
Empirical Assessment of Languages for Teaching Concurrency:
Methodology and Application

Sebastian Nanz1 Faraz Torshizi2 Michela Pedroni1 Bertrand Meyer1
 1ETH Zurich 2University of Toronto

firstname.lastname@inf.ethz.ch faraz@cs.toronto.edu

Abstract
Concurrency has been rapidly gaining importance in computing, and correspondingly in

computing curricula. Concurrent programming is, however, notoriously hard even for expert
programmers. New language designs promise to make it easier, but such claims call for
empirical validation. We present a methodology for comparing concurrent languages for
teaching purposes. A critical challenge is to avoid bias, especially when (as in our example
application) the experimenters are also the designers of one of the approaches under
comparison. For a study performed as part of a course, it is also essential to make sure that
no student is penalized. The methodology addresses these concerns by using self-study
material and applying an evaluation scheme that minimizes opportunities for subjective
decisions. The example application compares two object-oriented concurrent languages:
multithreaded Java and SCOOP. The results show an advantage for SCOOP even though the
study participants had previous training in writing multithreaded Java programs. The lessons
should be of use to educators interested in teaching concurrency, to researchers looking for
objective ways of assessing teaching techniques, and to researchers who want to avoid bias in
assessing an approach or tool that they have themselves designed.

1. The need to assess concurrency proposals
Concurrent programming has been practiced for over 40 years, but was until recently

perceived as a task for specialists in high-performance computing, operating systems and
networking. The move to parallel architectures, in particular multicore processors, has
changed this situation, making concurrency part of mainstream software development.

Computer science education should reflect this evolution by assigning a substantial role to
teaching concurrency. Concurrent programming is, however, a difficult endeavor, subject to
such errors as data races or deadlocks. To help avoid these pitfalls, the programming language
community works on new languages that express concurrency and synchronization at higher
levels of abstraction and exclude entire classes of errors by construction.

The question remains whether these new languages can deliver and indeed make
concurrent programming easier to teach and use: they should help understand existing code,
modify it, and produce new correct code. The original description of a new approach usually
argues for it on the basis of conceptual arguments, but these arguments must be
complemented by empirical analyses of usability and teachability.

Two challenges confront such empirical studies. First, they must avoid bias, especially
when one of the approaches under study was designed by the experimenters themselves.
Second, they must rely on an objective test of the students’ eventual success at mastering the
subject matter. In addition, studies performed as part of a course must be careful to avoid any
damaging influence on the teaching process; for example it is usually not possible to separate
students into two groups, one using a classical approach and the other a new technique:
finding that one group performs better would be good for the study but bad for the students of
the other group. Such a naïve study setup would violate educational ethics.

Objectivity is especially challenging for experiments that assess an approach designed by
the experimenters themselves. Ideally, other researchers should perform such assessments.
They are not always available, however, and the original designers have a legitimate interest
in evaluating their own designs. In so doing, they must protect themselves against the risk of
experimenter bias. We have gone to great lengths, as described below, to avoid this risk.

We have developed a methodology for empirical studies that addresses these challenges
through a general design for comparing concurrent programming languages, and applied the
methodology and template to a pilot study. A companion report available online [2] includes
the material of that study (which others are welcome to reuse) and its results on our sample
populations.

The example study assessed two object-oriented concurrent approaches:

• Java Threads offers a way to define concurrent executions within an object-oriented
model, using a monitor-like mechanism based on synchronized blocks to express
mutual exclusion. Monitor-style wait() and notify() calls implement condition
synchronization.

• SCOOP [1], originally defined for Eiffel, is explicitly designed to make concurrent
programming easier by providing concurrency as a simple extension to standard
object-oriented mechanisms. SCOOP handles many details of synchronization and
message passing without explicit programmer intervention. An object will access any
other object handled by a different thread of control through variables declared
separate, ensuring proper concurrent semantics for access (routines invoked on
separate objects are spawned off asynchronously) and synchronization (calls
synchronize on their arguments and wait on preconditions).

Section 2 describes the experimental design. Section 3 presents the self-study approach and
Section 4 the evaluation methodology. Section 5 summarizes results, and Section 6 concludes.

2. Overview of the experimental design
2.1. Hypotheses

An empirical study should address clearly defined research questions. The hypothesis we
tested was:

SCOOP concepts are better picked up by students than Java Threads concepts.

This abstract and broad question can be refined into more concrete hypotheses:

Hypothesis I (Program comprehension) Students can comprehend an existing program
written in SCOOP more accurately compared to an existing program having the same
functionality written in Java Threads.

Hypothesis II (Program debugging) Students can find more errors in an existing program
written in SCOOP than in an existing program of the same size written in Java Threads.

Hypothesis III (Program correctness) Students make fewer programming errors when
writing programs in SCOOP than when writing programs having the same functionality in
Java Threads.

The combination of these hypotheses reflects the observations that it is critical for students
to be able both to write correct programs (III) and to understand existing programs, correct or
incorrect (II and III).

2.2. Experimental procedure
The student participants, ideally with no previous exposure to either language, are split

randomly into two groups: the SCOOP group works with SCOOP and the Java group works
with Java Threads. The study has two phases, run in close succession: a training phase and an
evaluation phase. The challenges noted earlier affect both phases: the study should remove
any bias both during training and during evaluation.

A self-study approach avoids bias during the training phase. We have prepared material for
both the Java and SCOOP approaches and ask students to review it on their own. They can do
so individually but are encouraged to work in groups of two or three. The self-study time is
limited to 90 minutes; tutors are available to discuss any questions that the students feel are
not adequately answered in the material. Section 3 gives more details on the measures used to
avoid bias in the training phase.

The evaluation phase uses a simple pen & paper test setup. Students work individually,
with a maximum of 120 minutes, and are supervised by tutors. Section 4 gives more details
on bias avoidance in the design of the evaluation.

3. Training phase: the self-study
The training process can introduce bias into a teaching study, arising for example from two

instructors’ different teaching styles. The use of self-study material is intended to circumvent
this issue. The material has the following structure:

Java Threads SCOOP
§1 Concurrent execution §1 Concurrent execution

 – Multiprocessing and multitasking – Multiprocessing and multitasking
 – Operating system processes – Operating system processes

§2 Threads §2 Processors
 – The notion of a thread – The notion of a processor
 – Creating threads – Synch. & asynch. feature calls
 – Separate entities
 – Joining threads – Wait by necessity

§3 Mutual exclusion §3 Mutual exclusion
 – Race conditions – Race conditions
 – Synchronized methods – The separate argument rule

§4 Condition synchronization §4 Condition synchronization
 – The producer/consumer problem – The producer/consumer problem
 – The methods wait() and notify() – Wait conditions

§5 Deadlock §5 Deadlock
Answers to the exercises Answers to the exercises

The only prerequisite for working with these documents is a solid knowledge of the
sequential base language of the chosen approach, here Java or Eiffel. Although the
approaches differ considerably, the documents closely mirror each other:

§1 This section is identical in both documents, introducing basic notions of concurrent
execution in the context of operating systems.

§2 This section addresses the writing of concurrent programs. The central notion is thread
for Java Threads and processor for SCOOP. After completing this section, students
should be able to introduce concurrency into a program, but not yet synchronization.

§3 This section introduces mutual exclusion. It explains race conditions and their
avoidance using synchronized blocks in Java and separate arguments in SCOOP.

§4 This section introduces the concept of condition synchronization. The need is explained
with the producers/consumers example, and the solutions in Java, i.e. wait() and
notify(), and SCOOP, i.e. execution of preconditions with wait semantics, is explained.

§5 This section introduces the concept of a deadlock.

Every section includes, in both variants, an equal number of exercises to check
understanding of the material. Solutions are given at the end of the document.

As noted in Section 1, it would be improper to expose students to one approach only. In
our setup, students perform both self-studies; the only difference is the order, assigned
randomly. Students are assessed (next section) after the first self-study. After they have taken
both self-studies, we provide a short traditional-style lecture which summarizes both
approaches and answers questions. We feel that the difference of order in which the two
approaches are studied has a negligible pedagogical effect in the end and so does not harm
any student.

4. Evaluation phase
The evaluation phase should avoid bias and includes three tasks, each directly designed to

help assess one of the three hypotheses presented earlier.

4.1. Task I: Program comprehension

The goal of Task I is to measure to what degree students understand the semantics of a
program written in the approach they self-studied, and thus to test Hypothesis I. Asking the
students to describe the semantics in words would lead to ambiguous answers and subjective
evaluation. Instead, we give them programs and ask them to predict the output. This task is
interesting for concurrent programs, as scheduling introduces nondeterminism in the output.

The concrete programs in Java Threads and SCOOP, each about 80 lines of code, print
character strings of length 10, with 7 different characters available. The test asks the students
to write down three of the strings that might be printed by the program.

The evaluation needs an objective and automatic measure of the correctness of a proposed
answer. A simple boolean measure stating whether a sequence is correct would be too coarse,
as any careless mistake leads to marking the entire solution incorrect. Instead, the assessment
uses the Levenshtein distance, a common metric for measuring the difference between two
sequences. For every answer s proposed by the student, the algorithm computes the minimum
distance of s to elements of the correct answer; the measure of performance for Task I is the
mean of these minima for the three answers provided by the student.

4.2. Task II: Program debugging

To analyze debugging proficiency and assess Hypothesis II, we provide programs, each
about 70 lines of code and seeded with six bugs. All bugs are of a syntactic nature, so that a
student can solve the exercise without understanding the effect of the program. For example,
for Java Threads the bugs include a call of notify() on a non-synchronized object; for SCOOP
they include assigning a separate object to a non-separate variable. Students were asked for
the line of an error and a short explanation of why it is an error.

The evaluation assigns points according to the following scheme: one point for identifying
the line where an error was hidden; one additional point for a correct explanation. The reason
for this approach is that a students may recognize that there is something wrong in a particular
line, but might not know the exact reason that would allow correcting it.

4.3. Task III: Program correctness

To analyze program correctness (Hypothesis III), the third task requires students to
implement a program that shares an object with two integer fields x and y between two
threads. One thread continuously tries to set both fields to 0 if they are both 1, the other tries
the converse. Like the others, this is a pen and paper exercise.

To avoid subjective influences, every answer to be graded starts out with ten points, and
points are deducted according to the number and severity of errors. The grading process is
correspondingly split into three steps:

1. Step 1 examines all answers to determine the types of errors students made.

2. Step 2 assigns to each type a severity level, expressed as a number of points to be
deducted (1 to 3).

3. Step 3 performs a new pass on all answers, deducting points as determined by step 2.

The severity levels are defined as follows: 1-point errors are those that can also occur in a
sequential context; 2-point errors can only arise in a concurrent setting, but still allow
concurrent execution; 3-point errors prevent concurrent execution.

5. Results: Java Threads vs SCOOP
This paper concentrates on the methodology of designing empirical studies for evaluating

the usability and teachability of concurrent languages. A separate report [2] describes in detail
the results of the pilot study assessing Java Threads vs SCOOP. The results favor SCOOP
even though the study participants had previous training in Java Threads. Given the extra care
that we took to avoid experimenter bias, the study reinforces our trust in the usability and
teachability of SCOOP; independent assessment by others would be most welcome.

As a side indication, the students reported in course evaluations (on the spot and at
semester end) that they greatly enjoyed the self-study format.

6. Conclusion
Given the multitude of proposals for new concurrent languages, empirical studies are

urgently needed to judge which are suitable for teaching. We have presented a methodology
and study template to compare concurrent languages, relying on self-study material and
student evaluation. In future work, the template could be applied to more languages and also
developed further, for example by focusing more strongly on one of the hypotheses.

We hope that the methodology and the general study design can be useful not only to
educators interested in the specific issue at hand — teaching concurrency — but also to others
confronted with the common problem of assessing an approach that one has designed while
avoiding experimenter bias and achieving a strong guarantee of objectivity.

Acknowledgments This work is part of the SCOOP project at ETH, which has benefited
from grants from the Hasler Foundation, the Swiss National Fonds, Microsoft (Multicore
award), ETH (ETHIIRA). F. Torshizi has been supported by a PGS grant from NSERC.

References
[1] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 2nd edition, 1997.
[2] S. Nanz, F. Torshizi, M. Pedroni, and B. Meyer. A Comparative Study of the Usability of Two Object-oriented
Concurrent Programming Languages. http://arxiv.org/abs/1011.6047, 2010.

