
Verifying Properties beyond Contracts of
SCOOP Programs

Jonathan Ostroff, Faraz Ahmadi Torshizi, and Hai Feng Huang

Department of Computer Science and Engineering, York University,
4700 Keele St.,Toronto, ON M3J 1P3, Canada
{jonathan, faraz, hhuang}@cse.yorku.ca

Abstract. SCOOP and Spec# are programming languages that aim to
extend Design by Contract to concurrent and reactive systems. In this
paper we discuss how appropriate theorem provers (using Hoare-like ver-
ification) can be used to statically check that the contracts are obeyed
in concurrent executions, as well as discussing the syntactic and seman-
tic differences between SCOOP and Spec#. We provide a formal model
for SCOOP programs as a fair transition system and we use temporal
logic for describing system properties beyond contractual correctness.
We show that verified contracts provide only a certain measure of cor-
rectness, but may not be able to guarantee additional safety and liveness
system properties without global reasoning. We show how Microsoft Re-
search’s SpecExplorer tool can be used to test SCOOP programs for
system properties beyond contracts.

1 Introduction

Concurrent and reactive systems are hard to write and even harder to test.
In industrial settings, software verification consists almost entirely of testing.
Testing is one of the costliest and most laborious aspects of commercial software
development, especially given the lack of systematic engineering methodology,
clear semantics and adequate tool support. Concurrency and the need to develop
software for reactive systems introduces a level of complexity beyond that of
sequential programming. Object-oriented code with dynamic thread creation
also introduces additional levels of complexity.

Formal methods using model-checkers and theorem provers have not been
considered practical for software applications, but this situation is slowly chang-
ing. Until relatively recently, the majority of the work carried out by the formal
methods community for proving programs correct has been devoted to special
languages that differ from industrial strength programming languages [21]. This
is a useful phase as it allows the formal methods community to experiment with
new methods.

Recently, more steps have been taken to work with real programs written in
modern programming languages. The B-method was used to produce the control
system for the Paris driverless metro [3]. In this system, the specification was
written and refined from the B specification language into Ada code with all

the refinements checked via a theorem prover. Abstract interpretation has been
used in [8] to analyze some C programs of up to 100K lines of code, although
there are difficulties dealing with rich data structures and dynamic threads. Java
PathFinder (JPF) is a verification environment for Java for detecting deadlocks
and assertion violations integrating program analysis and model checking [9].
The following quote from [21] is instructive:

Although it is hard to quantify the exact size of program that JPF can
currently handle - “small” programs might have “large” state-spaces -
we are routinely analyzing programs in the 1000 to 5000 line range. ...
it is naive to believe that model checking will be capable of analyzing
programs of 100000 lines or more ...

Undoubtedly, these new methods will be scaled up to handle larger and more
realistic examples. Even the ability to analyze small critical chunks of realistic
code is a welcome addition to bug detection. Nevertheless, it appears that we will
still need to rely on testing for the foreseeable future, with formal verification as
a helpful technique for finding additional bugs.

The authors of [4] investigate the use of contracts in object oriented code.
The authors state that contracts are known to be a useful technique to spec-
ify the precondition and postcondition of operations and class invariants, thus
making the definition of object-oriented analysis or design elements more pre-
cise. The paper shows how to reuse and instrument contracts to ease testing. A
thorough case study is run where they define contracts, instrument them using
a commercial tool, and assess the benefits and limitations of doing so to support
the isolation of faults. They show that Design by Contract (DbC) has proven to
be a powerful lightweight method for documenting contracts in object oriented
code as well as for detecting bugs.

The object oriented Eiffel programming language is an industrial strength
language with a mature contracting mechanism [13]. ESC/Java [19] shows how
to add and check contracts for Java and Spec# is a superset of C# which has a
contracting mechanism as well as static verification of contracts [2].

The Simple Concurrent Object-Oriented Programming (SCOOP; hereafter
“Scoop”) mechanism was proposed as a way to introduce inter-object concur-
rency into the Eiffel programming language [13]. The mechanism extends the
Eiffel language by adding one keyword separate that can be applied to entities
(attributes and formal routine arguments). If entity e is declared separate then
any call e.f is executed in its own thread of control; application of separate to
entities or arguments indicate that these constructs are points of synchroniza-
tion.

Part of the Scoop mechanism was implemented by Compton [6] by building
upon the GNU SmartEiffel compiler and runtime system, and a Scoop translator
using the Eiffel Software compiler was reported in [7]. Scoopli is currently the
most up-to-date implementation of Scoop. Using a library approach and the
Eiffel Software compiler, code runs as a C or .NET executable [15].

In this paper we will describe the Scoop mechanism via a simple example
called Zero-One and compare Scoop and Spec# especially with respect to static

verification of contracts using theorem provers. We will contrast runtime Asser-
tion Checking versus static Verification, and we will show that contracts can be
used to detect certain classes of errors. However, we will also show that there
are system properties that contracts alone (without global reasoning) may not
detect. We provide an outline of how to convert Scoop code to fair transition
systems and we use temporal logic for writing system specifications. We show
how to build reduced models and how to use SpecExplorer for testing system
properties beyond contracts. The combination of contracts and reduced model
testing provide lightweight formal verification that scales up to large systems.

2 Sequential and Concurrent Computation

Object oriented computation (sequential or concurrent) is performed via the
mechanism of the feature call t .r(x) to a target t attached to some object obj .
A processor invokes the routine call r with argument x to the object obj . In the
sequential case, there is only one processor.

In the concurrent case, we have two or more processors. A processor is an
autonomous thread of control capable of supporting the sequential execution of
instructions for one or more objects. This definition assumes that the processor
is some device, which can be implemented either in hardware (e.g. a computer
equipped with its own central processor), or as software (e.g. a thread, task or
stream). Hence, a processor in this context is an abstraction and we may assume
the availability of an unlimited number of processors.

A subsystem is a processor together with the set of objects it performs actions
on. Within a subsystem, communication is synchronous, and execution follows
the usual Eiffel sequential model. Communication between subsystems is asyn-
chronous and processing is in parallel. This potential parallelism is the result of
different processors handling each subsystem [6].

A separate object is any object that from the viewpoint of the current object
is in a different subsystem. At run time, a separate object can only be referenced
(if reachable at all) through a separate entity. An entity is either an attribute
of a class, a formal argument of a routine, or a local variable of a routine. A
separate reference is a reference to a separate object. This reference must be
through a separate entity that is not void, and not attached to a local object. A
separate call is any routine call t .r(x), from the current object in which the call
is made, where the target t is a separate object. A subsystem is created with
the creation of a separate object.

2.1 A Simple Sequential Example

To motivate the main discussion we describe a simple Scoop program – the Zero-
One example which uses a sequential class DATA (Fig. 1) written in standard
Eiffel. The contracts (preconditions, postconditions and class invariants) docu-
ment the specification and may also be used to find implementation bugs and
demonstrate the correctness of the code.

Correctness of the implementation can be demonstrated either by run-time
Assertion Testing or by static compile-time Formal Verification via the use of
a theorem prover. Consider the code in class TEST (Fig. 2) which uses class
DATA.

The create d instruction (in routine r) does a default initialization of all
the attributes as shown in the immediately following check statement. Will the
feature call d.one in the above code succeed without contract violations? The
correctness rule for a general feature call t .r(x) is:

{prer ∧ I }dor{postr ∧ I }
[CR1 – Sequential Correctness Rule]

{pre ′r}t .r(x){post ′r}
where prer , dor and postr are the precondition, body and postcondition of routine
r respectively and I is the invariant of the class in which r occurs. The primed
notation used in the consequence of rule [CR1] refers to the contracts suitably
qualified to the target t . For example, for routine one of class DATA, rule CR1
reduces to

{x = 0 ∧ y = 0}x := 1; y := 1; c1 := c1 + 1{x = 1 ∧ y = 1 ∧ Q}
{d .x = 0 ∧ d .y = 0}d .one{d .x = 1 ∧ d .y = 1 ∧ Q ′}

where Q def= c0 = old c0 ∧ c1 = old c1 + 1 ∧ b = old b and Q ′ def= d .c0 =
old d .c0 ∧ d .c1 = old d .c1 + 1 ∧ d .b = old d .b.

In Formal Verification, we can use a theorem prover to check each routine
for the verification conditions generated by rule [CR1]. Such a static check guar-
antees that the code will run correctly without contract violations at runtime.
We have implemented such a theorem prover for a significant subset of sequen-
tial Eiffel [18, 20]. This theorem prover trivially verifies the correctness of DATA
(Fig. 1) and the correctness of the routine r in class TEST (Fig. 2). The theorem
prover is putatively sound (on the assumption that it is constructed correctly)
but not complete. The theorem prover will issue a warning if a verification con-
dition fails to prove with some debugging information as to the source of the
problem. The warning could indicate a real bug, but could also mean that the
verification condition is true, but that the theorem prover was unable to prove
it. Manual intervention would then be required to achieve full certification.

In Assertion Testing, we enable run-time assertion checking and the compiler
then generates code that checks the contracts at each feature call (such as d.one).
Assertion Testing is much weaker than Verification, as [CR1] is only checked
for the executions in our testing suite. However, any code of any size can be
automatically checked in this manner without the need to provide complete
contracts. Testing is thus a successful totally automated lightweight method for
documenting and automatically checking specifications.

2.2 A Simple SCOOP Example Using DATA

Classes ZERO and ONE show some of the main Scoop properties (Fig. 3). For the
purposes of this discussion, we assume that a single instance of ONE is running

class DATA feature

x,y,c0,c1: INTEGER

b: BOOLEAN

zero is

require x = 1 and y = 1

do

x:=0; y:=0; c0 := c0 + 1

ensure

x = 0 and y = 0

c0 = old c0 + 1 and b = old b and c1 = old c1

end

one is

require

r1: x = 0 and y = 0

do

x:=1; y:=1; c1 := c1 + 1

ensure

e1: x = 1 and y = 1

e2: c1 = old c1 + 1 and c0 = old c0 and b = old b

end

stop is

do

b := true; x := 2

ensure

b and x = 2

y = old y and c0 = old c0 and c1 = old c1

end

invariant

inv_data: ((x = 0 and y = 0) or (y = 1 and x = 1)) or b

end -- class DATA

Fig. 1. Class DATA

class TEST feature

d: DATA

r is

do

create d

check

d.x = 0 and d.y = 0 and d.b = false and d.c1 = 0 and d.c0 = 0

end

d.one

end

end

Fig. 2. Class TEST

in a subsystem under the control of processor π1. Likewise an instance of ZERO
is running under the control of processor π0.

Class ROOT is shown in the listing in Fig. 4. A system execution is initiated
when the constructor ROOT.make is called. The constructor creates and initiates
the execution of the three subsystems π0, π1 and πd .

In class ONE, attribute data of type DATA is declared separate. This means
that the object attached to data at runtime runs in its own subsystem (e.g.
under the control of processor πd) and thus under a different processor than the
one handling the current object. The responsibility of routine run is to invoke
the separate call data.one repeatedly. Scoop requires that such calls be wrapped
in a routine such as do one (see lines 16 and 20).

It is instructive to follow an execution that has arrived at line 16 (which we
denote as π1 = 16). Control transfers to line 20 where processor π1 waits to get
a lock on the data object under control of πd . If deadlock does not occur and the
lock is obtained (with unique access to data.b), the non-separate precondition
count ≤ 1000 is immediately checked at line 23. A failure generates a precondi-
tion exception, and success means that π1 waits for the separate precondition
¬ data.b at line 22 to become true. It is thus possible for this subsystem to dead-
lock at line 22 if the condition never becomes true. Assuming the wait condition
¬ data.b becomes true, execution continues at line 27. An asynchronous feature
call data.one is sent to subsystem πd , and execution continues until 29 where
π1 waits for all asynchronous calls to terminate including the query data.x = 1,
at which point the assignment can be executed (this is called wait by necessity
[13]).

There is another danger. The asynchronous separate feature call data.one
at line 27 may fail when it is finally executed by πd because the non-separate
precondition of DATA.one (i.e. data.x = 1 ∧ data.y = 1) may fail to hold (this
condition was not checked by the π1 client prior to the feature call). There are
thus a variety of reasons why this Scoop program may fail:

1. Deadlocks may occur at lines 20 [call this failure F1] and 22 [F2].
2. The non-separate precondition may fail at line 23 (a client check is not

performed at line 16) [F3].
3. The non-separate precondition of DATA.one may fail at line 27 (or more

correctly, the failure will occur when the precondition is checked in subsystem
πd) [F4].

Although we described the execution in terms of acquiring and releasing
locks, it is the job of the Scoop compiler to enforce the atomicity described above.
The compiler will automatically detect where the Scoop separate keyword is
missing or inappropriately used, and properly enforce the appropriate behaviour.
Thus many race conditions are automatically eliminated. This does not mean
that all race conditions are eliminated. The claim that, by using the Scoop model,
we eliminate many bugs that come from race conditions, is like the claim that
functional languages eliminate side-effect bugs. We may still write code such
that the same kind of interference occurs in both cases, but the language leads
you naturally away from it.

class ONE create

01 make

02 feature

03 data: separate DATA

04 count: INTEGER

05

06 make(d: separate DATA) is

07 do

08 data := d

09 end

10

11 run is

12 do

13 from

14 until false -- later changed to count > 1000

15 loop

16 do_one(data)

17 end

18 end

19

20 do_one(d: separate DATA) is

21 require

22 separate_pre: not d.b

23 non_separate_pre: count <= 1000

24 local

25 test: BOOLEAN

26 do

27 d.one

28 count := count + 1

29 test := d.x = 1

30 ensure

31 non_separate_post: count = old count + 1

32 separate_post: d.x = 1 and d.y = 1 and d.b = old d.b

33 end

end -- class ONE

Fig. 3. Class ONE (similarly for class ZERO)

class ROOT create

make

feature

d: separate DATA

p0: separate ZERO

p1: separate ONE

make is

do

create d

create p0.make(d)

create p1.make(d)

run(p0, p1)

end

run(z: separate ZERO; o: separate ONE) is

do

z.run

o.run

end

end

Fig. 4. Class ROOT – initiates the three subsystems

3 Detecting Contract Failures

How can we detect deadlocks [F1, F2] and contract failures [F3, F4] as described
in the previous section? Due to interference from other subsystems, our formal
condition for class correctness must now change to the following [13] (page 1023):

{preS ∧ preNS ∧ I }dor{postS ∧ postNS ∧ I }
[CR2 Rule]

{pre ′NS}t .r(x){post ′NS}

where preS and postS are separate pre/postconditions and preNS and postNS are
non-separate pre/post conditions. There is a significant difference between the
sequential rule [CR1] and the [CR2] rule. The sequential rule is a full correctness
condition – if the antecedent holds, then not only is the call partially correct, but
it is also guaranteed to terminate. By contrast, the [CR2] rule only checks partial
correctness as it does not incorporate any checks that would catch deadlocks
such as [F1] and [F2]. To detect such deadlocks, we need information about
other subsystems. We will examine safety properties such as system deadlock
detection and liveness properties in a later section.

We may use the [CR2] rule to detect contractual errors such as [F3] and [F4].
Consider first [F3]. If we change our theorem prover to use [CR2] rule instead
of [CR1], then we obtain a warning at line 16 (Fig. 3) because we are calling
do one without satisfying its precondition count ≤ 1000 at line 23. Likewise for

[F4], we obtain a warning at line 27 because we are calling DATA.one without
guaranteeing its precondition.

We can eliminate these warnings from the theorem prover by strengthening
the code. [F3] can be fixed by changing the loop guard at line 14 to (until
count > 1000). [F4] can be fixed by using a stronger separate precondition at
line 22: not d.b and d.x = 0 and d.y = 0. This strengthened precondition
means that π1 waits at line 22 until some other processor (e.g π0) sets the data
variables to zero. With these changes, a theorem prover using [CR2] rule will
pass without warnings.

We tested the original and revised code in Scoopli. The original code failed
with contract exceptions [F3] and [F4], and the revised code passed, thus illus-
trating Assertion Testing. However, neither Formal Verification nor Assertion
Testing were able to guarantee detection of deadlocks such as [F1] and [F2].

4 Comparison of Spec# and Scoop

The Spec# programming system1 extends C# with contracts (like Eiffel), while
it also aims to support concurrency based on object ownership [11]. Spec# ex-
tends the type system of C# to include non-null types and checked exceptions.
It provides method contracts in the form of pre/postconditions as well as object
invariants. The Spec# compiler is integrated into the Microsoft Visual Studio de-
velopment environment for the .NET platform. The compiler statically enforces
non-null types, and emits run-time checks for method contracts and invariants
[2].

The Spec# static program verifier (Boogie) generates logical verification con-
ditions from a Spec# program. Internally, it uses an automatic theorem prover
(currently Simplify) that analyzes the verification conditions to prove the cor-
rectness of the program or to find errors in it. Spec# aims to maintain in-
variants in object-oriented programs in the presence of callbacks, threads, and
inter-object relationships [11].

According to [1] there is a problem with the normal rule for invariants es-
pecially for concurrent programs. The authors of [1] write that a popular view
is that an object invariant is simply a shorthand for a postcondition on every
constructor and a pre/postcondition on every public method. The idea behind
this view is that an object’s invariant should hold whenever the object is pub-
licly visible. This view in itself is appropriate, but is often combined with the
following faulty regime. Callers of the methods of a class T do not need to be
concerned with establishing the implicit precondition associated with the invari-
ant. For the invariant of a class T to hold at entries to its public methods, it is
sufficient to restrict modifications of the invariant to methods of T and for each
method in T to establish the invariant as a postcondition. This regime permits
a method to violate an object invariant for the duration of the call, as long as it
is re-established before returning to the caller. But, unless every method body is

1 http://research.microsoft.com/specsharp

public sealed class One {

[LockProtected]

public Data ! data;

public int count=0;

invariant data != null;

public One([LockProtected] Data d)

requires d != null;

{

data = d;

}

public void Run()

ensures (data.x == 0 && data.y == 0 && !data.b && count <= 1000)

==> (count == old(count) + 1);

ensures (data.x == 0 && data.y == 0 && !data.b && count <= 1000)

==> (data.x == 1 && data.y == 1 && data.b == old(data.b));

{

while (count <= 1000)

invariant this.IsExposable;

{

expose (this)

{

assume data.IsLockProtected;

acquire (data)

{

if (data.x == 0 && data.y == 0 && !data.b)

{

assume data.IsPeerConsistent;

//Console.WriteLine("1 count: " + count);

count++;

data.One();

assert data.x == 1;

}

}

}

}

}

}

Fig. 5. Spec# Code similar to ONE

atomic, this is a problem as illustrated in the paper for a routine that calls itself
at a point where the invariant has not yet been re-established. For Spec# the
recommendation is made for a construct that declares that the invariant may be
temporarily violated (see for example the expose construct in Fig. 5).

The problem identified by [1] needs to be examined in the Scoop model.
A call to a separate routine is atomic, thus ensuring that no other subsystem
will interfere. Second, the Scoop (and Eiffel) model only require the invariant
to hold on entry to a qualified call (see [13], page 366). There is no such rule
for unqualified calls which are not directly executed by clients but only serve as
auxiliary tools for carrying out the needs of qualified calls. In such cases it is
in order to temporarily violate the invariant provided it is re-established at the
end of the routine. We refer the reader to [14] for further discussion.

The Spec# static program verifier uses a theorem prover to prove rules such
as [CR1]. The verifier is interesting but still very much in the experimental stage.
For example, verification of genericity and inheritance are not yet fully imple-
mented, some primitive types such as reals are not checked, and pure methods
in postconditions do not verify. Spec# code (approximately) equivalent to the
revised version of class ONE (Fig. 3) is shown in Fig. 5. There is not yet much
documentation available to enable us to fully evaluate the tool. As far as we were
able to determine, there are a number of differences when compared to Scoop.

1. Atomicity is enforced by explicit acquire statements, and various constructs
such as sealed assertions and lock protection must be declared.

2. In Spec# all calls are synchronous. Scoop offers a mix of synchrony and
asynchrony.

3. To get the theorem prover to work, various assumptions must be added (see
assume clauses).

4. Preconditions are correctness conditions, not wait conditions as in Scoop.
This means that wait conditions must be explicitly programmed in via wait
constructs.

5. Basic Spec# (without the extensions of [11]) allows object sharing between
multiple threads, resulting in potential intra-object concurrency and races
that Scoop would prohibit.

Impressively, the Spec# verifier was able to prove the correctness of the contracts
and catch incorrect implementations such as those associated with [F3] and [F4].
Also, the ability to statically check for non-null types is significant. However, we
still lack full automated capabilities to detect system properties such as complete
deadlock detection and liveness properties.

5 SCOOP semantics for contracts

As mentioned earlier, the [CR2] rule, while being correct, is too weak to allow us
to argue about separate postconditions. Further, while the Scoop model treats
separate preconditions as wait conditions (rather than correctness conditions),
we have not explained how invariants and postconditions are treated. Recently,

Piotr Nienaltowski and Bertrand Meyer have proposed that postconditions be
treated as wait conditions (similar to that of preconditions) and that invariants
be disallowed from referring to separate entities [17]. In the sequel we follow the
lead of [17] with respect to the intuitions behind postcondition and invariant
semantics but provide a temporal logic description of the semantics. Rule 1.5 in
[17] is not strong enough to allow for fully compositional proofs of correctness
and liveness. This paper will provide a temporal logic version of the semantics
based on recent discussions with the authors of [17] and to be reported more
fully in [16].

It is convenient to use temporal logic to describe system properties (beyond
contracts between a client object and a supplier object). So as to describe the
contracting semantics and system properties we provide a schema of how to
translate Scoop programs into fair transition systems, which can then be used
as the basis for expressing temporal logic system properties. We provide below
the main features of a fair transition system in the sense of Manna and Pnueli
[12], and we provide a sketch of how to adapt fair transition systems for Scoop
programs.

Fair Transition Systems

A fair transition system M is a 5-tuple M = (V , I ,T , J ,F);

1. The system variables V is a finite set of typed variables. The creation of a
new subsystem (e.g. create p1.make(d) in Fig. 4) corresponds to extending
V with a corresponding control variable (e.g. π1 which is the handler for
this instance of class ONE). A control variable for a subsystem can be used to
indicate which line of code in that subsystem is currently being executed (it
is never used in actual program text). A state s of the system is a mapping
that assigns to each variable v ∈ V a value in type(v). The set of all states
is denoted by Σ.

2. The initial condition I is a boolean valued expression in the variables that
characterizes the states at which the execution of the system can begin. A
state s satisfying I , i.e. s |= I , is called an initial state.

3. T is a finite set of transitions. Each transition τ in T is a function τ : Σ →
2Σ that maps a prestate s in Σ to a (possibly empty) set of τ -successor
poststates τ(s) which are obtained when τ is taken. Each state s ′ in the set
τ(s) is defined to be a τ -successor of s. The transition relation ρ(oldV ,V)
describes a set of 2-tuples (consisting of a prestate s and poststate s ′) that
relates the prestate s to its τ -successor s ′ ∈ τ(s), and where oldV (by which
we mean any of the variables in V) is evaluated in the prestate s, and V is
evaluated in the successor state s ′.

4. J ⊆ T is a set of just transitions. If a just transition τ ∈ J is continually
enabled it must eventually be taken. Likewise F is a set of fair transitions,
i.e. a fair transition that is enabled infinitely often must eventually be taken.

Executions of Fair Transition Systems

An execution of a model M = (V , I ,T , J ,F) is any infinite sequence of states:

σ = s0
τ0→ s1

τ1→ s2
τ2→ . . .

with τ0, τ1, τ2 . . . elements of T , so that the following three requirements are
satisfied:

1. Initialization: The first state of the execution satisfies the initial condition,
i.e. s0 |= I .

2. Succession: For all positions i in the execution, si+1 ∈ τi(si), i.e. state si+1

is a τi -successor of state si using the transition relation. This also means
that si |= eτi

where eτi
is the enabling condition (conjunction of separate

and non-separate preconditions and locations) of transition τi . We say that
τi is taken at position i in the execution σ, and we may write taken(τi) to
express this.

3. Justice and Fairness: For each τ in the justice set, it is not the case that
τ is continually enabled beyond some position in the trajectory, but taken
at only finitely many positions in the execution. A similar constraint applies
for fair transitions.

Scoop code can be converted to a fair transition system using the techniques
in [12]. Each construct such as assignments and alternatives are translated into
transitions, and the transitions of different subsystems are interleaved with each
other, with the fairness constraints removing the non-fair executions. The con-
siderations below may be used to translate the feature call into appropriate
transitions.

Postconditions and Invariants

As mentioned earlier, the Scoop model treats preconditions as wait conditions.
We now need to consider invariants and postconditions.

There is a major difference between the feature call Current.do one(data)
at line 16 and feature call d.one at line 27 in Fig. 3.

– At line 16, the argument data is in an unlocked context because the enclosing
routine run does not declare data as separate.

– At line 27, the feature call d.one is in a locked context because d is locked by
the enclosing routine do one. Even if routine one would have an argument,
e.g. d.one(x), it would be considered as executing in a locked context if
both x and d are declared separate in the formal argument list of do one.
The locked case can use the standard sequential [CR1] rule.

Consider, now, the unlocked case at line 16 in Fig. 3, at which point the
handler π1 must execute the routine do one(data) where data is an attribute
declared as separate DATA. This routine “wraps” all accesses to data within

one call so that no other processor may interfere. Handler π1 waits to acquire
a lock on data and for the precondition of the routine do one to become true.
Who manages lock acquires and releases and who is responsible for executing
the body of the routine do one?

We may assume that the Scoop runtime has a global handler π that manages
an action queue for servicing separate calls such as do one. Separate feature calls
are queued in the order received, and the global handler guarantees that calls are
handled in that order. Provided that all calls can be shown to terminate2, the
global handler guarantees that Acquire(data) eventually becomes true at line 16.
The global handler is solely responsible for managing all locks on seperate sub-
systems, granting them and releasing them as required. If, also, the precondition
Pre(do one) subsequently becomes true, then π can mark do one as currently
executing and then initiate execution of the body of do one.

In the mean time, handler π1, having (asynchronously) handed responsibility
for the routine call do one off to global handler π, may continue executing at
line 17. In the actual example, it just loops back, but in general it could do some
local processing before returning to line 16.

Now, routine do one has a postcondition (see lines 31 and 32). When is the
postcondition evaluated and by whom? It cannot be evaluated by π1 immediately
after dispatching do one to π because then there would be unnecessary blocking
at line 16, which would undermine our attempts at being able to process locally
while do one is executed elsewhere.

The logical candidate to choose is handler π (who is anyway responsible
for handling do one and lock acquisitions and releases). Handler π checks that
do one has completed processing, checks the postcondition, flags any contractual
exceptions, and releases the lock on data. Consider handler π1 executing the
wrapped routine do one as follows:

15:
16: do_one(data)
17:

We use our temporal logic framework to describe the behaviour of routine
do one.

2[(π1 = 16) ∧ P → (π1 = 16)U (π1 = 17) ∧ 3(Q)] (1)

P def= 3[Acquire(data) ∧ Pre(do one) ∧ Inv]

Q def= Acquire(data)U [Post(do one) ∧ Release(data) ∧ Inv]

where Acquire(data) and Release(data) are functions of the global handler π.
Pre and Post stand for precondition and postcondition respectively of do one
and Inv is the invariant of class ONE. 3 is the standard eventually operator, 2 the
2 e.g. using the sequential rule [CR1]. This would require one of the lock passing

mechanisms to be implemented so that callbacks do not cause deadlocks.

henceforth operator, and p Uq the until operator (“p until q” means eventually
q , and p holds continuously at least until the first occurrence of q).

As in [17], it is not necessary for a separate postcondition to hold immedi-
ately after the execution of the routine’s body. The wait semantics applies to
postconditions but waiting happens on the supplier side, or more precisely it
is managed by the global handler π and the data supplier. The separate target
data is not released until the postcondition is satisfied.3

Note that (1) reduces to a much simpler form for the feature call d.one at
line 27 because one (and any arguments of one should there be any) are all
already in a locked context. Thus we may drop the lock acquisitions and releases
and for such a routine call we may use the standard sequential rule [CR1].

What about invariants? As stated in [17], invariants play an important role
in the Design by Contract methodology. They are the primary tool for ensuring
the consistency of objects. To prove the correctness of a routine, we assume
the invariant before the execution of the body and we must guarantee that
it holds again when the body terminates. Rule (1) follows this pattern. Scoop’s
separate call rule requires that the target of a separate call must appear as formal
argument of the enclosing routine. But calls appearing in invariants have no
enclosing routines! Therefore, we prohibit the use of separate calls in invariants.
Conceptually, we still consider that a violated invariant causes waiting but in
practice, since all its clauses only contain non-separate calls, we may reduce the
wait semantics to a correctness semantics. As in the case of preconditions and
postconditions, the run-time system is able to react to a violated invariant by
raising an exception.

Temporal Logic System Specifications

With a fair transition model of Zero-One in place we may document system
liveness and safety properties using temporal logic, e.g.

Specification S1: ¤3(zero ∧ ©©©one) where zero def= (πd .x = 0 ∧ πd .y = 0)
and one def= (πd .x = 1 ∧ πd .y = 1). [S1] asserts that we alternate between
zero and one infinitely often. This liveness property is false because the loop
only executes 1000 times.

Specification S2: ¤(πd .x = 0 ∧ πd .y = 0 ∨ πd .x = 1 ∧ πd .y = 1) –
Henceforth, a stronger version of the DATA class invariant holds. This safety
property is true because the routine πd .stop is never invoked in Zero-One.

Specifications such as [S1] and [S2] are valid iff they hold in all executions of
Zero-One model. The invariant inv data for class DATA (Fig. 1) can be checked
either statically by the theorem prover or by run-time assertion checking. How-
ever, class ROOT (Fig. 4) never sets in motion any subsystem that triggers

3 If the postcondition is divided into individual separate clauses, they may be checked
and released separately.

routine DATA.stop. This is easy to see by inspection in our simple system. How-
ever, routine stop could occur in much bigger systems or be invoked within one
of those hard to read structures such as an alternative within a loop where it
is hard to decide whether it actually happens or not. If stop never occurs, we
should actually be able to prove a stronger system invariant than inv data given
by:

¤(x = 0 ∧ y = 0 ∨ x = 1 ∧ y = 1) (2)

Formal Verification via a theorem prover of the type discussed earlier is
unable to prove this stronger property as the [CR1] rule must hold for all routines
in DATA (including stop).

To prove properties such as S1 and S2, we note that (1) will be needed.
(1) is a good rule for explaining the semantics of Scoop to compiler writers.
Nevertheless, (1) as a reasoning rule is insufficient for system properties such as
S1 and S2. The problem is that the postcondition of the do one routine is not
sufficiently projected into the future so that when execution returns to line 16,
we can make use of it to argue that eventually the data will be set to zero, which
would allow for the precondition of the one routine to be re-enabled. This will
require global reasoning as discussed in [17, 16].

Testing

If we are allowed to change the code (e.g. by adding new subsystems) then run-
time Assertion Testing could be used. We could allow a high priority subsystem
to constantly test property (2). However, changing the implementation code
is not recommended. What we need is a method to test system properties of
concurrent systems without changing the code. How shall we do this?

To check system properties beyond the ones that the theorem prover for
contracts can handle, we could rely on model checking and theorem proving
techniques for fair transition systems. For example, we could envisage using the
SPIN tool [10] or other such efficient state exploration tools.

As discussed in the introduction, formal method tools for software have
steadily improved. However, they still do not fully scale up to systems of re-
alistic size, and testing is still required for the foreseeable future. In the next
section we discuss testing methods that are able to deal with Scoop programs of
arbitrary size.

6 Testing, Reduced Models and SpecExplorer

In this section we show how to test for system properties beyond contracts.
Essential to the method is the idea of a reduced model Mr corresponding to
an original model M . The reduced model can stand in place of M for certain
properties provided that Mr ∼ M , i.e. Mr is behaviourally equivalent to M on
a set of observable variables O ⊂ VM ∩ VMr which is in the intersection of the

variables set of M and Mr . The definition of behavioural equivalence is defined
in [12] (page 45-47). A stronger relation – congruence of statements – is also
provided in [12]. We can strengthen the notion of behavioural equivalence to
also include in the observable set not only variables, but transitions (associated
with feature calls) as well. Likewise, we could check for behavioural equivalence
with respect to properties rather than variables.

If we want to pursue fully formal Verification, we could proceed as follows.
Given a full model M for a Scoop program and a temporal logic specification S ,
automatically construct an appropriate reduced model Mr so that Mr ∼ M for
the specification S (this construction could be done via abstract interpretation
[8] if possible). We may then apply our analysis methods (e.g. model checking)
to the reduced model Mr with a greater chance of not running into the problem
of combinatorial explosion of states.

As already mentioned, these methods have been used on quite large programs,
but there are still problems dealing with data and threads. Until such time that
fully formal methods are capable of scaling up to deal with large programs
automatically, it is still appropriate to look for Assertion Testing methods for
system properties beyond contracts (see previous section).

6.1 SpecExplorer

Model-based testing is one of the most promising approaches for addressing these
deficits [5]. In this paper we explore testing Scoop programs via SpecExplorer4.
SpecExplorer is a software development tool for advanced model-based specifi-
cation and conformance testing and is now used on a daily basis by Microsoft
product groups for testing operating system components and .NET framework
components [5]. The description below is taken from [5] and the tool website.
The tool can be used to test reactive, object-oriented software systems. The
inputs and outputs of such systems can be abstractly viewed as parameterized
action labels, that is, as invocations of methods with dynamically created object
instances and other complex data structures as parameters and return values.
Thus, inputs and outputs are more than just atomic data-type values, like inte-
gers.

From the tester’s perspective, the system under test is controlled by invok-
ing methods on objects and other runtime values and monitored by observing
invocations of other methods. As explained in detail in [5], this is similar to
the invocation and call back and event processing metaphors familiar to most
programmers. The outputs of reactive systems may be unsolicited, for example,
as in the case of event notifications.

The core idea is that the developer encodes the system’s intended behav-
iour (its specification) in machine-executable form (as a “model program”). The
model program typically does much less than the implementation; it does just
enough to capture the relevant states of the system and shows the constraints
that a correct implementation must follow. The goal is to specify from a chosen

4 http://research.microsoft.com/SpecExplorer

viewpoint what the system must do, what it may do and what it must not do.
It can be used to explore the possible runs of the specification-program as a way
to systematically generate test suites.

Discrepancies between actual and expected results are called conformance
failures and may indicate a variety of problems. An implementation bug is a
code defect in the implementation under test. A modeling error is a code defect
in the model program itself. A specification error is a mistake or ambiguity in the
system’s specification (in other words, a misrepresentation of the intended system
behaviour). A design error is a logical inconsistency in the system’s intended
behaviour.

SpecExplorer consists of an explicit-state model explorer, which allows the
user to search the (possibly infinite) space of all possible sequences of method
invocations that do not violate the pre/postconditions and invariants of the sys-
tem’s contracts and are relevant to a user-specified set of test properties. The tool
has a traversal engine, which unwinds the resulting finite state machine to pro-
duce behavioural tests that cover all explored transitions. A binding mechanism
allows users to associate actions of the model with methods of an implementation
written in .NET languages.

6.2 Method for Testing Scoop Programs

We assume that we are provided with a Scoop program P and a system specifi-
cation S . The specification does not need to be a formal temporal logic property.
It may be a UML style scenario, provided we have a precise idea of what it is.
For the sake of concreteness, we let P be Zero-One and the specification S is the
strong system invariant [S2] of the previous section.

As stated in [5], reactive systems are inherently nondeterministic. No sin-
gle agent (component, thread, network node, etc.) controls all state transitions.
Network delay, thread scheduling and other external factors can influence the
system behaviour. SpecExplorer handles nondeterminism by distinguishing be-
tween controllable actions invoked by the tester and observable actions that are
outside of the tester’s control.

We use the terms “input” and “output” relative to the system to be tested
P . The terms “observable” and “controllable” will be used with respect to the
inputs and outputs (respectively) of a model MP that is used to test P for S .
We proceed as follows:

1. We are provided with a Scoop program P and a system specification S . We
want to know if P satisfies S , i.e. do all executions of P satisfy S? Since we
are dealing with Testing and not Verification, our method will be to run a
number of test executions to show that P satisfies S .

2. Use Scoopli to convert P to a .NET component.
3. Use SpecExplorer to manually construct a reduced model MP of P . The

reduced model for Zero-One is shown in Fig. 7. SpecExplorer conveniently
and automatically draws the state transition graph shown in Fig. 6. We note
that SpecExplorer models are close to the fair transition systems as outlined

Fig. 6. SpecExplorer discovers a bug

in the previous section. The system specifications S1 and S2 of the previous
section provide guidance for constructing the reduced model, e.g. that zero
and one must alternate (S1), while preserving the invariant (S2).

4. We need to check behavioural equivalence, i.e. in some sense we would like
to show that MP ∼ P . Although we cannot do this formally, we can test for
behavioural equivalence using SpecExplorer’s binding mechanism and graph
exploration algorithms.

5. For P given by Zero-One, we bind the actions zeroModel and oneModel in
Fig. 7 to the routines DATA.zero and DATA.one (respectively) as observable
actions. We bind checkInvariant in the model to the check invariant
query in the ROOT class as a controllable action. The addition of this side-
effect free query to ROOT is the only change that must be made to P . This
query is used to check for the stronger system invariant [S2].

6. Let SpecExplorer automatically generate test cases to explore the model,
run the tests and check for conformance.

The model M is written in the SpecExplorer modeling language as shown
in Fig. 7 which is very close in concept to the fair transition systems (reduced
or full) described in the previous section. After effecting the bindings the tool
automatically generates the state exploration graph in Fig. 6. Actions (or tran-
sitions) in the model may have pre/postconditions and invariants. In the model,
actions may be declared observable or controllable.

The model actions zeroModel and oneModel are declared observable and
bound to DATA.zero and DATA.one respectively. This means that these model

actions are triggered whenever routines zero and one occur in the system under
test P .

The model action checkInvariant is declared controllable and is bound
to a new side-effect free query check invariant in ROOT which returns true
precisely when the stronger system invariant (2) holds. The round states S2 and
S4 in Fig. 6 represent controllable states. When these states are reached, the
controllable model action is taken thus triggering the occurrence of the bound
routine in P (in this case checkInvariant).

bool systemStarted;

DataModel sharedData;

public void startSystem() requires systemStarted == false; {

systemStarted = true;

sharedData = createData();

}

public DataModel createData() requires systemStarted == true; {

return (new DataModel());

}

int v = 0;

public class DataModel {

public DataModel()

{v = 0;}

public void zeroModel()

requires v == 2;

{ v = 3;}

public void oneModel()

requires v == 0;

{v = 1;}

public bool checkInvariant()

requires v == 1 || v == 3;

{

if (v == 1) v = 2; else v = 0;

return true;

}

}

Fig. 7. SpecExplorer model

The model describes a system in which zero and one must alternate. If the
preconditions of zero and one in DATA are removed, then the SpecExplorer

model will detect such a failure as shown by the execution to the state FAILED
at the bottom of Fig. 6. This is because we expect to observe one and instead
we saw zero. With the preconditions re-inserted and with the revised code fixes
to ONE (section 2), the model suitably extended with a timeout will detect that
the alternations occur only 1000 times and hence property [S1] of the previous
section will be shown not to hold. Obviously, if we had a system that alternated
for an infinite amount of time, we would be able to check [S1] for that system
only for a limited period. However since [S1] failed in a finite period, the model
was able to detect this.

The model is also able to show that the stronger invariant specified by [S2]
holds due to the fact that checkInvariant is a controllable action which is
invoked after each observation of the system under test.

The model can detect the deadlock failures [F1] and [F2] in section 2, which
would occur if one of the DATA routines did not terminate hence not releasing
the lock or if the stop routine is invoked. This is done by activating timeouts
in the model. Failures [F3] and [F4] are detected by SpecExplorer because the
system under test generates signals that are not expected in the model.

7 Conclusion

Design by contract can be appropriately extended to concurrent languages such
as Scoop and Spec#. In this paper, we have compared Scoop and Spec# and
shown that a contracting methodology is helpful for detecting bugs in concurrent
programs. We showed how theorem provers verify that the contracts are satisfied
and can be used to help detect bugs statically at compile time. Assertion Testing
at run time can also detect many errors. Scoop, in particular, helps the designer
avoid certain classes of race conditions by enforcing atomicity at the level of
feature calls.

However, we have also shown that contracts cannot be used to detect many
system level properties. We have provided the outline of a method to model
Scoop programs as fair transition systems. This also allows us to describe system
properties in temporal logic. These models could be used to verify Scoop pro-
grams using emerging model checking tools. Nevertheless, we expect these tools
to work on systems of moderate size or on small critical components only, for
the foreseeable future. Therefore, we also present an Assertion Testing method-
ology for Scoop programs that will scale up to programs of any size using the
SpecExplorer tool.

In future work, we hope to explore better mathematical models for Scoop se-
mantics. We are also working on equipping Scoop with powerful theorem proving
tools that can be used statically to verify the contracts. We also hope to inves-
tigate the use of abstract interpretation to automatically generate SpecExplorer
reduced models that are safe with respect to classes of system properties.

Acknowledgements

We thank Wolfram Schulte, Rustan Leino and Wolfgang Grieskamp of Microsoft
Research for help with SpecExplorer and Spec#. We also thank Bart Jacobs
for help with Spec# on the newsgroup. We gratefully acknowledge the useful
feedback from the referees. This work was conducted under an NSERC Discovery
grant.

References

1. Mike Barnett, Robert DeLine, Manuel Fahndrich, K. Rustan M. Leino, and Wol-
fram Schulte. Verification of object-oriented programs with invariants. Journal of
Object Technology, 3(6):27–56, 2004. Verification of object-oriented programs with
invariants.

2. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming
system: An overview. In CASSIS 2004, volume LNCS 3362. Springer Verlag, 2004.

3. Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc Meynadier. Meteor: A
Successful Application of B in a Large Project. volume LNCS 1708, pages 369–387.
Springer-Verlag, 1999. Meteor: A Successful Application of B in a Large Project.

4. L. C. Briand, Y. Labiche, and H. Sun. Investigating the use of analysis contracts
to support fault isolation in object oriented code. In ISSTA ’02: Proceedings of the
2002 ACM SIGSOFT international symposium on Software testing and analysis,
pages 70–80, New York, NY, USA, 2002. ACM Press.

5. Colin Campbell, Wolfgang Grieskamp, Lev Nachmanson, Wolfram Schulte, Nikolai
Tillmann, and Margus Veanes. Model-Based Testing of Object-Oriented Reactive
Systems with Spec Explorer. In Microsoft Research Technical Report (MSR-TR-
2005-59). 2005. Model-Based Testing of Object-Oriented Reactive Systems with
Spec Explorer.

6. M. Compton. SCOOP: an Investigation of Concurrency in Eiffel. Master’s thesis,
Department of Computer Science, The Australian National University, 2000.

7. Oleksandr Fuks, Jonathan S. Ostroff, and Richard F. Paige. SECG: The SCOOP-
to-Eiffel Code Generator. JOT Journal of Object Technology, 11(3), 2004. SECG:
The SCOOP-to-Eiffel Code Generator.

8. Arie Gurfinkel, Ou Wei, and Marsha Chechik. Systematic Construction of Ab-
stractions for Model-Checking. VMCAI’06, 2006. Systematic Construction of
Abstractions for Model-Checking.

9. K. Havelund and T. Pressburger. Model checking Java programs using Java
pathfinder. Software Tools for Technology Transfer (STTT), 2(4):72–84, 2000.

10. Gerard Holzmann. The Model Checker Spin. IEEE Trans. on Software Engineer-
ing, 23(5):279–295, 1997.

11. Bart Jacobs, K. Rustan M. Leino, Frank Piessens, and Wolfram Schulte. Safe
concurrency for aggregate objects with invariants. In Third IEEE International
Conference on Software Engineering and Formal Methods (SEFM’05), pages 137–
146. IEEE, 2005.

12. Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, New York, 1995. Temporal Verification of Reactive Systems:
Safety.

13. Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.

14. Bertrand Meyer. The dependent delegate dilemma. volume 195 of NATO Science
Series, II: Mathematics and Physics and Chemistry. Springer-Verlag, June 2005.

15. Piotr Nienaltowski. Efficient data race and deadlock prevention in concurrent
object-oriented programs. In Doctoral Symposium, OOPSLA 2004 Companion,
pages 56–57, 2004.

16. Piotr Nienaltowski, B. Meyer, and J.S. Ostroff. Reasoning about concurrent object-
oriented programs. 2006 (to be submitted).

17. Piotr Nienaltowski and Bertrand Meyer. Contracts for concurrency. In First In-
ternational Symposium on Concurrency, Real-Time and Distribution in Eiffel-like
Languages (CORDIE’06). Artist2 Workshop at the University of York, UK, 2006.

18. Jonathan S. Ostroff, Chen wei Wang, Eric Kerfoot, and Faraz Ahmadi Torshizi.
Automated model-based verification of object-oriented code. Technical Report
CS-2006-05, York University, Toronto, 2006.

19. K. Rustan, M. Leino, Greg Nelson, and James B. Saxe. ESC/Java User’s Manual.
Technical report, 2000. http://research.compaq.com/SRC/esc/papers.html.

20. Faraz Ahmadi Torshizi and Jonathan S. Ostroff. ESpec – a Tool for Agile De-
velopment via Early Testable Specifications. Technical Report CS-2006-04, York
University, Toronto, 2006.

21. W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model Checking Programs.
Automated Software Engineering Journal, 10, 2003.

