
Computability of Models for Sequence Assembly

Paul Medvedev1, Konstantinos Georgiou1, Gene Myers2, and Michael Brudno1

1University of Toronto, Canada2Janelia Farms, Howard Hughes Medical Institute, USA
{pashadag,cgeorg,brudno}@cs.toronto.edu, myersg@janelia.hhmi.org

Abstract. Graph-theoretic models have come to the forefront as some ofthe
most powerful and practical methods for sequence assembly.Simultaneously, the
computational hardness of the underlying graph algorithmshas remained open.
Here we present two theoretical results about the complexity of these models for
sequence assembly. In the first part, we show sequence assembly to be NP-hard
under two different models: string graphs and de Bruijn graphs. Together with
an earlier result on the NP-hardness of overlap graphs, thisdemonstrates that all
of the popular graph-theoretic sequence assembly paradigms are NP-hard. In our
second result, we give the first, to our knowledge, optimal polynomial time al-
gorithm for genome assembly that explicitly models the double-strandedness of
DNA. We solve the Chinese Postman Problem on bidirected graphs using bidi-
rected flow techniques and show to how to use it to find the shortest double-
stranded DNA sequence which contains a given set ofk-long words. This algo-
rithm has applications to sequencing by hybridization and short read assembly.

1 Introduction

Most current technologies for sequencing genomes rely on the shotgun method – the
genome (or its portion) is broken into many small segments (reads) whose sequence
is then determined. The problem of combining these reads to reconstruct the source
genome is known as sequence (or genome) assembly, and is one of the fundamental
algorithmic problems within bioinformatics. One basic assumption made by assembly
algorithms is that every read in the input must be present in the original genome. This
follows from the fact that it was read from the genome. Motivated by parsimony, some
methods made another, less justifiable assumption: that theoriginal genome should be
the shortest sequence that contains every read as a substring. This assumption lead to the
casting of the genome assembly problem as the Shortest Common Superstring (SCS)
problem, which is known to be NP-hard [4].

The problem of modeling genome assembly as the SCS problem isthat most genomes
have repeats –multiple identical, or nearly identical, stretches of DNA, while theSCS
solution would represent each of these repeats only once in the assembled genome. This
problem is known as over-collapsing the repeats. One way of solving this problem is
to build representative strings or structures for each repeat, and allow the assembly al-
gorithm to use these multiple times. Pevzner et al. [12] had the insight that by dividing
the reads into shorterk-long stretches (calledk-mers), all of the instances of a repeat
collapse into a single set of vertices. They represent each read as a walk on a de Bruijn
graph (defined below), and the assembly could then be represented as a superwalk – a

ATTGCC

GGCAATA B C

5’

5’ 3’

3’

Fig. 1. A. An example of double stranded DNA. The sequence read from this DNA can be either
ATTGCC or GGCAAT.B. Three possible types of overlaps between two reads: each read can
be in either of two orientations, but two of the cases (both tothe left and both to the right) are
symmetric.C. The three corresponding types of bidirected edges. The left node corresponds to
the lower read. Note that the arrow points into a node if and only if the overlap covers the start
(5’) of the read.

walk that includes all of the input walks. In this formulation every edge of the de Bruijn
graph has to be present in any solution and can be used multiple times. The solution
to the assembly problem is formulated as a variation on finding an Eulerian tour, and
because the Eulerian tour problem is solvable in polynomialtime this lead to the hope
of a polynomial algorithm for sequence assembly. This approach was later expanded to
A-Bruijn graphs [13], where the initial subdivision intok-mers is not necessary, but the
basic algorithmic problem of searching for a superwalk remains.

Myers [10] provides for an alternative model of sequence assembly, using a string
graph. Instead of dividing the reads intok-mers, he builds an overlap graph – a graph
where nodes correspond to reads and edges correspond to overlaps (the prefix of one
read is the suffix of the other). Through the process of removing redundant edges he is
able to classify all edges as either required or optional, and the goal of the assembly is
to find the shortest walk which includes all of the required edges. The main algorithmic
difference between the de Bruijn / A-Bruijn and the string graph models for sequence
assembly is that while in the latter some edges are required and others are optional,
in the former all edges are required, but walks have been pre-specified and must be
included in the solution. In our first result, we show that sequence assembly with both
string graphs and de Bruijn graphs is NP-hard by reduction from Hamiltonian Cycle and
Shortest Common Superstring, respectively. Together, these two proofs demonstrate
that both of the popular graph-theoretic sequence assemblyparadigms are unsolvable
by optimal polynomial-time algorithms unlessP = NP .

Another algorithmic problem faced by assembly algorithms is the treatment of
double-stranded DNA (see Figure 1A). A DNA molecule consists of two strands which
are reverse compliments of each other. The start (called 5’)of one strand is comple-
menting the end (called 3’) of the other. Whenever DNA is sequenced, the molecule
is always read in the same direction, from 5’ to 3’, but it is impossible to know from
which of the two strands the sequence is read. Many sequence assembly algorithms use
heuristics to determine the strand for each read. The EULER method [12] uses both the
reads and their reverse-complements to build the de Bruijn graph and searches heuristi-
cally for two “complementary” paths. In the work of Kececioglu and Myers [6] strand
selection for a read is formulated as the NP-hard maximum weight cut problem.

2

In 1992, Kececioglu [8] introduced an elegant method for dealing with double-
strandedness by modeling overlaps between DNA molecules using a bidirected graph.
Each read is represented by a single node, and each overlap (edge) has an orientation
at both endpoints. The three types of bidirected edges correspond to the three possible
ways in which the overlap can occur (see Figure 1B & C). Bidirected graphs were
further used for sequence assembly in [9, 10] and to model breakpoint graphs in [7].
Remarkably, however, bidirected graphs have been studied within the context of graph
theory already in the 1960s when Edmonds formulated the problem of bidirected flow (a
generalization of network flow to bidirected graphs) and showed it equivalent to perfect
b-matchings [1]. Edmonds’ work was later extended by Gabow [3], who gave the fastest
to-date algorithm for bidirected flow. In our second result,we extend Gabow’s and
Edmonds’ work to give a polynomial time algorithm for solving the Chinese Postman
Problem in bidirected graphs. By combining this algorithm with Pevzner’s work on de
Bruijn graphs [11, 12] and Kececioglu’s work on modeling strandedness with bidirected
graphs [8], we show how it can be used to find the shortest (double-stranded) DNA
sequence with a given set ofk-long DNA fragments. To the best of our knowledge, this
is the first optimal polynomial time assembly algorithm which explicitly deals with the
double-stranded nature of DNA.

2 Preliminaries

In this section, we give the background and definitions needed for the rest of this paper.

2.1 Strings, Overlap Graphs, de Bruijn Graphs, and Molecules

Let v andw be two strings over the alphabetΣ. The concatenation of these strings is
denoted asv · w. The length ofv is denoted by|v|. The ith character ofv is denoted
by v[i]. If 1 ≤ i ≤ j ≤ |v|, thenv[i, j] is the substring beginning at theith position
and ending at thejth position, inclusive. If there existsi, j such thatv = w[i, j], then
we sayv is a substring of w. For x ∈ Σ, xk is x concatenated with itselfk times if
k ≥ 1, andǫ otherwise. A string of lengthk is called ak-mer. Thek-spectrum of v

is the set of allk-mers that are substrings ofv. A k-moleculeis a pair ofk-mers which
are reverse compliments of each other. We say ak-moleculecorrespondsto each of
its two constitutivek-mers. Thek-molecule-spectrumof a DNA molecule is the set
of all k-molecules corresponding to thek-mers of thek-spectrum of either of the DNA
strands.

We sayw overlaps v if there exists a maximal length non-empty stringz which
is a prefix ofw and a suffix ofv (notice this definition is not symmetric). The length
of the overlap isov(v, w) = |z|. If w does not overlapv then ov(v, w) = 0. Let
S = {s1, . . . , sn} be a set of non-empty strings over an alphabetΣ. An overlap graph
of S is a complete weighted directed graph where each string inS is a vertex and the
length of the edgex → y is |y| − ov(x, y).

We sayw is a superstring of S if for all i, si is a substring ofw. The Shortest
Common Superstring (SCS)problem is to find the shortest superstring ofS. It was
proven to be NP-hard for|Σ| ≥ 2 [4, 5]. We define thede Bruijn graph B

k(S) as a

3

0

0

-1

-1

E

-1000Z

02-10Y

-101-1X

0001W

DCBA

W X Y

Z

A B

C

D
E

Fig. 2. This is an example of a bidirected graph and its incidence matrix. We draw an edge that
is positive incident to a vertex using an arrow that is pointing out of the vertex, but this choice of
graphical representation is arbitrary.

directed graph, using a positive integer parameterk. The vertices ofBk(S) are{d ∈
Σk | ∃i such thatd is a substring ofsi}. We identify a vertex by thek-mer associated
with it. We abuse notation here by referring to a vertex inBk(S) by thek-mer associated
with it. The edges are{d[1..k] → d[2..k+1] | d ∈ Σk+1, ∃i such thatd is a substring ofsi}.

2.2 Bidirected Graphs and Flow

Consider an undirected (multi) graphG with a set of verticesV and a set of edges
E. The multiplicity of an edgee is the number of edges inG whose endpoints are
the same ase’s If the endpoints are distinct, the edge is called alink , otherwise it is a
loop. Additionally, we assign orientations to the edges. Every link has two orientations,
one with respect to each of its endpoints, while every loop has one orientation. There
are two kinds of orientations – positive and negative – and thus we can say an edge is
positive-incident or negative-incidentto an endpoint. When taken together with the
orientations of its edges,G is called abidirected graph. If there is additionally a weight
functionwe associated with the edges, we say the graph isweighted. The weight of a
graph is the sum of the weights of its edges. A bidirected graph is connectedif its
underlying undirected graph is connected.

The orientations of the edges can be represented by anincidence matrix IG :
V × E −→ {−2,−1, 0, 1, 2} (we omit G when it is obvious from the context). If
an edgee is not incident to a vertexx thenI(x, e) = 0. For a linke and a vertexx,
I(x, e) = +1 if e is positive-incident tox, andI(x, e) = −1 if e is negative-incident
to x. For a loope and a vertexx, I(x, e) has the value of +2 ife is positive-incident
to x, and the value of -2 ife is negative-incident tox. See Figure 2 for an example
of a bidirected graph and its incidence matrix. Thein-degreeof a vertexx in graph
G is defined asdeg−G(x) = −

∑
{e∈E | I(x,e)<0} I(x, e). Similarly, theout-degreeis

defined asdeg+
G(x) =

∑
{e∈E | I(x,e)>0} I(x, e). LetbalG(x) = deg+

G(x)−deg−G(x) =∑
I(x, e) be thebalanceat each vertex.G isbalancedif the balance of each vertex is 0.
A (x1, xk)-walk is a sequencex1, e1, . . . , xk−1, ek−1, xk whereei is an edge inci-

dent toxi andxi+1, and for all2 ≤ i ≤ k−1, ei−1 andei have opposite orientations at
xi. Since the specification of vertices is redundant, we may omit them sometimes and
specify a walk as just a sequence of edges. A walk is said to becyclical if its endpoints

4

are the same ande1 andek−1 have opposite orientations atx1. A bidirected graph is
strongly connectedif it is connected and for every edge there is a cyclical walk con-
taining it.

Note that we can view a loopless directed graph as a special kind of bidirected graph,
where every edge is positive-incident to one of its endpoints and negative-incident to
the other one. In this case, the definition of a walk reduces toits usual meaning in
directed graphs. However, there are some caveats. For example, it is possible for the
shortest walk between two vertices to repeat a vertex in a bidirected graph. In Figure
2, observe that there does not exist a walk betweenW andZ which does not repeat a
vertex, something that is not possible in a directed graph.

A Chinese walk is a cyclical walk that traverses every edge at least once. Given
a weighted bidirected graph, theChinese Postman Problem(CPP)is to find a mini-
mum weight Chinese walk (called aChinese Postman Tour), or report that one doesn’t
exist. AnEulerian tour of a graph is a cyclical walk that contains every edge of the
graph exactly once, and a graph which contains an Eulerian tour is calledEulerian.
The following is a generalization of a well-known fact for directed graphs whose proof
is almost identical to the directed case and is therefore ommited.

Lemma 1. A bidirected graph G contains an Eulerian tour if and only if it is connected
and balanced.

Given a bidirected graphG, and vectorsa, b ∈ Z
V (G) and d, c, w ∈ Z

E(G), a
minimum cost bidirected flow problem [14] is an integer linear program where the
goal is to findx ∈ Z

E(G) that minimizesw · x subject to the constraints thatd ≤ x ≤ c

anda ≤ IG · x ≤ b. Here,· refers to the inner product between two vectors, and≤ is a
component-wise comparison operator.

3 The String Graph Framework

In [10], Myers introduces a string graph framework for sequence assembly. A string
graph is built from an overlap graph through the process of transitively inferable edge
reduction – whenevery and z overlapx, andz overlapsy, the overlap ofz to x is
said to be inferable from the other two overlaps, and is removed from the graph. Myers
demonstrates a fast algorithm for removing transitively inferable edges from the graph,
which, in combination with statistical methods, associates a ”selection” constraint with
each edge. The selection constraint states that the edge must appear in the target genome
either at least once (it isrequired), exactly once (it isexact), or any number of times
(it is optional). The key property of string graphs is that any cyclical walkthat respects
the selection constraints represents a valid assembly of the genome, and the weight of
the walk is the length of the assembled genome. After building the string graph, the
algorithmic problem is to find a cyclical walk that visits each edge in accordance with
its selection constraint. Appealing to parsimony, the goalis to find a walk with minimum
weight. In this section, we show that this problem is NP-hard.

Formally, aselection function s is a function that classifies each edge into one
of three categories:optional, required, exact. We call a walk which contains all the
required edges at least once, all the exact edges exactly once, and all the optional

5

edges any number of times ans-walk. TheMinimum s-Walk Problem(MSWP) for
a weighted directed graphG and a selection functions is the problem of finding a
minimum weight cyclicals-walk of G, or report that one doesn’t exist.

Theorem 1. The Minimum s-Walk Problem is NP-hard.

The proof works by reducing the Hamiltonian Cycle problem indirected graphs
to MSWP. A cycle is Hamiltonian if it visits every vertex exactly once. The reduction
works by splitting each vertex into ’in’ and ’out’ counterparts and adding a required
edge between them, while making all other edges optional. Having optional edges is
essential for the reduction; if they are not present, the problem can be efficiently solved
using a variant of the algorithm of Section 5.1. Also note that in [10] the edges of the
string graph are bidirected in order to reflect the double strandedness of DNA. Since
directed graphs are a special type of bidirected graphs, Theorem 1 holds for bidirected
graphs as well.

Proof. Let G be a directed graph, with verticesv1, . . . , vn, for which we wish to find
a Hamiltonian cycle. LetG′ be a directed graph with vertex set{v−i , v+

i | 1 ≤ i ≤ n}
and edge setO ∪ R, whereO = {v+

i → v−j | (vi → vj) ∈ E(G)} andR = {v−i →

v+
i | 1 ≤ i ≤ n}. The weight of each edge is 1. Lets be a selection function onG′ that

labels all theO edges as optional and all theR edges as required. We show thatG has
a Hamiltonian cycle if and only ifG′ has a cyclicals-walk of weight at most2n.

First, supposeC = vi1 → . . . → vin
→ vi1 is a Hamiltonian cycle ofG. Then

C′ = v−i1 → v+
i1

→ v−i2 → v+
i2

→ . . . → v−in−1
→ v+

in−1
→ v−i1 is a cyclicals-walk

in G′ of weight2n. For the other direction, letC′ be a cyclicals-walk in G′ of length
at most2n. Because theR edges form a matching and alln of them must be inC′, the
edges ofC′ must alternate betweenR andO edges, and thus have a total ofn edges of
each kind. If we remove all theR edges fromC′ and map all the vertices ofC′ to their
counterparts inG, we get a Hamiltonian cycle ofG. ⊓⊔

4 The de Bruijn Graph Framework.

One of the original graph-theoretic frameworks for sequence assembly was proposed
by Pevzner, Tang, and Waterman in [12]. They note that by tiling every read by(k+1)-
mers they can view the read as a walk in a de Bruijn graph, wherethe vertices are
k-mers and edges are(k + 1)-mers. Thus, any walk that contains all the reads as sub-
walks represents a valid assembly. Consequently, they formulate the assembly problem
as finding the shortest superwalk, a problem closely relatedto the polynomial time Eu-
lerian tour problem (which was previously used to solve the problem of sequencing by
hybridization [11]). What we show in this section is that thede Bruijn graph framework
does not make the problem of read assembly more tractable.

Let S = {s1, . . . , sn} be a set of strings over an alphabetΣ and letG = Bk(S)
be the de Bruijn graph ofS for somek. The stringssi correspond to walks inBk(S)
via the functionw(s) = s[1..k] → s[2..k + 1] → . . . → s[|s| − k + 1, |s|]. A walk is
called asuperwalk of G if, for all i, it containsw(si) as a subwalk. Thus, a superwalk
represents a valid assembly of the reads into a genome. Within this framework, the goal

6

Fig. 3.An example of the reduction from Shortest Common Superstring to De Bruijn Superwalk.
The set of stringsS is over the alphabet{A,C,G,T}, and the graph drawn isB2(f(S)). The cycles
in the edge decomposition areCA, CC , CG, CT and have three edges each. As an example, the
walk w(f(ATT)) starts at the central node and isCA followed byCT followed byCT again.

of finding a parsimonious genome assembly is to find a minimal length superwalk. The
assembly algorithm of [12] looks for such a superwalk, however, it uses heuristics and
may not produce the correct answer.

Formally, given a set of stringsS as defined above and a positive integerk, theDe
Bruijn Superwalk Problem (BSP) is to find a minimum length superwalk inBk(S), or
report that one does not exist. Observe that since every edgein Bk(S) is covered by at
least one walkw(si), a superwalk will traverse every edge at least once. We shallshow
that BSP is NP-hard by a reduction from the Shortest Common Superstring (SCS) prob-
lem. Informally, we will transform a string by inserting3k in between every character,
as well as in the beginning and end, where3 is a special character that does not appear
in the input strings. For example, we transform the string ’abc’ into ’3ka3kb3

kc3k ’.
This transformation preserves overlaps and introduces a3

k overlap between otherwise
non-overlapping strings. The idea is that while a superstring can be built by appending
non-overlapping strings, a superwalk must correspond to a string built by overlaps of
at leastk characters. See Figure 3 for an illustration of the de Bruijngraph on a set of
transformed strings.

Theorem 2. The De Bruijn Superwalk Problem is NP-hard, for |Σ| ≥ 3 and for any
positive integer k.

Proof. SCS is NP-hard even if the size of the alphabet is 2 [5]. We reduce an instance
of SCS to an instance of BSP which has an additional character3 in the alphabet.
Let S = {s1, . . . , sn} be the set of strings of an SCS instance, andΣ be the set of
characters appearing inS. We define a functionf(s)[i] for 1 ≤ i ≤ k(|s| + 1) + |s| as
follows: For alli divisible byk + 1, f(s)[i] = s[i

k+1]. For all otheri, f(s)[i] = 3. Let
G = Bk(f(S)), wheref(S) = {f(si) | 1 ≤ i ≤ n}.

We first make some observations aboutG, which follow directly from the defini-
tion of de Bruijn graphs and fromf . The vertices ofG, which are thek-mers appear-
ing in f(S), are{3k} ∪ {3k−ix3

i−1 | x ∈ Σ, 1 ≤ i ≤ k}. The edges ofG are
{Ex | x ∈ Σ}, whereEx = {3k → 3

k−1x} ∪ {x3
k−1 → 3

k} ∪ {3k−ix3
i−1 →

3
k−i−1x3

i | 1 ≤ i ≤ k − 1}. The edge set ofG forms a disjoint union of cycles

7

⋃
x∈Σ Cx, whereCx = 3

k → 3
k−1x → 3

k−2x3 → . . . → 3x3
k−2 → x3

k−1 →

3
k. We also note thatw(f(si)) = w(3ksi[1]3k . . .3ksi[|s|]3k) = Csi[1] → . . . →

Csi[|si|]. For an illustration see Figure 3.
Now we show that the length of the shortest superwalk ofG is k+1 times the length

of the shortest superstring ofS. First, supposes is a superstring ofS. Let w = Cs[1] →
. . . → Cs[|s|]. We claim thatw is a superwalk ofG of length|s|(k + 1). We have to
show thatw(f(si)) is a subwalk ofw for all i. Sincesi is a substring ofs, there is some
j andk such thatsi = s[j, k]. Then,w(f(si)) = Cs[j] → . . . → Cs[k], which is indeed
a subwalk ofw.

Now, supposew is a superwalk ofG. Every edge that appears before the first3
k

and after the last3k in w can be removed fromw while preserving it as a superwalk.
Therefore, we can assume that the first and last vertex ofw is3

k, andw can be uniquely
expressed as a sequence of cyclesCj1 → . . . → Cj |w|

k+1

. Let s = j1 · j2 · · · j |w|
k+1

. For

all i, sincew(f(si)) is a subwalk ofw, we can write it asw(f(si)) = Cjm
→ . . . →

Cj
m+

|wi|
k+1

−1

for somem. By definition,w(f(si)) = Csi[1] → . . . → Csi[|si|]. Since the

decomposition of a walk into cyclesCx is unique, we conclude thatsi[k] = jm+k−1 for
1 ≤ k ≤ |si|. Therefore,si is a substring ofs, ands is a superstring of length|w|

k+1 . ⊓⊔

5 Assembly of Double-Stranded DNA with Bidirected Flow

In this section, we demonstrate the first, to our knowledge, polynomial algorithm for
assembly of a double-stranded genome. First, we give a polynomial time algorithm
for solving the Chinese Postman Problem (CPP) on bidirectedgraphs. Subsequently,
we will show how to construct a bidirected de Bruijn graph from the set ofk-long
molecules that are present in it (thek-molecule-spectrum). By solving the CPP on the
resulting graph we are able to reconstruct the shortest DNA molecule with the given
k-molecule-spectrum.

5.1 The Bidirected Chinese Postman Problem

Given a weighted bidirected graphG, recall that the Chinese Postman Problem (CPP)
is to find a minimum weight Chinese walk ofG, or report that one does not exist. CPP
is polynomially time solvable on both undirected and directed graphs [2]. It becomes
NP-Hard on mixed graphs, which are graphs with both directedand undirected edges
[5]. For undirected graphs, CPP is reducible to minimum costperfect matchings. For
directed graphs, it is reducible to minimum cost network flow. In this section, we give
an efficient algorithm for solving CPP on bidirected graphs via a reduction to minimum
cost bidirected flow.

We will show in Lemma 2 that forG to have a Chinese walk it is necessary and suf-
ficient for it to be strongly connected. To find a min-weight Chinese walk, first consider
the caseG is Eulerian. An Eulerian tour ofG is also a Chinese walk, since it visits every
edge exactly once. Furthermore, since any Chinese walk has to visit every edge at least
once, the Eulerian tour is also a Chinese postman tour. In thegeneral case, however,
whenG is not Eulerian, our approach is to make the graph Eulerian byduplicating some

8

1: if G is not connectedthen return ”no Chinese walk exists”
2: Use algorithm of [3] to solve the corresponding minimum cost bidirected flow (see text).
3: if there is no solutionthen return ”no Chinese walk exists”
4: LetG′ be the graphG with fe copies of every edgee, in addition toe itself.
5: Use a standard algorithm to find an Eulerian circuitC of G′.
6: RelabelC according to Theorem 3.
7: return C

Fig. 4.Algorithm for the Chinese Postman Problem on bidirected graphs.

of the edges, and then using a standard algorithm to find an Eulerian tour. We shall prove
that if we minimize the total weight of the duplicated edges,the Eulerian tour we find
in the modified graph will correspond to a Chinese postman tour in the original graph.

Formally, we say a graphG′ is anextensionof G if it can be obtained fromG by
duplicating some of its edges. TheEulerization Problem (EP) is to find a min-weight
Eulerian extension ofG, or report that one does not exist. The following theorem shows
that CPP and EP are polynomially equivalent.

Theorem 3. There exists a Chinese walk of weight i if and only if there exists an Eule-
rian extension of weight i. Moreover, they can be derived from each other in polynomial
time.

Proof. For the only if direction, letW be a Chinese walk inG. Let Ŵ be the graph
induced byW , where the multiplicity of each edge is the number of time it is traversed
by W . ThenŴ is an extension ofG becauseW visits every edge at least once. AlsoW

is an Eulerian circuit of̂W whose weight is that of̂W . ThusŴ is an Eulerian extension
of G with weight ofW .

For the if direction, letG′ be an Eulerian extension ofG. Let W ′ be an Eulerian
circuit in G′. ConstructW from W ′ by replacing every edgee′ 6∈ G by an edgee ∈ G

such thate′ is a duplicate ofe. W is thus a valid cyclical walk inG which visits every
edge at least once and whose weight is the same as that ofW ′ and ofG′. ⊓⊔

Now, we give an algorithm for the Eulerization Problem. First, we consider the
case thatG is not connected. Since any extension ofG will also not be connected,
our algorithm can safely report that there is no Eulerian extension ofG, and hence
no Chinese walk. For the case thatG is connected, we formulate EP as a min-cost
bidirected flow problem. First, we represent an extensionG′ of G with |E(G)| variables,
where each variablefe represents the number of additional copies of edgee in G′. It is
clear that an assignment of non-negative integers to these variables corresponds to an
extension ofG, and vice-versa. Now, we would like to formulate EP in terms of these
variables instead of in terms of an extension. The minimization criterion is the weight
of the extension, which is

∑
we(1+fe). The criterion thatG′ is Eulerian is, by Lemma

1, the criteria that it is connected and balanced. The connectivity criterion is redundant
sinceG is connected and thus any extension ofG must also be connected. The balance
condition for each vertexx can be stated as:

∑
e IG(x, e) · fe + balG(x) = 0. That is,

the balance ofx in G′ is the balance ofx in G plus the contribution of all the copied
edges. We are now able to formulate EP as the following integer linear program:

9

minimize
∑

wefe

subject to
∑

e

IG(x, e)fe = −balG(x) for each vertexx

fe ≥ 0 for each edgee

From the definition in Section 2.2, this is actually a minimumcost bidirected flow prob-
lem, which can be solved using Gabow’s algorithm [3]. Our final algorithm for CPP on
bidirected graphs is given in Figure 4. For the running time,we need to bound the size
of the solution:

Lemma 2. G has an Eulerian extension if and only if it is strongly connected. More-
over, the min-weight Eulerian extension has at most 2|E||V | edges.

Proof. If G has an Eulerian extension, then it must be connected, and forevery edge
there is a cyclical walk containing it (namely the one induced by the Euler tour). Con-
versely, suppose thatG is strongly connected. For every edge, we can duplicate all the
other edges of the shortest cyclical walk that contain it, thus balancing the graph. Now,
supposeG′ is a min-weight Eulerian extension ofG. We can decomposeG′ into a set
of minimal cycles. Each cycle must contain an edge that no other cycle contains, other-
wise it can be removed fromG′ to get a smaller weight extension. Therefore, there are
at most|E| cycles, and each cycle contains at most2|V | edges. ⊓⊔

Gabow’s algorithm runs in timeO(|E|2 log(|V |) log(C)), whereC is the largest ca-
pacity (C = max c(e) using the definition of Section 2.2). By the above lemma,
C = O(|V |3) if the graph is simple, so the running time for finding the flow,and
thus for the whole algorithm, isO(|E|2 log2(|V |)).

5.2 The Bidirected de Bruijn Graph

In an earlier work [11], Pevzner showed that the de Bruijn graphBk−1 can be used to
represent thek-spectrum of a string, and that the (directed) Chinese postman tour on
this graph corresponds to the shortest string with the givenk-spectrum. When working
with double-stranded DNA molecules, however, it is necessary to modelk-molecules
instead ofk-mers in the de Bruijn graph. To do this Pevzner includes bothof the k-
mers associated with everyk-molecule in the de Bruijn graph. He then searches for two
“complementary” walks, each corresponding to one of the DNAstrands (see Figure 5).
Instead, we show how to construct a bidirected de Bruijn graph where eachk-molecule
is represented only once.

Our input is thek-molecule-spectrum of the genome. We will arbitrarily label one
of thek-mers associated with eachk-molecule as coming from the ”positive” strand and
the other from the ”negative” strand. Let the nodes of the bidirected de Bruijn graph be
all of the possible (k−1)-molecules. For everyk-molecule in the spectrum, letz be one
of its twok-mers. Letx andy be the(k−1)-molecules corresponding toz[1..k−1] and
z[2..k], respectively. We make an edge between the vertices corresponding tox andy.

10

+AT

-AT

+AA

-TT

+CA

-TG

+GC

-GC

+CC

-GG

+AC

-GT

CC

GG

CA

TG

GC

AA

TT

AT

AC

GT

Fig. 5. Given the k-molecule-spectrum{ATT/AAT, TTG/CAA, TGC/GCA, GCC/GGC,
CCA/TGG, CAA/TTG, AAC/GTT, Pevzner et al.’s [12] approach builds the graph on the left,
and searches for two complementary paths. The bidirected deBruijn graph is on the right; one
tour that includes all of the edges spells ATTGCCAAC on the forward strand, and GTTGGCAAT
on the reverse.

This edge is positive-incident tox if z[1..k−1] is the positive strand ofx, and negative-
incident otherwise. It is negative-incident toy if z[2..k] is the positive strand ofy, and
positive-incident otherwise. Note that this edge construction is identical to the one de-
fined by Kececioglu [8] for an overlap between two DNA molecules (also see Figure 1).

The Chinese postman tour of the resulting bidirected de Bruijn graph corresponds to
the shortest assembly of the DNA molecule with the givenk-molecule-spectrum. The
proof follows from the construction: everyk-molecule from the spectrum is represented
by exactly one edge in the graph. Every valid assembly of the genome corresponds to a
walk in the bidirected de Bruijn graph. Because the Chinese postman tour is the shortest
such walk, it is also the shortest assembly of the genome. Thetour also corresponds to
both of the DNA strands. Because a walk is required to use edges with opposite ori-
entations to enter and leave every vertex, but is allowed to enter on either a positive
or negative oriented edge, the Chinese postman tour can be ”walked” in either of two
directions. If we enter a node on a positive-incident edge weuse the positive k-mer,
if on the negative incident we use the negative k-mer. The twodirections correspond
exactly to the two strands of DNA, and the sequences “spelled” by them are reverse-
complements. For the running time, because the de Bruijn graph has a constant degree
at every node (|E| ∈ Θ(|V |)), the overall running time isO(|V |2 log2(|V |)) using the
algorithm of Section 5.1.

6 Discussion

In this work we showed that both the de Bruijn graph and stringgraph models for
sequence assembly are NP-hard. While this result makes it impractical to look for poly-
nomial time exact algorithms for either of these problems, we believe our work suggests
two important areas of investigation. The first is to characterize the computational dif-
ficulty of the genome assembly models on real-world genomes.It is well known that
many NP-hard problems are efficiently solvable when restricted to particular classes of
inputs. The success of both the de Bruijn and string graph models in practice indicate

11

that by defining a more restricted model of inputs that nevertheless covers most actual
genomes, we may be able to create a model for sequence assembly that can be solved
exactly in polynomial time. Simultaneously, real-life genomes contain repeats, making
it unlikely that any real genome will have a unique solution under either string graph
or de Bruijn graph assembly models. Consequently it is important to explore what a
realistic objective function for an assembly algorithm should be. Conducting a rigorous
study of these questions is a promising avenue for improvingassembly programs.

In our second result we showed that the computational difficulty of sequence as-
sembly is not due to double-strandedness of DNA. By unifyingPevzner’s work on de
Bruijn graphs, Kececioglu’s and Myers’ work on bidirected graphs in assembly and Ed-
monds’ and Gabow’s work on bidirected flow, we are able to demonstrate an optimal
polynomial time assembly algorithm that explicitly deals with double-strandedness. We
believe the use of bidirected flow as a technique will be fruitful for other sequence as-
sembly problems, including for the assembly of short DNA reads coming from novel
sequencing technologies such as Illumina and 454.

Acknowlegments

We would like to thank Allan Borodin for helpful comments andcareful reading of the
manuscript. This work was partially supported by an NSERC Discovery Grant to MB.

References

1. J. Edmonds. An introduction to matching. Notes of engineering summer conference, Uni-
versity of Michigan, Ann Arbor, 1967.

2. J. Edmonds and E.L. Johnson. Matching, Euler tours, and the Chinese postman.Mathemet-
ical Programming, 5:88–124, 1973.

3. Harold N. Gabow. An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems. InSTOC, pages 448–456, 1983.

4. John Gallant, David Maier, and James A. Storer. On finding minimal length superstrings.J.
Comput. Syst. Sci., 20(1):50–58, 1980.

5. M. R. Garey and David S. Johnson.Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

6. John D. Kececioglu and Eugene W. Myers. Combinatiorial algorithms for DNA sequence
assembly.Algorithmica, 13(1/2):7–51, 1995.

7. John D. Kececioglu and David Sankoff. Exact and approximation algorithms for sorting by
reversals, with application to genome rearrangement.Algorithmica, 13(1/2):180–210, 1995.

8. John Dimitri Kececioglu.Exact and approximation algorithms for DNA sequence recon-
struction. PhD thesis, Tucson, AZ, USA, 1992.

9. Eugene W. Myers. Toward simplifying and accurately formulating fragment assembly.Jour-
nal of Computational Biology, 2(2):275–290, 1995.

10. Eugene W. Myers. The fragment assembly string graph. InECCB/JBI, page 85, 2005.
11. P A Pevzner. 1-Tuple DNA sequencing: computer analysis.J Biomol Struct Dyn, 7(1):63–

73, Aug 1989.
12. P.A. Pevzner, H. Tang, and M.S. Waterman. An Eulerian path approach to DNA fragment

assembly.Proceedings of the National Academy of Sciences, 98:9748–9753, 2001.
13. Pavel A. Pevzner, Haixu Tang, and Glenn Tesler.De novo repeat classification and fragment

assembly. InRECOMB, pages 213–222, 2004.
14. Alexander Schrijver.Combinatorial Optimization, volume A. Springer, 2003.

12

