
Automated Model-based Verification of Object-Oriented Code

Jonathan Ostroff, Chen-Wei (Jackie) Wang, Eric Kerfoot and Faraz Ahmadi Torshizi ∗

Department of Computer Science and Engineering, York University,
4700 Keele St., Toronto, ON M3J 1P3, Canada.

Abstract

ESpec is a suite of tools that facilitates the testing and verification of object-oriented Eiffel
programs in an integrated environment. The suite includes unit testing tools (ES-Test) and Fit
tables (ES-Fit for customer requirements) that report contract failures. This paper describes
ES-Verify (part of ESpec) for automatically verifying a significant subset of Eiffel constructs
written with a value semantics. The tool includes a mathematical model library (sequences,
sets, bags and maps) for writing high-level specifications, and a translator that converts the
Eiffel code into the language used by the Perfect Developer (PD) theorem prover. Preliminary
experience indicates that the vast majority of verification conditions are quickly and automati-
cally discharged, including loop variants and invariants. ES-Verify is the first automated Eiffel
verification tool and allows the developer to use the clean syntax and object-oriented structures
of Eiffel, together with its mature industrial-strength design by contract (DbC) mechanism.

1 Introduction

A software product is reliable if it is correct (performs its tasks according to specification) and
robust (reacts appropriately to abnormal conditions). How should specifications be provided and
how do we check that software behaves according to its specification? Design by Contract (DbC)
is a promising method for answering these questions. A class can be specified via expressive pre-
conditions, post-conditions and class invariants [19].

A variety of object-oriented languages have followed this contracting approach to software qual-
ity such as Eiffel [19], Spec# [4, 3], JML [17] tools like ESC/Java2 [10, 7], and UML/OCL [5].
A “lightweight” formal approach to checking the correctness of code works by runtime assertion
checking, i.e. the contracts are checked as the code is executed and an exception is raised if there
is a contract violation. However, we would also like to reason formally about the correctness of
programs and to mechanize such process. Automated verification of object-oriented code has been
pursued in systems such as Spec# and JML tools like ESC/Java2.

ESpec (Eiffel Specification) toolset is a unified environment allowing software developers to
combine Fit tables (ES-Fit for customer requirements and acceptance tests) with contracts and
unit testing tools (ES-Test). This means that a single integrated tool can be used to specify,
develop, test, and verify the requirements and design of a software product. Formal verification
is a substantial addition to the capabilities of the ESpec toolset, allowing for a combination of
lightweight validation and automated deductive verification.

In this paper we describe the automated model-based verification for a significant subset of Eiffel.
The following three components, which together we call the ES-Verify, are under development as
part of the ESpec suite:

∗Email: {jonathan, faraz}@cs.yorku.ca. Eric.Kerfoot@comlab.ox.ac.uk. Supported by a grant from NSERC.

1

• An Eiffel Model Library (ML) for specifying the abstract state of a program without exposing
its implementation details. This library is similar to the model-based specifications as in
B [1] and Z [20], except that it is object-oriented. ML contains classes such as ML SEQ,
ML SET, ML BAG, and ML MAP. These classes are both immutable and executable. They
are immutable so that software properties specified in the pre- and post- conditions as well
as the class invariants can be based on them. They are executable so that contract violations
will be reported (if any). This mathematical library is thus useful for lightweight verification
even in the absence of a theorem prover.

• An Eiffel base library (ES BASE) of data structures (classes such as ESV ARRAY, ESV LIST,
ESV SET, and ESV TABLE) for the efficient implementation of software products. The prefix
“ESV” stands for an “ESpec Value” structure, which is part of the ESpec base library (built on
top of the Eiffel base library via inheritance) for implementing code. These ESV classes apply
a value semantics [12], but for efficiency they are mutable. While class features are contracted
via ML (which are executable but inefficient due to their mathematical immutability), their
bodies are implemented via the ES BASE classes (which are mutable and hence efficient, but
not as suitable for specifications as ML ones).

• A translator that will convert Eiffel code implemented via ES BASE and specified via ML into
an equivalence written in a specification language Perfect [14]. The advantage of this translator
is that there is, associated with the Perfect language, a fully-automated reasoning tool - Perfect
Developer (PD) - that fits well for our source Eiffel code. PD supports object-oriented,
model-driven, and DbC software development as well as its verification [11]. PD converts
its specification (written in the Perfect Language) into complete verification conditions and
attempts to automatically discharge their proofs.

As stated, ES-Verify uses the PD tools (the Perfect language and its associated theorem prover).
Although we are impressed by the expressiveness and power of the PD tools, we have not used them
in the intended fashion. The intended use of PD tools is that developers write their specifications
in the Perfect Language, which is then used to automatically generate executable code (e.g. Java
or C++). In this respect, Perfect is akin to model-driven development (MDD) methods. Perfect
also has a notion of refinement that can be used to improve the efficiency of the generated code.

We have examined the Java code and found that the generated code - much longer and more
complex than the original contract-based specification - is not intended to be read. The MDD
approach is useful if there is never a need to deal with the generated code. However, Perfect spec-
ifications are neither directly executable nor is there a debugger at the model level. As a result,
our preference is to write code in Eiffel. Eiffel has a mature industrial-strength contracting mecha-
nism with a full set of tools such as debuggers, profilers, documentation, and browsing capabilities.
The language is admired for its clear syntax and expressive use of a full range of object-oriented
constructs such as multiple inheritance.

Our approach is to write the code in Eiffel and thus retaining the simple but expressive use of its
language constructs. The Eiffel code is then translated into Perfect using (a) the Perfect refinement
constructs for Eiffel feature implementations and (b) the Perfect contracting mechanism for Eiffel
contracts. The Eiffel model library (ML) was designed in order to avoid mismatches between itself
and the Perfect data structures. Theorem proving program involving genericity and loops (with
their invariants) is a non-trivial task, and this work shows that model libraries (such as ML) must
be designed with the target theorem prover in mind. In the sequel we will use the abbreviation PD
for the combination the Perfect specification language and its associated theorem prover.

2

ML_MODEL[G]*

ML_COLLECTION[G]*

ML_SEQ[G]

ML_SET[G]

ML_MAP[G, H]

ML_HASH_MAP[G, H->HASHABLE]

ES_MATH

count, infix “#”: INTEGER

is_empty: BOOLEAN

infix “|=|”: BOOLEAN -- equality of items determined by `object_comparsion`

hold_count* (condition: FUNCTION[ANY, TUPLE[G], BOOLEAN]): INTEGER

object_comparison: BOOLEAN

appended_by, infix “|>”: ML_SEQ[G]

{^ML_COLLECTION.extended_by}

from_hash_table (t: HASH_TABLE[H, G]): like Current

from_array (a: ESV_ARRAY[G]): like Current

to_set: ML_SET[G]

for_all (condition: FUNCTION[ANY, TUPLE[G], BOOLEAN]): BOOLEAN

there_exists (condition: FUNCTION[ANY, TUPLE[G], BOOLEAN]): BOOLEAN

compare_objects*, compare_references*

from_list (l: ESV_LIST[G]): like Current

from_set (s: ESV_SET[G]): like Current

to_bag: ML_BAG[G]

from_two_arrays

(k: ESV_ARRAY[G]; v: ESV_ARRAY[H]): ML_MAP[G, H]

comprehension (c: FUNCTION[ANY, TUPLE[G], BOOLEAN]): like Current

to_set: ML_SET[ML_PAIR[G, H]]

to_seq: ML_SEQ[ML_PAIR[G, H]]

to_bag: ML_BAG[ML_PAIR[G, H]]

extended_by* (x: G): like Current

to_seq: ML_SEQ[G]

domain: ML_SET[INTEGER]

extended_by, infix “^” (x: G): ML_SET[G]

prepended_by, infix “|<”: ML_SEQ[G]

is_value_equal*, infix “|==|”: BOOLEAN -- deep value equality

union, infix “+” (other: ML_SET[G]): ML_SET[G]

intersection, infix “*” (other: ML_SET[G]): ML_SET[G]

difference, infix “-” (other: ML_SET[G]): ML_SET[G]

is_disjoint_from, infix “|##|” (other: ML_SET[G]): BOOLEAN

from_an_item (x: G): ML_SET[G]

override (x, y: G): ML_SET[G]

remove (x: G): ML_SET[G]

is_subset_of, infix “|<<=|” (other: ML_SET[G]): BOOLEAN

from_table (t: ESV_TABLE[G, H]): ML_MAP[G, H]

head, last: G -- head = Current[0], tail = Current[count-1]

front, tail: ML_SEQ[G] -- tail is everything except `head`

is_subseq_of, infix “|<<=|” (other: ML_SEQ[G]): BOOLEAN

override (i: INTEGER; x: G): ML_SEQ[G]

from_two_lists

(k: ESV_LIST[G]; v: ESV_LIST[H]): ML_MAP[G, H]

domain: ML_SET[G]

range_bag: ML_BAG[H]

item alias "[]" (k: G): H

ML_BAG[G]

item alias "[]" (i: INTEGER): G

has (x: G): BOOLEAN

has_key (k: G): BOOLEAN

extended_by (k: G; v: H): ML_MAP[G, H]

extended_by_pair, infix “^” (p: ML_PAIR[G,H]): ML_MAP[G, H]

remove (k: G): ML_MAP[G, H]remove (i: INTEGER): ML_SEQ[G]

union, infix “+” (other: ML_MAP[G, H]): ML_MAP[G, H]

intersection, infix “*” (other: ML_MAP[G, H]): ML_MAP[G, H]

difference, infix “-” (other: ML_MAP[G, H]): ML_MAP[G, H]

is_disjoint_from, infix “|##|” (other: ML_MAP[G, H]): BOOLEAN

override (x: G; y: H): ML_MAP[G, H]

Figure 1: Core Classes in the Mathematical Library (ML) for Model-based Specification
3

STACK[G]

count: INTEGER

item: G

require count > 0

ensure Result = model.last

model: ML_SEQ[G]

ensure Result = < i: INTEGER | 0 i imp.count imp[i] >

put(x: G)

ensure model = old model x

Invariant

NONE

imp: ARRAY[G]

count = #model

0 count imp.count

remove

require count > 0

ensure old model = (model old item)

MODEL

class STACK[G] feature

 put (x: G) is

do

imp.force (x, imp.count)

ensure

model |=| old model |> x

end

…

end

(a) BON Diagram of STACK

(c) Stack LIFO property

(b) put feature of STACK

class STACK_PROPERTIES[G] feature

 lifo (s: STACK[G] ; x: G) is

require

 s /= void

do

 s.put (x)

 s.remove

ensure

 s.model |=| old s.model

end

…

end

Figure 2: STACK[G] modelled by ML SEQ[G]

2 Models via ML

As explained in [20] with reference to Z, formal specifications use mathematical notation to describe,
in a precise way, the properties which a software product must have, without unduly constraining the
way in which these properties are achieved. We may call the mathematical description an abstract
model of the system under development. The model describes what the system must do without
saying how it is to be done. Models allow questions about what the system does to be answered
confidently, without the need to either disentangle the information from a mass of detailed program
code, or speculate about the meaning of phrases in an imprecisely-worded prose description.

In Z, the mathematical models are based on predicate logic and the set theory, and thus obey a
rich collection of mathematical laws which makes it possible to effectively reason about the way a
specified system will behave. But these models are not oriented towards computer representation.

The model library (ML) described in this paper encodes predicate logic acting on sets, sequences,
bags, and maps (as in Z), but the mathematical theories are structured as classes (instantiated to
immutable objects needed for mathematical specification) whose features (e.g. ∀, ∃,∈, set compre-
hension, etc.) are pure functions executable in the object-oriented style. The Eiffel agent mechanism
for iteratively applying a supplied expression to a collection is much used.

The classes of ML are shown in Fig. 1. Contracts may be specified using ML and these con-
tracts are executable. When runtime assertion checking is turned on, contract violations (if any)
are signalled via exceptions, thus indicating an inconsistency between the implementation and its
specification. The complete specification of a system and its implementation can be provided in the
same compilable and executable Eiffel text (e.g. see class STACK[G] in Fig. 4). The immutable ML
classes will be inefficient (due to its re-construction of a new ML object every time a feature such
as appended by is invoked), by comparison to the mutable classes in the Eiffel or ES base library
(such as ARRAY and LIST). But this is acceptable as contract checking may be turned off in the final
delivered code which will only use the efficient base library for implementation.

As a simple example, consider the BON [22] contract view of a generic stack as shown in Fig. 2a.

4

The model of the stack consists of a ML SEQ[G] (i.e. a sequence of items of type G, where G is a
generic parameter) and count (the number of items in the stack). The contracts of all the other
features of the stack can be described in terms of the sequence and count . In the absence of a
sequence to model the stack (i.e. with just the model attribute count), the best post-condition for
the stack push operation put is

count = old count + 1 ∧ item = x (1)

However, such abstract specification violates Einstein’s maxim to “make everything as simple
as possible, but not simpler” because it is incomplete. For example, an implementor can satisfy the
above specification yet change old values of the stack that are not at the top. Therefore, we need
a frame condition that says the old part of the stack remains unchanged. By adding a sequence to
the model we can now express the complete contract as

model = oldmodel I x (2)

where I is the appended by (pure) function of a mathematical sequence that returns a new sequence
same as the old one, but with the argument item appended to the end. Since (2) ⇒ (1), there is
then no need to write (1) as it is entailed by the model post-condition. With the full model we can
then provide the complete contracts for the pop operation remove and the query item that returns
the top of the stack. The Eiffel notation follows the BON notation quite closely as shown in Fig. 2b.
For I, we may use either the appended by function or alternatively the infix operator |> as shown
in class ML SEQ in Fig. 1.

Model classes such as ML SEQ hold items that may be stored either by reference or by value.
Eiffel has the expanded construct for constructing a value semantics. We thus introduce the notion
of model equality (infix operator |=|) which depends on what type of comparison is requested (see
ML MODEL in Fig. 1). The default is that two model sequences (say s1 and s2) are compared for
their stored items via reference equality (i.e. s1 |=| s2 iff the two sequences have the same size
and the items stored at each index both refer to the same object). A specifier may invoke feature
compare objects (see ML MODEL), in which case the items stored at each index will be compared
based on how the inherited feature is equal (of the actual generic type G) is defined 1.

With our contracts complete, and even in the absence of implementation details, we may already
begin to validate our specification based only on the model. For example, the last-in-first-out (LIFO)
property of the stack can be specified as shown in Fig. 2c. In the absence of implementation, we
cannot execute or unit test the LIFO property. However, with the translator and theorem prover,
the LIFO property will prove with a warning that the body of put and remove must be refined with
an implementation.

We must now refine the specification to an efficient implementation. We choose mutable struc-
tures such as an array or linked list. We may use ARRAY from the Eiffel base library, or from the
ES base library if a value semantics rather than a reference semantics is desired (i.e. by declaring
imp:ESV ARRAY[G]).

Next we need to define the abstraction relation between the abstract space in which the abstract
program is written (i.e. model) and the space of the concrete representation (i.e. imp). This can
be accomplished by giving an abstraction function which maps the concrete variables into the
abstract objects which they represent. We may do this as follows. The body of the query model (a
ML SEQ[G]) for the stack in Fig. 2 could be a loop that iterates through the implementation array
and returns an equivalent sequence with the same elements as the array. That is, we “lift” the
mutable array into a mathematical immutable sequence. The abstraction function [16] is captured
by the post-condition of query model as follows:

1is equal in Eiffel is similar to equals in Java

5

Result = 〈i : INTEGER | 0 ≤ i < imp.count • imp[i]〉 (3)

where the angle brackets 〈 〉 stand for sequence comprehension in the same way that { } stands for
set comprehension. For example, {i : INT | 0 ≤ i ≤ 2 • i + 1} = {1, 2, 3}. Set, bag, sequence or
map comprehension presents expressive notation for abstraction functions and is supported in ML.
The Eiffel ML library uses the agent construct for writing comprehension (see Fig. 1). However,
for the post-condition of model we may use one of the pre-defined ML functions from array that
“lifts” an efficient mutable array to a mathematical sequence. Function from array returns a new
sequence whose items refer to the same items as in the array imp between 0 · · · count − 1. So the
post-condition (3) writen in ML becomes:

Result |=| Result.from array(imp.subarray(0,count-1))

which asserts that the resulting sequence returned by the model is model-equal to the implementa-
tion array treated as a sequence. The contracts of all other features remain the same as they are
all described in terms of model.

2.1 The Birthday Book example – ML specifications and loop invariants

The author of [21] reports that a web-enabled database system, consisting of 35,799 lines of Perfect,
generated 9810 proof obligations and proved automatically in 4.5 hours (1.6 seconds per proof)
on a modest laptop. We believe that the above performance is sustainable for reasonable chunks
of code but there is minimal refinement and PD does the code generation. However, in our case
there is refinement from high level models to more complex constructs (e.g. loops their variants
and invariants), and thus the demands on PD are much greater. Nevertheless, by means of careful
matching between ML and PD data structures as well as tuning of the translator, we can achieve
proofs of the vast majority (if not all) verification conditions.

The birthday book example [20] nicely illustrates refinement to loops and more intensive use of
ML as shown by the BON diagram in Fig. 3a.

The model for the birthday book is a combination of the number of name-and-date pairs stored
(i.e. count) and a ML MAP[NAME, DATE] (i.e. a set of name-and-date pairs). Alternatively, this map
is a function whose domain is a set of names and whose range is a bag of dates. The features of the
birthday book include the ability to add a new pair (e.g. [Peter , (March 1)]), find a birthday given
a name, and a remind function that for a given date d returns the set of names whose birthday is
on d .

The remind function returns a set of names (SET[NAME]) where SET is an efficient mutable
structure from either the Eiffel or ES base library. The birthday book is implemented as two
arrays: one for names and the other for dates. The post-condition of the remind query is

{n : NAME | Result .has(n) • n} = {n ∈ model .domain | model [n] = d • n} (4)

where the RHS expression means the set of all names, from the domain of the model map, whose
birthday is on the provided date d . And this must be equal to the LHS expression which represents
the set of all names returned by the remind function. The Eiffel notation for the remind function
is shown in Fig. 3b. The Eiffel post-condition of the remind query in (4) now becomes:

model_set.from_set(Result) |=| model.comprehension(agent date_matches (?, ?, d)).domain

The agent function used in the post-condition (and loop invariant) of the remind query is:

6

BIRTHDAY_BOOK

count: INTEGER

add_birthday (n:NAME; d: DATE)

require model.has_key(n)

ensure count = old count + 1 and model = (old model) ^ [n, d]

find_birthday (n:NAME): DATE

require model.has_key(n)

ensure Result = model[n] and model = old model

remind (d: DATE): SET[NAME]

 ensure {n: NAME | Result.has(n) n} = {n model.domain | model[n] = d n}

 model = old model

model: MAP[NAME, DATE]

ensure Result = [i: INTEGER | names.lower i names.upper [names[i], dates[i]]]

names: ARRAY[NAME]

dates: ARRAY[DATE]

Invariant

count = #model

names.count = dates.count and names.is_unique

NONE

MODEL

(a) BON Diagram of BIRTHDAY_BOOK

(b) remind feature of BIRTHDAY_BOOK

class BRITHDAY_BOOK feature

remind (n: NAME ; d: DATE): SET[NAME] is

 local

 i : INTEGER

do

create Result.make

from

 i := dates.lower

invariant

 pd_modify ("i, Result")

 i >= 0 and then i <= names.count

 i < names.count implies names.valid_index (i)

 inv: -- see text

variant

 dates.count - i

until

 i = dates.count

loop

if dates.item (i).is_equal (today) then

 Result.extend (names[i])

end

 i := i + 1

end

ensure

 model_set.from_set (Result) |=|

 model.comprehension (agent date_matches (?, ?, d)).domain

end

 …

end

Figure 3: Birthday Book

date_matches (x: NAME; y, date: DATE): BOOLEAN is

do

if y.is_equal (date) then

Result := true

end

end

By defining a slice of the model map, according to the current loop counter i as well as arrays
names and dates, as follows:

mSlice(i ,names, dates) =̂ 〈〈j : INTEGER | 0 ≤ j < i • [names[j], dates[j]]〉〉 (5)

we can show that the loop invariant for the remind query has been constructed to approximate and
hence similar to its post-condition:

{n : NAME | Result .has(n) • n} = {n ∈ mSlice(i ,names, dates).domain | model [n] = d • n} (6)

And the equivalent Eiffel loop invariant (inv in Fig. 3b) is:

model_set.from_set (Result) |=|

model.from_two_arrays(names.subarray (0, i-1),dates.subarray(0, i-1)).

comprehension(agent date_matches (?, ?, today)).domain

3 The Eiffel to PD Translator

Underlying Theorem Prover

Our goal is to automatically verify Eiffel code specified via ML as in the stack and birthday book
examples. The question would be, which theorem prover do we use? The Perfect Developer (PD)

7

specification language and theorem prover [12] is a technically mature product that is aligned with
the object-orientation and design by contract paradigms. PD theorem prover has about the same
level of power and automation as Simplify [13] that is used for static verification in Spec# and
ESC/Java2. Simplify handles integers and booleans at the primitive level while PD has a greater
repertoire (e.g. reals, characters, and strings). PD specification language also has a library of generic
sequences, sets, bags, and maps well-suited to ML [14]. A limitation of PD is that it discourages
reference semantics [12]. It is well-known that the presence of multiple references to a common
object causes aliasing and makes sound and complete static verification problematic. Therefore,
PD, unlike say Java and Eiffel, adopts a value semantics by default and discourages the use of
reference semantics 2. Despite these limitations, we have adopted PD for automated deduction in
our ES-Verify tool, and we are in the process of constructing a library of base Eiffel classes with a
value semantics (see Introduction) using the Eiffel expanded construct. As a future goal we have
to expand our tool to handle verification of reference aliasing and inheritance.

The theoretical foundations of PD are Floyd-Hoare logic and Dijkstra’s weakest pre-condition
calculus and it has the power of first-order predicate calculus, as well as a few higher-order con-
structs [11]. The prover generates verification conditions and aims for verifying the total correctness
(termination and refinement satisfying specification) of the input code. It delivers either a proof,
upon success in discharging all verification conditions, or otherwise a list of warnings, possibly ac-
companied by useful fix suggestions. Output from the prover can be in formats such as HTML or
Tex. From an academic point of view, there is a lack of information about the inner workings of
the PD theorem prover (as opposed to an interactive theorem-proving system such as Isabelle [5]).
Ideally, the logical rules used in correctness proofs should be open for inspection so that independent
trust can be established. However, the PD theorem prover does provide the complete proof, and
thus the product is robust and suitable for engineering use [15].

Outline of Class Translation

Fig. 4 shows how the Eiffel generic stack example is translated into its equivalent PD specifications.
The translator assumes that all Eiffel classes to be translated have already been compiled and type-
checked. On the Eiffel side (left of Fig. 4), there are three different feature declarations: the public
feature declaration3, the model feature declaration4, and the implementation feature declaration5.
And on the PD side, there are three corresponding sections: abstract, internal and interface.

We first consider the Eiffel public feature declaration. Each Eiffel public attribute (e.g. count)
becomes a variable (i.e. var declaration) in the PD abstract section. In order to allow client classes
to access this variable, it must also be redeclared as a function in the PD interface section (hence
the first line in the PD interface section reads function count). Each Eiffel public command (e.g.
put) and public query (e.g. item) become a schema and a function in the PD interface section,
respectively.

We then consider the Eiffel model feature declaration. In stack we only have the query model,
but in general we may have attributes and queries (but no commands) in this declaration. Each
Eiffel model attribute becomes a variable in the PD abstract section. Each Eiffel model query
(which is essentially the abstraction function), not only becomes a variable in the PD abstract
section, but also becomes two functions in the PD internal section. The first PD function uses
the same name as the Eiffel model query and its definition (expression following symbols ˆ =,

2In PD, if a reference semantics is adopted, then, roughly speaking, a heap declaration, e.g. heap MyHeap, would
be required. Although we have several simple PD examples on basic aliasing effect, we have not yet experienced much
the power of the prover on handling reference semantics. Escher Technologies Ltd. is in the process of developing a
new beta intending to properly handle the issue.

3The part under the label feature{ANY}.
4The part under the label feature{ML MODEL, ANY}.
5The part under the label feature{ML MODEL}.

8

i.e. is-defined-as) corresponds to the translated post-condition6 of the that query. The second
PD function is a twin function with a verification name suffix. This twin function has the
same definition but with a refinement (via...end segment) underneath which is the translated
body of the Eiffel model query. This twin function is needed because future versions of PD will
disallow refinement/implementations of abstraction functions. Since we desire to verify that the
model implementation satisfies its post-condition, we need this twin function. In stack the Eiffel
query model becomes (a) a variable model in the PD abstract section, and (b) a function model
and its twin refined function model verification in the PD internal section.

Now we consider the Eiffel implementation feature declaration. All features under this dec-
laration appear in the PD internal section in the obvious way, i.e. Eiffel attributes become PD
variables, Eiffel queries become PD functions, and Eiffel commands become PD schemas. More-
over, since Eiffel agent expressions in loop invariants are private, they should be declared in this
feature declaration; however, agent expressions in pre-/post-conditions may be declared in either
the public or model feature declaration part for access from clients. One such example is the agent
function date matches occurring in the loop invariant and post-condition of the remind feature in
birthday book.

Finally we consider the Eiffel class invariants. Those clauses that only refer to public or model
attributes become equivalent invariants in the PD abstract section; otherwise, they become equiv-
alent invariants in the PD internal section.

Outline of Routine Translation:
As stated, Eiffel commands and queries become PD schemas and functions, respectively. For

an Eiffel command that may modify the current object, frame constraints are needed. In order to
specify frame constraints, PD supports a change clause7. For translation into PD, we use in Eiffel
specification a pd modify8 declaration with its string argument passed as a list of attributes that the
PD schema may change. For an Eiffel command or query, its require clause (for pre- condition) and
ensure clause (for post-condition) appear as equivalent PD pre and satisfy clauses, respectively.
For Eiffel command, its ensure clause (with its pd modify declaration) appears as the equivalent
PD change and satisfy clauses under a post declaration. For Eiffel query, it is translated in the
same way as it for a command except there is no pd modify declaration in its post-condition, and
thus there exists no change list and post declaration for its translation in PD. Moreover, the Eiffel
old notation for the value of expressions in a pre-state is converted into the equivalent PD primed
notation. Finally, the body of an Eiffel command or query appears as an equivalent PD via ... end
refinement segment.

4 Comparison with other tools

We compare ES-Verify with the other two similar software verification tools: ESC/Java2 and Spec#.
Tools like ESC/Java2 and Spec# allow the developer to increase the confidence of already

existing Java and C# code following an Annotated Development approach by adding specifications
as annotations [12]. Spark Ada [2] is a successful example of Annotated Development, but the
specifications are usually only partial (in particular, expressing data refinement is difficult)[12].
When applied to an object-oriented language that uses reference semantics or makes heavy use
of pointers, correctness has to be sacrificed in order to allow more potential bugs to be spotted,
otherwise very little can be verified. Spark Ada instead preserves correctness by subsetting the Ada
language. This is the strategy that ES-Verify has assumed where references and inheritance are for
now not used.

6More precisely, RHS of the first post-condition clause which has a matching type with it of that query.
7The new ECMA specification for Eiffel has a somewhat equivalent only clause.
8A boolean function that takes as argument a string and always returns true, and thus can always pass the run-time

contract checking. Expression pd modify("*") is an abbreviation meaning all attributes may change.

9

c
la

s
s

M

Y
_

S
T

A
C

K
[G

]
c
re

a
te

m
a

k
e

fe
a

tu
re

 {
A

N
Y

}
--

p
u
b

lic
 f

e
a
tu

re
 d

e
c
la

ra
ti
o
n

m
a

k
e

is
--

c
o

n
s
tr

u
c
to

r

d
o

 c
re

a
te

 i
m

p
 ;

 c
o
u

n
t

:=
 0

e
n

s
u

re

p
d

_
m

o
d

if
y

("
*"

)

#
m

o
d

e
l
=

 0
 a

n
d

c
o

u
n

t
=

 0

e
n

d

c
o

u
n

t:
 I
N

T
E

G
E

R

it
e

m
:
G

 i
s

re
q

u
ir

e
 c

o
u
n
t

>
 0

d
o

 R
e
s
u

lt
 :

=
 i
m

p
 [

c
o
u
n

t
-

1
]

e
n

s
u

re
 R

e
s
u

lt
 =

 m
o
d
e

l.
la

s
t

e
n

d

p
u
t(

x
:
G

)
is

d
o

if
im

p
.i
s
_
e

m
p

ty
 t

h
e

n
im

p
.f

o
rc

e
 (

x
,
0

)

e
ls

e if
c
o

u
n

t
=

 i
m

p
.c

o
u

n
t
th

e
n

im
p

.g
ro

w
 (

im
p

.c
o

u
n

t
*

2
)

e
n

d

im
p
.p

u
t

(x
,
c
o

u
n
t)

e
n

d

c
o

u
n

t
:=

 c
o

u
n

t
+

 1

e
n

s
u

re

p
d

_
m

o
d

if
y

("
*"

)

c
o

u
n

t
=

 o
ld

 c
o

u
n
t

+
 1

 a
n

d
 t

h
e
n

m

o
d
e
l
|=

|
(o

ld
 m

o
d

e
l
|>

 x
)

e
n

d

fe
a

tu
re

 {
M

L
_
M

O
D

E
L

}
--

im
p

le
m

e
n
ta

ti
o

n
 f

e
a

tu
re

 d
e
c
la

ra
ti
o
n

im
p
:
E

S
V

_
A

R
R

A
Y

[G
]

fe
a

tu
re

 {
M

L
_
M

O
D

E
L

,
A

N
Y

}
--

m
o
d

e
l
fe

a
tu

re
 d

e
c
la

ra
ti
o
n

m
o

d
e

l:
 M

L
_

S
E

Q
[G

]
is

d
o

 c
re

a
te

 R
e
s
u
lt
.m

a
k
e

;
R

e
s
u
lt
 :

=
 R

e
s
u

lt
.f
ro

m
_

a
rr

a
y
(i
m

p
.s

u
b

a
rr

a
y
 (

0
,
c
o

u
n

t
-1

))

e
n

s
u

re

R
e
s
u

lt
 |

=
|

R
e
s
u
lt
.f
ro

m
_

a
rr

a
y
 (

im
p
.s

u
b

a
rr

a
y
 (

0
,

c
o

u
n

t
-1

)
)

e
n

d

in
v
a

ri
a
n

t

c
o

u
n

t
>

=
 0

 a
n

d
 t

h
e
n

 c
o
u
n

t
<

=
 i
m

p
.c

o
u
n

t
 a

n
d

 t
h

e
n

 c
o

u
n

t
<

=
 #

 m
o
d

e
l

e
n

d

im
p

o
rt

"E
S

V
_
A

R
R

A
Y

.p
d
",

"M

L
_

C
O

L
L
E

C
T

IO
N

.p
d

";

c
la

s
s

 M
Y

_
S

T
A

C
K

 o
f
(

G
)

 ^
=

a
b

s
tr

a
c

t

v
a

r
m

o
d
e
l:

M

L
_

S
E

Q
 o

f
(

G
)

,

c
o

u
n

t:
 i
n

t;

in
v

a
ri

a
n

t
c
o
u

n
t
<

=
 #

m
o
d
e

l;

in
te

rn
a

l
//
re

fi
n
e
m

e
n
t

v
a

r
im

p
:

E
S

V
_

A
R

R
A

Y
 o

f
(

G
)

;

in
v

a
ri

a
n

t
c
o
u

n
t
>

=
 0

 &
 c

o
u

n
t

<
=

 #
im

p
;

fu
n

c
ti

o
n

m
o

d
e

l

^=
 (

fo
r

i
::
 0

 .
.

<
#

im
p

.s
lic

e
(0

,
(c

o
u

n
t-

1
)-

0
+

1
)

y
ie

ld
 i
m

p
.s

lic
e

(0
,

(c
o
u

n
t-

1
)-

0
+

1
)[

i]
);

fu
n

c
ti

o
n

m
o
d
e
l_

v
e
ri
fi
c
a
ti
o
n

:
M

L
_

S
E

Q
 o

f
(

G
)

^=
 (

fo
r

i
::
 0

 .
.

<
#

im
p

.s
lic

e
(0

,
(c

o
u

n
t-

1
)-

0
+

1
)

y
ie

ld
 i
m

p
.s

lic
e
(0

,
(c

o
u

n
t-

1
)-

0
+

1
)[

i]
)

v
ia v

a
r

R
e

s
u

lt
:

 M
L

_
S

E
Q

 o
f
(

G
)

;
R

e
s
u

lt
!

=

M

L
_

S
E

Q
 o

f
(

G
)

{}
 ;

R
e

s
u
lt
!

=

(f
o

r
i
::
 0

 .
.

<
#

im
p
.s

lic
e
(0

,
(c

o
u
n

t-
1
)-

0
+

1
)

y
ie

ld
 i
m

p
.s

lic
e

(0
,

(c
o

u
n

t-
1

)-
0

+
1

)[
i]
);

v
a
lu

e
 R

e
s
u

lt
;

e
n

d
;

in
te

rf
a

c
e

//
p

u
b
lic

 m
e
th

o
d
s

fu
n

c
ti

o
n

c
o

u
n

t;

b
u

il
d

 {
}

 /
/c

o
n
s
tr

u
c
to

r
e

q
u
iv

a
le

n
t

to
 E

if
fe

l
`m

a
k
e
’

p
o

s
t

c
h

a
n

g
e
 m

o
d

e
l,
 c

o
u

n
t
s

a
ti

s
fy

 #
m

o
d

e
l'

=
 0

 &
 s

e
lf

'.
c
o
u
n

t
=

 0

v
ia

im
p
!

=

E
S

V
_
A

R
R

A
Y

 o
f
(

G
)

{}
 ;
 c

o
u
n
t!
 =

 0
 e

n
d

;

s
c

h
e

m
a

!
p
u

t(
x
 :

 G
)

p
o

s
t

c
h

a
n

g
e

m
o
d

e
l,
 c

o
u

n
t

s
a
ti

s
fy

s
e

lf
'.
c
o
u
n

t
=

 c
o
u
n

t
+

 1
,
m

o
d
e
l'

=
 m

o
d
e
l.
a

p
p

e
n

d
(

x
)

v
ia if

[i
m

p
.e

m
p

ty
]:

 i
m

p
!

=
 f
o
rc

e
 @

 E
S

V
_

A
R

R
A

Y
_

H
E

L
P

E
R

 o
f

 G
 (

im
p

,
x
,

0
)

;

[]
: if

[c
o

u
n

t
=

 #
im

p
]:

im
p
!

=
 g

ro
w

 @
 E

S
V

_
A

R
R

A
Y

_
H

E
L
P

E
R

 o
f
 G

 (
im

p
,
#

im
p

*2
);

[]
:
p

a
s
s

fi
;

im
p
!

=
 p

u
t

@
 E

S
V

_
A

R
R

A
Y

_
H

E
L
P

E
R

 o
f

 G
 (

im
p
,

x
,
c
o
u
n
t)

fi
;

c
o

u
n

t!
 =

 c
o

u
n

t
+

 1

e
n

d
;

fu
n

c
ti

o
n

it
e
m

:
G

p
re

 c
o

u
n

t
>

 0
 s

a
ti

s
fy

 r
e

s
u

lt
=

 m
o
d

e
l.
la

s
t

v
ia

 v
a

r
R

e
s
u

lt
:
 G

 ;
 R

e
s
u

lt
!
=

 i
m

p
[c

o
u
n

t
-

1
]

;
v
a

lu
e
 R

e
s
u
lt

e
n

d
;

e
n

d
;

Figure 4: STACK example: The Translation Layout from Eiffel into Perfect Language
10

ES-Verify takes advantage of the built-in Eiffel DbC constructs, enabling it to both immedi-
ately use the run-time debugging as well as the ES-Test tool and formalize these specifications by
translating them into PD code. JML tools like ESC/Java2 and jmlc [8] exist separately to support
static verification and runtime assertion checking. The current release of ESC/Java2 claims it now
runs in the JML runtime assertion checker. The Spec# system supports both static verification
and runtime assertion checking in Microsoft Visual Studio. That is, the code accompanied with
its specifications in ESC/Java2, Spec#, and ES-Verify are immediately executable. However, the
goal of ESC/Java2, Spec#, and ES-Verify is to find bugs rather than prove total correctness. An
interesting property of these tools is that they neither warn about all errors nor do they warn only
about actual errors [6] and may raise false alarms due to the nature of logical proof.

The PD theorem prover has approximately the same level of proving power as the B theorem
prover. It is capable of dealing with all the primitive types including reals, quantification, and set
theory. Also, PD is used to verify itself with about 130,000 verification conditions. In proving data-
intensive applications like the Birthday Book example (with loop invariants and model contracts
in both pre- and post- conditions), PD has been able to discharge all the verification conditions.
When we attempted to code the Birthday Book example in Spec#, with the same set of model
specifications, it did not even translate the code into the intermediate one and start verifying. A
number of specifications had to be removed in order to make it verify. Unlike ESC/Java2 and Spec#,
ES-Verify can reason about generic classes. The updated version of ESC/Java2 is compatible with
Java version 1.4, but not 1.5 which includes generic types. Spec# compiles generic types but did
not yet verify them at the time we attempted to code the Stack example in it.

ES-Verify follows an Abstract Specification and Refinement approach as in the B-method. This
approach requires a notation that can adequately express both an abstract specification and an
implementation. Data refinement is a key feature, i.e. you develop the specification using an
abstract data model (in our case ML), then refine the data model if necessary with an efficient
implementation. The notation and the semantics are designed for correctness and provability unlike
traditional programming languages, so there is no need to sacrifice correctness. Our declared model,
if not deferred, is defined in terms of other fields, and thus is used as a model field not accessible
to clients. ESC/Java2 and Spec# (following JML) include the ability to declare specification-only
model fields [9] and abstraction functions for representing the relationship between the value of the
model field and the implementation so that refinements can be proved. The authors in [18] claim
the existing techniques for JML model variables suffer from soundness, modularity, expressiveness,
or practical problems. They present a simpler but more expressive methodology for model fields,
but it has not yet been implemented.

ESC/Java2 and Spec# provide precise feedback as to where errors occur. Our tool does not yet
provide such precise feedback. However, the output html file produced by the PD theorem prover
is informative. That line number easily associates with the Eiffel feature having the same name
or assertion tag, so that it is relatively easy to track back to where the problem was. We have to
improve this feedback reporting in future versions.

5 Conclusion

We have presented in this paper a system where we make use of the mathematical but executable
ML library and the translator to convert clean and expressive Eiffel code into PD for automated
verification. The translation process transforms each Eiffel construct into an equivalent PD one so
that this one-to-one relation between Eiffel and PD constructs allows us to assign the semantics of
the PD language to that of Eiffel. Of course such semantics depends upon the soundness of PD.

When the ES-Verify translator is applied to the Eiffel code for the birthday book example, the

11

PD theorem prover generates 158 verification conditions which are all automatically discharged.
This includes proof of termination via the loop variant. We used a value semantics class ESV ARRAY
for the two implementation arrays. Preliminary experience with other examples indicates that the
vast majority of verification conditions are quickly and automatically discharged, including loop
variants and invariants, without any interaction with the user. The user may add axioms (with the
danger of introducing inconsistencies) or assertions to help the theorem prover, but this is mostly
unnecessary. Future work aims to extend the verification to handle the issue of reference aliasing
and inheritance.

Acknowledgements: We deeply appreciate the help we have received from David Crocker of
Escher Technologies with the Perfect toolset. Likewise we would like to acknowledge helpful feedback
from Bertrand Meyer and Bernd Schoeller of ETH Zurich. This work was funded by a Discovery
Grant from NSERC.

References
[1] J.-R. Abrial. The B-Book: Assigning programs to meanings. Cambridge University Press, 1996.

[2] John Barnes. High Integrity Software: The SPARK Approach to Safety and Security. Addison-Wesley, 2003.
With Praxis Critical Systems Limited.

[3] Mike Barnett, Robert DeLine, Bart Jacobs, Manuel Fhndrich, K. Rustan M. Leino, Wolfram Schulte, and Herman
Venter. The Spec# Programming System: Challenges and Directions. Position paper at VSTTE, 2005.

[4] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# Programming System: An Overview.
2004.

[5] Achim D. Brucker and Burkhart Wolff. A Proposal for a Formal Ocl Semantics in Isabelle/Hol. In Theorem
Proving in Higher Order Logics, volume LNCS 2410. Springer-Verlag, 2002.

[6] Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry, Gary T. Leavens, K. Rustan M. Leino,
and Erik Poll. An overview of JML tools and applications. In Thomas Arts and Wan Fokkink, editors, Eighth
International Workshop on Formal Methods for Industrial Critical Systems (FMICS 03), volume 80 of Electronic
Notes in Theoretical Computer Science (ENTCS), pages 73–89. Elsevier, June 2003.

[7] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll. Beyond Assertions: Advanced Specification
and Verification with JML and ESC/Java2. In Springer-Verlag, editor, Formal Methods for Components and
Objects (FMCO’2005), LNCS, 2006.

[8] Yoonsik Cheon. A runtime assertion checker for the java modeling language. TR 03-09, Department of Computer
Science, Iowa State University, April 2003.

[9] Yoonsik Cheon, Gary Leavens, Murali Sitaraman, and Stephen Edwards. Model variables: cleanly supporting
abstraction in design by contract. Softw. Pract. Exper., 35(6):583–599, 2005.

[10] David R. Cok and Joseph R. Kiniry. ESC/Java2: Uniting ESC/Java and JML: Progress and issues in building
and using ESC/Java2. Technical Report NIII-R0413, Nijmegen Institute for Computing and Information Science,
May 2004.

[11] David Crocker. Perfect Developer: A tool for Object-Oriented Formal Specification and Refinement. In Tools
Exhibition Notes at Formal Methods Europe, 2003.

[12] David Crocker. Safe Object-Oriented Software: The Verified Desing-By-Contract Paradigm. In F.Redmill &
T.Anderson, editor, Twelfth Safety-Critical Systems Symposium, pages 19–41. Springer-Verlag, London, 2004.

[13] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A Theorem Prover for Program Checking. Journal of
the ACM (JACM), 52(3):365–473, 2005.

[14] Escher Technologies. Perfect Developer Language Reference Manual, 3.0 edition, December 2004. Available from
www.eschertech.com.

[15] Ingo Feinerer. Formal Program Verification: a Comparison of Selected Tools and Their Theoretical Foundations.
Master’s thesis, Vienna University of Technology, January 2005.

[16] C. A. R. Hoare. Proof of Correctness of Data Representations. In Acta Informatica, volume 1, pages 271–281.
Springer-Verlag, February 1972.

[17] Gary T. Leavens, K. Rustan M. Leino, and Peter Mller. Specification and verification challenges for sequential
object-oriented programs. TR 06-14, Department of Computer Science, Iowa State University, May 2006.

[18] K. Rustan M. Leino and Peter Mller. A verification methodology for model fields. ESOP 2006.

[19] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.

[20] J.M. Spivey. The Z Notation: A Reference Manual (2nd edition). Prentice-Hall, Englewood Cliffs, N.J., 1992.

[21] Brian Stevens. Implementing Object-Z with PerfectDeveloper. Journal of Object Technology, 6(2):189–202,
March-April 2006.

[22] Kim Walden and Jean-Marc Nerson. Seamless Object Oriented Software and Architecture. Prentice Hall, 1995.
Seamless Object Oriented Software and Architecture.

12

