov(z,y).

We sayw is asuperstring of S if for all 4, s; is a substring ofw. The Shortest
Common Superstring (SCS)problem is to find the shortest superstring%fit was
proven to be NP-hard fdeo| > 2 [4,5]. We define thele Bruijn graph BX(S) as a

C A B CDE
wl1 |o oo |-1
X [-1]1 |0 |11
Y lo |-1]2 |0
Z o |o |o]-1

Fig. 2. This is an example of a bidirected graph and its incidenceimat/e draw an edge that
is positive incident to a vertex using an arrow that is poigitbut of the vertex, but this choice of
graphical representation is arbitrary.

directed graph, using a positive integer paramgteFhe vertices of3*(S) are{d €

X* | 3i such thatl is a substring of; }. We identify a vertex by thé-mer associated
with it. We abuse notation here by referring to a verteBii(.S) by thek-mer associated
with it. The edges aréd[1..k] — d[2..k+1] | d € X*¥*1 3i such thatl is a substring of; }.

2.2 Bidirected Graphs and Flow

Consider an undirected (multi) gragh with a set of verticed” and a set of edges
E. The multiplicity of an edgee is the number of edges i@ whose endpoints are
the same ag’s If the endpoints are distinct, the edge is calldihi, otherwise it is a
loop. Additionally, we assign orientations to the edges. Evierlylhas two orientations,
one with respect to each of its endpoints, while every loagpdra orientation. There
are two kinds of orientations — positive and negative — and the can say an edge is
positive-incident or negative-incidentto an endpoint. When taken together with the
orientations of its edges; is called abidirected graph. If there is additionally a weight
functionw,. associated with the edges, we say the grapteighted The weight of a
graph is the sum of the weights of its edges. A bidirected lyiaonnectedif its
underlying undirected graph is connected.

The orientations of the edges can be represented hipcgience matrix 7€ :
VxE — {-2,-1,0,1,2} (we omitG when it is obvious from the context). If
an edgee is not incident to a vertex thenI(x,e) = 0. For a linke and a vertex,
I(xz,e) = +1if e is positive-incident taz, andI(z,e) = —1 if e is negative-incident
to z. For a loope and a vertex:, I(x, e) has the value of +2 i¢ is positive-incident
to z, and the value of -2 it is negative-incident ta:. See Figure 2 for an example
of a bidirected graph and its incidence matrix. Tihedegreeof a vertexz in graph
G is defined asleg; (z) = — X (.cp | 1(s,e)<0y L (2, €). Similarly, theout-degreeis
defined agleg/, (z) = Y o(eeE | I(z,e)>01 (T, €). Letbal®(z) = degl,(z)—degg (z) =
> I(z, e) be thebalanceat each vertexG is balancedif the balance of each vertex s 0.

A (z1,xr)-walk is a sequencey, ey, ..., xr_1,€k—_1,Tx Wheree; is an edge inci-
denttox; andx; 11, and forall2 < i < k—1, e;_; ande; have opposite orientations at
x;. Since the specification of vertices is redundant, we may ttrem sometimes and
specify a walk as just a sequence of edges. A walk is said tydeal if its endpoints

are the same ang, ande;_; have opposite orientations at. A bidirected graph is
strongly connectedif it is connected and for every edge there is a cyclical walk-c
taining it.

Note that we can view a loopless directed graph as a spenbfbidirected graph,
where every edge is positive-incident to one of its endgaamd negative-incident to
the other one. In this case, the definition of a walk reducesstasual meaning in
directed graphs. However, there are some caveats. For éxaimis possible for the
shortest walk between two vertices to repeat a vertex in idgigd graph. In Figure
2, observe that there does not exist a walk betwi#eand Z which does not repeat a
vertex, something that is not possible in a directed graph.

A Chinese walkis a cyclical walk that traverses every edge at least onoeerGi
a weighted bidirected graph, tl@&hinese Postman Problem(CPPis to find a mini-
mum weight Chinese walk (calledzhinese Postman Touy, or report that one doesn’t
exist. AnEulerian tour of a graph is a cyclical walk that contains every edge of the
graph exactly once, and a graph which contains an EulerianisocalledEulerian.
The following is a generalization of a well-known fact forelited graphs whose proof
is almost identical to the directed case and is therefore ibeam

Lemma 1. Abidirected graph G containsan Eulerian tour if and only if it is connected
and balanced.

Given a bidirected graply’, and vectorsi, b € ZV(%) andd,c,w € ZF(©, a
minimum cost bidirected flow problem [14] is an integer linear program where the
goal is to findz € Z”(%) that minimizesw - = subject to the constraints thai< = < ¢
anda < I¢ -z < b. Here,- refers to the inner product between two vectors, €rid a
component-wise comparison operator.

3 The String Graph Framework

In [10], Myers introduces a string graph framework for sagpeeassembly. A string
graph is built from an overlap graph through the processaofditively inferable edge
reduction — whenevey and z overlapz, andz overlapsy, the overlap ofz to z is
said to be inferable from the other two overlaps, and is resddkom the graph. Myers
demonstrates a fast algorithm for removing transitivefgiiable edges from the graph,
which, in combination with statistical methods, assodatéselection” constraint with
each edge. The selection constraint states that the edgeppesr in the target genome
either at least once (it irequired), exactly once (it isxact), or any number of times
(it is optional). The key property of string graphs is that any cyclical wilit respects
the selection constraints represents a valid assemblyeaféhome, and the weight of
the walk is the length of the assembled genome. After budldive string graph, the
algorithmic problem is to find a cyclical walk that visits @éaedge in accordance with
its selection constraint. Appealing to parsimony, the gotal find a walk with minimum
weight. In this section, we show that this problem is NP-hard

Formally, aselection function s is a function that classifies each edge into one
of three categoriesoptional, required, exact. We call a walk which contains all the
required edges at least once, all the exact edges exactly;, and all the optional

edges any number of times arwalk. The Minimum s-Walk Problem(MSWP) for
a weighted directed grap@ and a selection functios is the problem of finding a
minimum weight cyclicak-walk of G, or report that one doesn't exist.

Theorem 1. The Minimum s-Walk Problemis NP-hard.

The proof works by reducing the Hamiltonian Cycle problendirected graphs
to MSWP. A cycle is Hamiltonian if it visits every vertex exfyconce. The reduction
works by splitting each vertex into ’'in’ and 'out’ countempgand adding a required
edge between them, while making all other edges optionalingeoptional edges is
essential for the reduction; if they are not present, thélpra can be efficiently solved
using a variant of the algorithm of Section 5.1. Also note th410] the edges of the
string graph are bidirected in order to reflect the doublenstedness of DNA. Since
directed graphs are a special type of bidirected graphsyréhe 1 holds for bidirected
graphs as well.

Proof. Let G be a directed graph, with vertices, . . ., v, for which we wish to find
a Hamiltonian cycle. Le’ be a directed graph with vertex st ,v;" | 1 < i < n}
and edge seb U R, whereO = {v;" — v; | (v —v;) € E(G)}andR = {v; —
vj | 1 <i < n}. The weight of each edge is 1. Lebe a selection function o’ that
labels all theD edges as optional and all tizedges as required. We show tliahas
a Hamiltonian cycle if and only if¥’ has a cyclicak-walk of weight at mos®n.

First, suppos&€’ = v;, — ... — v;, — v;, IS a Hamiltonian cycle ofs. Then
C' =, — v —v, v — .. v — oS — s acyclicals-walk
in G’ of weight2n. For the other direction, lef” be a cyclicals-walk in G’ of length
at most2n. Because thé& edges form a matching and allof them must be irC’, the
edges of”’ must alternate betwedh andO edges, and thus have a totakoédges of
each kind. If we remove all th& edges fronC” and map all the vertices @i’ to their

counterparts irz, we get a Hamiltonian cycle af. a

4 The de Bruijn Graph Framework.

One of the original graph-theoretic frameworks for seqeesesembly was proposed
by Pevzner, Tang, and Waterman in [12]. They note that bygtiéivery read byk + 1)-
mers they can view the read as a walk in a de Bruijn graph, wterevertices are
k-mers and edges afté + 1)-mers. Thus, any walk that contains all the reads as sub-
walks represents a valid assembly. Consequently, theyulatsthe assembly problem
as finding the shortest superwalk, a problem closely refatéioe polynomial time Eu-
lerian tour problem (which was previously used to solve ttablem of sequencing by
hybridization [11]). What we show in this section is that tleeBruijn graph framework
does not make the problem of read assembly more tractable.

LetS = {s1,...,5,} be a set of strings over an alphaligtand letG' = B*(9)
be the de Bruijn graph of for somek. The stringss; correspond to walks iB*(.9)
via the functionw(s) = s[1..k] — s[2..k+1] — ... — s[|s| — k+ 1,]s|]. Awalk is
called asuperwalk of G if, for all i, it containsw(s;) as a subwalk. Thus, a superwalk
represents a valid assembly of the reads into a genome .n#fitisiframework, the goal

Fig. 3. An example of the reduction from Shortest Common SuperstdbDe Bruijn Superwalk.
The set of strings is over the alphabdtA,C,G, T}, and the graph drawn B2(f(S)). The cycles

in the edge decomposition afé4, Cc, Ce, Cr and have three edges each. As an example, the
walk w(f(ATT)) starts at the central node andds followed by C'r followed by Cr again.

of finding a parsimonious genome assembly is to find a minierajth superwalk. The
assembly algorithm of [12] looks for such a superwalk, hosveit uses heuristics and
may not produce the correct answer.

Formally, given a set of strings as defined above and a positive integethe De
Bruijn Superwalk Problem (BSP) is to find a minimum length superwalk " (.S), or
report that one does not exist. Observe that since everyiadgg(S) is covered by at
least one walku(s;), a superwalk will traverse every edge at least once. We shal
that BSP is NP-hard by a reduction from the Shortest CommeeiString (SCS) prob-
lem. Informally, we will transform a string by inserting* in between every character,
as well as in the beginning and end, wheérés a special character that does not appear
in the input strings. For example, we transform the strifgg’anto ' OG*adrbOrcOk .
This transformation preserves overlaps and introducg’ averlap between otherwise
non-overlapping strings. The idea is that while a supergtcan be built by appending
non-overlapping strings, a superwalk must correspond toirsgsbuilt by overlaps of
at leastk characters. See Figure 3 for an illustration of the de Brgigph on a set of
transformed strings.

Theorem 2. The De Bruijn Superwalk Problem is NP-hard, for |X'| > 3 and for any
positive integer k.

Proof. SCS is NP-hard even if the size of the alphabet is 2 [5]. Wegedmn instance
of SCS to an instance of BSP which has an additional chargxter the alphabet.
Let S = {s1,...,s,} be the set of strings of an SCS instance, antbe the set of
characters appearing # We define a functiorf (s)[i] for 1 <4 < k(|s| + 1) + |s| as
follows: For all: divisible byk + 1, f(s)[i] = S[k_j—l]' For all otheri, f(s)[i] = <. Let
G = B*(f(95)), wheref(S) = {f(s;) | 1 <i < n}.
We first make some observations abéitwhich follow directly from the defini-
tion of de Bruijn graphs and frorfi. The vertices of=, which are thes-mers appear-
ing in £(S), are {OF} U {OF x0Tl | » € X1 < i < k}. The edges ofy are
{E, | z € ¥}, whereE, = {OF — OF 1z} u {20k~ — OFYU {OF x0T —
Ok=i=1207 | 1 <4 < k — 1}. The edge set of’ forms a disjoint union of cycles

U,es Co, WhereC, = O & Ok 1lp 5 OF 220 — L5 OOk 2 S gOF
OF. We also note that(f(s;)) = w(OFs;[1]OF ... OFsy[|s]]OF) = Cyypyp — ... —
Cs,[1s,- For an illustration see Figure 3.

Now we show that the length of the shortest superwalk &f k£ + 1 times the length
of the shortest superstring 6t First, suppose is a superstring of. Letw = C,;) —

. — Cypjs))- We claim thatw is a superwalk of7 of length|s|(k + 1). We have to
show thatw(f(s;)) is a subwalk ofw for all i. Sinces; is a substring of, there is some
j andk such thats; = s[j, k]. Thenaw(f(s;)) = Cy5) — ... — Cypiy, Which is indeed
a subwalk ofw.

Now, supposev is a superwalk of7. Every edge that appears before the fibét
and after the last* in w can be removed fromy while preserving it as a superwalk.
Therefore, we can assume that the first and last vertex®f>*, andw can be uniquely
expressed as a sequence of cydgs — ... — C; |, . Lets = ji - ja-- -j%. For

| w

kE+1
all 7, sincew(f(s;)) is a subwalk ofw, we can write it asv(f(s;)) = Cj,, — ... —
lwg|

C; N for somem. By definition,w(f(s;)) = Cs,i] — ... = Cy,1js,)1- Since the
m T 1

decomposition of a walk into cycl&s, is unique, we conclude that[k] = j,,, 1,1 for
1 < k <s;|. Thereforeg; is a substring of, ands is a superstring of Iengt%\%. O

5 Assembly of Double-Stranded DNA with Bidirected Flow

In this section, we demonstrate the first, to our knowledgéyrmomial algorithm for
assembly of a double-stranded genome. First, we give a polial time algorithm
for solving the Chinese Postman Problem (CPP) on bidiregtaghs. Subsequently,
we will show how to construct a bidirected de Bruijn graphnfréhe set ofk-long
molecules that are present in it (thenolecule-spectrum). By solving the CPP on the
resulting graph we are able to reconstruct the shortest Didfecule with the given
k-molecule-spectrum.

5.1 The Bidirected Chinese Postman Problem

Given a weighted bidirected grajgh recall that the Chinese Postman Problem (CPP)
is to find a minimum weight Chinese walk 6f, or report that one does not exist. CPP
is polynomially time solvable on both undirected and diegcgraphs [2]. It becomes
NP-Hard on mixed graphs, which are graphs with both direatetiundirected edges
[5]. For undirected graphs, CPP is reducible to minimum pesfect matchings. For
directed graphs, it is reducible to minimum cost network flowthis section, we give
an efficient algorithm for solving CPP on bidirected grapilasasreduction to minimum
cost bidirected flow.

We will show in Lemma 2 that fofz to have a Chinese walk it is necessary and suf-
ficient for it to be strongly connected. To find a min-weighii@se walk, first consider
the case7 is Eulerian. An Eulerian tour aF is also a Chinese walk, since it visits every
edge exactly once. Furthermore, since any Chinese wallohasit every edge at least
once, the Eulerian tour is also a Chinese postman tour. Ig¢heral case, however,
whenG is not Eulerian, our approach is to make the graph Euleriatulplicating some

if G is not connectethen return "no Chinese walk exists”

Use algorithm of [3] to solve the corresponding minimurstdaidirected flow (see text).
if there is no solutiothen return "no Chinese walk exists”

LetG’ be the graplG with f. copies of every edge, in addition toe itself.

Use a standard algorithm to find an Eulerian circtiof G'.

RelabelC according to Theorem 3.

return C

Fig. 4. Algorithm for the Chinese Postman Problem on bidirecteglgsa

of the edges, and then using a standard algorithm to find aari&nltour. We shall prove
that if we minimize the total weight of the duplicated edgés, Eulerian tour we find
in the modified graph will correspond to a Chinese postmanitotine original graph.

Formally, we say a grapfi’ is anextensionof G if it can be obtained frondz by
duplicating some of its edges. TEeilerization Problem (EP) is to find a min-weight
Eulerian extension af7, or report that one does not exist. The following theoremnmsho
that CPP and EP are polynomially equivalent.

Theorem 3. There exists a Chinese walk of weight if and only if there exists an Eule-
rian extension of weight i. Moreover, they can be derived from each other in polynomial
time.

Proof. For the only if direction, lef¥ be a Chinese walk idr. Let W be the graph
induced byiV, where the multiplicity of each edge is the number of tims itraversed
by W. ThenV is an extension off becauséV visits every edge at least once. AlH6
is an Eulerian circuit of¥’ whose weightis that g . ThusW is an Eulerian extension
of G with weight of .

For the if direction, letG’ be an Eulerian extension ¢. Let W’ be an Eulerian
circuit in G’. ConstrucV from W’ by replacing every edg€ ¢ G by an edge: € G
such that’ is a duplicate ot. W is thus a valid cyclical walk irz which visits every
edge at least once and whose weight is the same as tHat ahd ofG’. a

Now, we give an algorithm for the Eulerization Problem. Eimge consider the
case thati is not connected. Since any extension(®fwill also not be connected,
our algorithm can safely report that there is no Euleriareesion ofG, and hence
no Chinese walk. For the case th@Etis connected, we formulate EP as a min-cost
bidirected flow problem. First, we represent an extenélbof G with | E(G)| variables,
where each variablg. represents the number of additional copies of edigeG’. Itis
clear that an assignment of non-negative integers to thesables corresponds to an
extension ofG, and vice-versa. Now, we would like to formulate EP in terrhthese
variables instead of in terms of an extension. The mininopatriterion is the weight
of the extension, which iy~ w. (1 + f.). The criterion thaty’ is Eulerian is, by Lemma
1, the criteria that it is connected and balanced. The cdivitgccriterion is redundant
sinceG is connected and thus any extensiorGofust also be connected. The balance
condition for each vertex can be stated a3:_ I%(z,¢) - f. + bal%(z) = 0. That s,
the balance of in G’ is the balance of in G plus the contribution of all the copied
edges. We are now able to formulate EP as the following imtéggar program:

minimize Zwefe
subjectto " I%(x, e) fo = —bal® () for each vertex:

fe>0 for each edge

From the definition in Section 2.2, this is actually a minimewost bidirected flow prob-
lem, which can be solved using Gabow'’s algorithm [3]. Ourlfaigorithm for CPP on
bidirected graphs is given in Figure 4. For the running time nheed to bound the size
of the solution:

Lemma 2. G has an Eulerian extension if and only if it is strongly connected. More-
over, the min-weight Eulerian extension has at most 2| E||V| edges.

Proof. If G has an Eulerian extension, then it must be connected, arel/éoy edge
there is a cyclical walk containing it (namely the one indiibg the Euler tour). Con-
versely, suppose thét is strongly connected. For every edge, we can duplicatball t
other edges of the shortest cyclical walk that contain itsthalancing the graph. Now,
suppos€=’ is a min-weight Eulerian extension 6f. We can decompos@’ into a set

of minimal cycles. Each cycle must contain an edge that neraiyxcle contains, other-
wise it can be removed fro®’ to get a smaller weight extension. Therefore, there are
at most| E| cycles, and each cycle contains at nj$f| edges. O

Gabow’s algorithm runs in timé&(|E|? log(|V|) log(C)), whereC is the largest ca-
pacity (C = maxc(e) using the definition of Section 2.2). By the above lemma,
C = O(|V]?) if the graph is simple, so the running time for finding the flamd
thus for the whole algorithm, i©(| E|? log*(|V|)).

5.2 The Bidirected de Bruijn Graph

In an earlier work [11], Pevzner showed that the de BruijrprB*~! can be used to
represent thé&-spectrum of a string, and that the (directed) Chinese parstiour on
this graph corresponds to the shortest string with the givepectrum. When working
with double-stranded DNA molecules, however, it is necgsgamodelk-molecules
instead ofk-mers in the de Bruijn graph. To do this Pevzner includes lobtthe &-
mers associated with evekymolecule in the de Bruijn graph. He then searches for two
“complementary” walks, each corresponding to one of the BiAnds (see Figure 5).
Instead, we show how to construct a bidirected de Bruijn lgraipere eacltk-molecule
is represented only once.

Our input is thek-molecule-spectrum of the genome. We will arbitrarily labee
of thek-mers associated with eagkhmolecule as coming from the "positive” strand and
the other from the "negative” strand. Let the nodes of théréated de Bruijn graph be
all of the possibleX — 1)-molecules. For everf-molecule in the spectrum, letbe one
of its two k-mers. Letr andy be the(k — 1)-molecules corresponding t¢1..5£ — 1] and
z[2..k], respectively. We make an edge between the vertices comdByy tox andy.

10

CLYRE o-a-@
5O &0

Fig.5. Given the k-molecule-spectrum{ATT/AAT, TTG/CAA, TGC/GCA, GCC/GGC,
CCAITGG, CAA/TTG, AAC/GTT, Pevzner et al.’s [12] approachilds the graph on the left,
and searches for two complementary paths. The bidirectdgrag graph is on the right; one
tour that includes all of the edges spells ATTGCCAAC on theverd strand, and GTTGGCAAT
on the reverse.

This edge is positive-incident toif z[1..k — 1] is the positive strand af, and negative-
incident otherwise. It is negative-incidentgaf z[2..k] is the positive strand af, and
positive-incident otherwise. Note that this edge consionds identical to the one de-
fined by Kececioglu [8] for an overlap between two DNA molesulalso see Figure 1).

The Chinese postman tour of the resulting bidirected dejBguaph corresponds to
the shortest assembly of the DNA molecule with the gikemolecule-spectrum. The
proof follows from the construction: evekymolecule from the spectrum is represented
by exactly one edge in the graph. Every valid assembly of émome correspondsto a
walk in the bidirected de Bruijn graph. Because the Chines¢rpan tour is the shortest
such walk, it is also the shortest assembly of the genometdilrealso corresponds to
both of the DNA strands. Because a walk is required to usesedifd opposite ori-
entations to enter and leave every vertex, but is allowechtereon either a positive
or negative oriented edge, the Chinese postman tour can &l&e€d’ in either of two
directions. If we enter a node on a positive-incident edgeuse the positive k-mer,
if on the negative incident we use the negative k-mer. Thedimections correspond
exactly to the two strands of DNA, and the sequences “sgeligdhem are reverse-
complements. For the running time, because the de Bruijlghnas a constant degree
at every node|E| € O(|V])), the overall running time i©)(|V'|? log®(|V'|)) using the
algorithm of Section 5.1.

6 Discussion

In this work we showed that both the de Bruijn graph and stgrgph models for
sequence assembly are NP-hard. While this result makepiiaistical to look for poly-
nomial time exact algorithms for either of these problemeshelieve our work suggests
two important areas of investigation. The first is to chagdze the computational dif-
ficulty of the genome assembly models on real-world genohéswell known that
many NP-hard problems are efficiently solvable when restlito particular classes of
inputs. The success of both the de Bruijn and string graphetsad practice indicate

11

that by defining a more restricted model of inputs that néedess covers most actual
genomes, we may be able to create a model for sequence agsbathian be solved
exactly in polynomial time. Simultaneously, real-life @anes contain repeats, making
it unlikely that any real genome will have a unique solutiorder either string graph
or de Bruijn graph assembly models. Consequently it is ingmdrto explore what a
realistic objective function for an assembly algorithmulddoe. Conducting a rigorous
study of these questions is a promising avenue for improa@sgmbly programs.

In our second result we showed that the computational diffiaf sequence as-
sembly is not due to double-strandedness of DNA. By unify®egzner’s work on de
Bruijn graphs, Kececioglu’s and Myers’ work on bidirectedphs in assembly and Ed-
monds’ and Gabow’s work on bidirected flow, we are able to destrate an optimal
polynomial time assembly algorithm that explicitly deaishwdouble-strandedness. We
believe the use of bidirected flow as a technique will be fulifor other sequence as-
sembly problems, including for the assembly of short DNAdseaoming from novel
sequencing technologies such as lllumina and 454.

Acknowlegments

We would like to thank Allan Borodin for helpful comments acateful reading of the
manuscript. This work was partially supported by an NSER&:BVery Grant to MB.

References

1. J. Edmonds. An introduction to matching. Notes of engingesummer conference, Uni-
versity of Michigan, Ann Arbor, 1967.
2. J. Edmonds and E.L. Johnson. Matching, Euler tours, an€ktinese postmamMathemet-
ical Programming, 5:88-124, 1973.
3. Harold N. Gabow. An efficient reduction technique for @egronstrained subgraph and
bidirected network flow problems. IBTOC, pages 448-456, 1983.
4. John Gallant, David Maier, and James A. Storer. On findimgmal length superstringsl.
Comput. Syst. i, 20(1):50-58, 1980.
5. M. R. Garey and David S. JohnsdBomputers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.
6. John D. Kececioglu and Eugene W. Myers. Combinatiorigb@thms for DNA sequence
assemblyAlgorithmica, 13(1/2):7-51, 1995.
7. John D. Kececioglu and David Sankoff. Exact and approtionaalgorithms for sorting by
reversals, with application to genome rearrangemaigorithmica, 13(1/2):180-210, 1995.
8. John Dimitri Kececioglu. Exact and approximation algorithms for DNA sequence recon-
struction. PhD thesis, Tucson, AZ, USA, 1992.
9. Eugene W. Myers. Toward simplifying and accurately foiating fragment assemblyour-
nal of Computational Biology, 2(2):275-290, 1995.
10. Eugene W. Myers. The fragment assembly string grapECIBB/JBI, page 85, 2005.
11. P A Pevzner. 1-Tuple DNA sequencing: computer analysi&omol Sruct Dyn, 7(1):63—
73, Aug 1989.
12. P.A. Pevzner, H. Tang, and M.S. Waterman. An Euleriah ppproach to DNA fragment
assemblyProceedings of the National Academy of Sciences, 98:9748-9753, 2001.
13. Pavel A. Pevzner, Haixu Tang, and Glenn Teddernovo repeat classification and fragment
assembly. IIRECOMB, pages 213-222, 2004.
14. Alexander SchrijverCombinatorial Optimization, volume A. Springer, 2003.

12

