ES-Verify: A Tool for Automated Model-based
Verification of Object-Oriented Code

Jonathan S. Ostroff!, Chen-Wei (Jackie) Wang!, Faraz Ahmadi Torshizi!, and
Eric Kerfoot?

! Software Engineering Laboratory, Dept. of Computer Science and Engineering,
York University, 4700 Keele Street, Toronto, Canada M3J 1P3
2 Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford,
0X1 3QD, England.

Design by Contract (DbC) is a method for specifying software so that we
can check that it behaves according to specification. A class can be specified via
expressive preconditions, postconditions and class invariants. ESpec (Eiffel Spec-
ification) toolset is a unified environment (Fig. 1) allowing software developers to
specify, develop, test and verify the requirements, design and implementation of
a software product. It consists of the following three tools: (a) ES-Fit: Write and
test customer requirements as Fit tables; (b) ES-Test: Unit testing of code as
it is developed; and (c) ES-Verify: Automated model-based verification of code.
All the tools are centered around the Eiffel’s industrial-strength DbC facility.
ESpec is the first implementation of Fit tables and automated verification for
Eiffel.

The notion of a contract is central to the toolset with contract violations re-
ported in all three tools. Testing and verification are integrated and displayed to-
gether with a green bar to report success in all tests and verification conditions or
ared one otherwise. The following reports (at cs.yorku.ca/techreports/2006)
may be consulted for more surveys and references of detail and literature. (a)
(CS-2006-04. ESpec — a Tool for Agile Development via Early Testable Specifica-
tionss. (b) CS-2006-05. Automated Model-based Verification of Object-Oriented
Code. The website for the tool is cs.yorku.ca/~sel/espec.

ES-Verify: This report focusses on ES-Verify, which has an immutable math-
ematical model library (sets, sequences, bags and maps) for high-level specifi-
cations, refinement to efficient mutable classes in the base library, and a trans-
lator to the Perfect Developer (PD) specification language for automatically
discharging complete verification conditions, including all primitive types, ar-
rays, complete client-supplier relationships, genericity, loops (with loop variants
and invariants) and partial support for the agent notation for quantification and
set comprehension. ES-Verify consists of the following three components:

(a) An Eiffel Model Library (ML) for specifying the abstract state without
exposing implementation details. This library is similar to model-based specifi-
cations as in B and Z, except that it is object-oriented. ML contains classes such
as ML_SEQ, ML_SET, ML_BAG and ML_MAP. These classes are both mathe-
matical (i.e. immutable) and effective (i.e. executable). They are mathematical
so that software properties can be specified abstractly and effective so that when

Jonathan S. Ostroff et al.

A ESpei0)) i Ediiiug u;i‘él‘@
Fle View/Edt Tools Window Help

Messages Test Results I

[status [Violation | Duration | Comment

Test started at 02/21/2006 9:26:06.578 PM
ES-Test

Run all Specs

CUSTOMER_AND_RULE_TESTS
PASSED 0.000 create a single customer
PASSED 0.000 Create a rule associated with a customer ES-Test

PASSED 0.000 test_a_bad_rulez

[

ES-Fit
Input hil path [C:\fit_tests\credit.htm]
Output html path |C:\fit_tests\credit_out.htm|
B 4+ *oFanen 0.687 Calculate Credit 1 [W:2,R:8,1: 0, E: 0]
I s 1GnoreD 0.000 Reference: Global Data 1 [W: 0, R:
M e PASSED 0.531 Calculate Credit2 [W: 0, R: 10, T

ES-Fit

Parsing file: ..\, \business_logicicustomer.e...

Translating class: CUSTOMER...

Writing into fle: customer.pd...

Doing verification.... B

. ES-Verify
Reading the resuls...

Proved 12 Out of 12 Verification conditions
[T —————
Al verification conditions proved!

AR RAIRARARAIIIAIAIRARARAIIIRAA AutoTest

(1R 0

Output proved html path |C:\Documents and Settings\Faraz|Desktopitemp_outputsiall_pro. .
Test finished at 02/21/2006 9:26:14.313 PM

[

)

Tests Result Summary

et 0 il | 0 s el Gt st | sToP | Done

Fig. 1. ESpec toolset — integrated testing and verification

/ BIRTHDAY_BOOK \

add_birthday (n"NAME; d: DATE)
require — model.has_key(n)
ensure count = old count + 1 and model = (old model) » [n, d]

find_birthday (n:NAME): DATE
require model.has_key(n)
ensure Result = model[n] and model = old model

remind (d: DATE): SET[NAME]
ensure {n: NAME | Result.has(n) ® n} = {n € model.domain | model[n] =d e n}
model = old model

MODEL

count: INTEGER

model: MAP[NAME, DATE]
ensure Result =[i: INTEGER | names.lower < i < names.upper e [names[i], dates[i]]]

NONE

names: ARRAY[NAME)]
dates: ARRAY[DATE]

Invariant
count = #model

@es.coum = dates.count and names.is_unique /

Fig. 2. BON Class and Contract Diagram for Birthday Book

ES-Verify: a Tool for Automated Model-based Verification of OO Code 3

the code (specified via ML) is executed, contract violations will be reported (if
any). This mathematical library is thus useful for lightweight verification even
in the absence of a theorem prover.

(b) A base library (ES_.BASE) of data structures (with classes such as
ESV_ARRAY, ESV_LIST, ESV_SET and ESV_TABLE) for the efficient imple-
mentation of software products. These classes have a value semantics, but for
efficiency are mutable. The classes are descendants of the standard Eiffel base
library classes and contracted via ML. The prefix ESV stands for Eiffel Spec
Value (semantics).

(c) A translator that will convert Eiffel code implemented via ES_BASE and
specified via ML into specifications written in the Perfect Language. The trans-
lator benefits from a highly-productive PD theorem prover (eschertech.com)
for converting the specification (written in the Perfect Language) into complete
verification conditions and automatically discharging their proofs.

Our approach is to write the code in Eiffel thus retaining the simple but
expressive use of the language constructs. The Eiffel code is then translated
to Perfect using (a) the refinement constructs of Perfect for the feature imple-
mentations and (b) the Perfect contracting mechanism for Eiffel contracts. The
Eiffel model library (ML) was designed in order to avoid impedance mismatches
between itself and the Perfect data structures.

The birthday book example (from J.M Spivey’s The Z notation), nicely illus-
trates refinement to loops and intensive use of genericity and the mathematical
modelling library ML as shown by the BON diagram in Fig. 2. The BON dia-
gram shows the contract view of the class for each of the features. The model
for the birthday book is the combination of the number of name-and-date pairs
stored (i.e. count) together with an ML_MAP [NAME,DATE], i.e. a set of pairs of
name and date. The features of the birthday book include the ability to add a
new pair (e.g. [Peter, (March 1)]), find a birthday given a name, and a remind
function that for a given date d returns the set of names whose birthday is on
d. The contract view can be refined to complete Eiffel code (not shown, but see
aforementioned reports)

When the Eiffel-to-Perfect translator is applied to the Eiffel code for the
birthday book example, the PD theorem prover generates 158 verification condi-
tions which are all automatically discharged. This includes proof of termination
via the loop variant and invariant.

Comparison to other tools:

The PD theorem prover appears to be at approximately the same level of
proving power as B theorem provers. It is capable of dealing with all the prim-
itive types including reals, quantification and set theory. For example, in one
report 35,799 lines specification for a web-enabled database system was proven
automatically in 4.5 hours (1.6 seconds per proof) on a modest laptop. PD is
used to verify itself with about 130,000 verification conditions.

Tools like ESC/Java and Spec#/Boogie allow the developer to increase the
confidence of already existing Java or C# code following an Annotated Develop-
ment approach by adding specifications as annotations. Spark Ada is a successful

4 Jonathan S. Ostroff et al.

example of Annotated Development, but the specifications are usually only par-
tial (in particular, expressing data refinement is difficult). When applied to an
object-oriented language that uses reference semantics or makes heavy use of
pointers, correctness has to be sacrificed in order to allow more potential bugs
to be spotted, otherwise very little can be verified. Spark Ada instead preserves
correctness by subsetting the Ada language. Some of the same considerations
apply to ESC/Java and Spec# where the goal is to find bugs rather than prove
total correctness. An interesting property of these tools is that they do not warn
about all errors nor do they warn about actual errors only.

The updated version of the Java tool (ESC/Java2) compiles Java 1.4 but not
Java 1.5 (which has the new facility for generic types). Spec# compiles generic
types but does not yet verify them. These newer tools (following JML) include
the ability to declare model fields and abstraction functions for representing
the relationship between the value of the model field and the implementation so
that refinements can be proved. However, these model variables are the standard
mutable Java or C# set, list and map types, which makes it harder to specify
that adding a new person and date tuple to the birthday book (for example)
adds a new tuple without affecting the old tuples already in the database. By
contrast, ML is immutable thus making it simple to specify such properties.

ES-Verify (and PD) follow an Abstract Specification and Refinement ap-
proach as in the Z and B-method. However, B allows ongoing refinement while
ES-Verify allows only a single refinement step. This approach requires a notation
that can adequately express both an abstract specification (which is not neces-
sarily directly implementable, and need not have an associated implementation)
and an implementation. Data refinement is a key feature, i.e. you develop the
specification using an abstract data model (in our case ML), then refine the data
model if necessary for an efficient implementation. The notation and the seman-
tics are designed for correctness and provability (unlike traditional programming
languages), so there is no need to sacrifice correctness.

Tools such as ESC/Java2 provide precise feedback as to where the error is
(e.g. postcondition possibly not established at line Foo in the Java file Bar.java).
Our tool does not yet provide such precise feedback. However, the output pro-
duced is informative (e.g. Refuted postcondition at line Foo in Bar.pd). That
line number easily associates with the Eiffel feature having the same name or
assertion tag, so that it is relatively easy to see where the problem is. We hope
to improve this feedback in future versions.

Acknowledgements: We deeply appreciate the help we have received from
David Crocker of Escher Technologies with the Perfect toolset. Likewise we would
like to acknowledge helpful feedback from Bertrand Meyer and Bernd Schoeller
of ETH Zurich. This work was funded by a Discovery Grant from NSERC.

