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Abstract

This document provides some technical details related to the learning problem pre-
sented in the paper [1]. In particular, we review the concept of conciseness, and
provide the proof to the Proposition 1 in [1], which establishes the fact that our
learning problem is concise, and finally give the detailed derivation of the simpli-
fied optimization problem given in Eq.(7).

1 The Learning Problem

The problem of learning the optimal combination weights of scores was formulated in section 4.5.1
of the paper. For self-containedness, we briefly revisit the problem below.

minimize
1

2
‖w‖2 + C

∑
i

ξi (1)

s.t. wTφi(y
(i)) ≥ wTφi(y) + ∆(y,y(i))− ξi, ∀y(i) ∈ Y(i).

ξi ≥ 0, ∀i = 1, . . . , N.

Here, y(i) is the ground-truth matching for the i-th instance, φi(y) is a vector of matching scores for
y, and ∆(y,y(i)) the loss function. In particular, φi(y) can be expressed as

φi(y) = [φ
(1)
i (y), . . . , φ

(K)
i (y)], with φ(k)i (y) =

∑
uv

f (ik)uv yuv. (2)

We use the Hamming loss, as

l(y;y(i)) =
∑
uv

1(yuv 6= y(i)uv ) = a(i) −
∑
uv

yuvy
(i)
uv , (3)

where a(i) =
∑

u s
(i)
u is the total number of matching edges, which is a constant.

The domain Y(i) depends on particular instance, and can be written as

Y(i) =

{
y :

∑
v

yuv = s(i)u ,
∑
u

yuv ≤ t(i)v , 0 ≤ yuv ≤ c(i)uv

}
. (4)

2 The Notion of Conciseness

The learning problem given by Eq.(1) can be re-written as

minimize
1

2
‖w‖2 + C

∑
i

ξi (5)

s.t. wTφi(y
(i)) ≥ max

y∈Y(i)

(
wTφi(y) + ∆(y;y(i))

)
− ξi, ξi ≥ 0, ∀i = 1, . . . , N.
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This model is called concise if there exists a function f̃i that is concave in µ and a convex set U (i) for
each i such that

max
y∈Y(i)

(
wTφi(y) + ∆(y;y(i))

)
= max

µ∈U(i)
f̃i(w,µ). (6)

Next, we review how conciseness can be exploited to simplify the learning problem. Without losing
generality, we express µ ∈ U (i) using a convex function gi as

gi(µ) ≤ 0. (7)

Then the Lagrangian for f̃i(w,µ) is

Li(µ,λ;w) = f̃i(w,µ)− λTgi(µ) with λ ≥ 0. (8)

This provides an upper bound for f̃i(w,µ) within U (i). By strong duality (which can be easily veri-
fied), we have:

max
µ∈U(i)

f̃i(w,µ) = max
µ∈U(i)

min
λ≥0

Li(µ,λ;w),

= min
λ≥0

max
µ∈U(i)

Li(µ,λ;w). (9)

Suppose maxµ∈U(i) Li(µ,λ,ν;w) has a Lagrangian dual given by

ρi(λ;w) s.t. ηi(λ;w) ≤ 0. (10)

Then, we have
max
µ∈U(i)

f̃i(w,µ) = min
η(i)(λ;w)≤0

ρi(λ;w) (11)

For conciseness, the condition λ ≥ 0 is merged into ηi(λ;w) ≤ 0. Incorporating this into Eq.(5)
results in

minimize
1

2
‖w‖2 + C

∑
i

ξi (12)

s.t. wTφi(y
(i)) ≥ min

η(i)(λ;w)≤0
ρi(λ;w)− ξi, ξi ≥ 0, ∀i = 1, . . . , N.

Combining the optimization over w and that over λ, we finally gets the following problem:

minimize
1

2
‖w‖2 + C

∑
i

ξi (13)

s.t. wTφi(y
(i)) ≥ ρi(λ,ν;w)− ξi, ∀i = 1, . . . , N,

ηi(λ,ν;w) ≤ 0, ξi ≥ 0, ∀i = 1, . . . , N.

3 Proof of Proposition 1

Proposition 1 in the paper establishes the fact that our learning problem is concise. Below, we prove
this proposition.

With Eq.(2) and Eq.(3), we have

wTφi(y) + ∆(y;y(i)) =

K∑
k=1

wk

∑
uv

f (ik)uv yuv +

(
a(i) −

∑
uv

yuvy
(i)
uv

)

= a(i) +
∑
uv

(
K∑

k=1

wkf
(ik)
uv − y(i)uv

)
yuv

= a(i) +
(
F(i)w − y(i)

)T
y. (14)
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Here, each F(i) is an mn-by-K matrix, where each row corresponding to a particular matching pair
(u, v) and each column corresponds to a score channel. According to Eq.(6), we can conclude that
this model is concise, with

f̃i(w,µ) = a(i) +
(
F(i)w − y(i)

)T
µ

= a(i) +
∑
uv

(
wT f (i)uv − y(i)uv

)
µuv. (15)

Here, f (i)uv is the uv-th row of F(i), which is a K-dimensional vector. In addition, the constraint
µ ∈ U (i) can be written explicitly as∑

v

µuv = s(i)u ∀u,
∑
u

µuv ≤ t(i)v ∀v, 0 ≤ µuv ≤ c(i)uv ∀u, v. (16)

The proof is completed.

4 Simplified Optimization Problem

Then, we can derive the Lagrangian dual as follows

ρ(i)(λ,η,ν,w) = a(i) +
∑
u

λus
(i)
u +

∑
v

ηvt
(i)
v +

∑
uv

νuvc
(i)
uv , (17)

with
wT f (i)uv ≤ y(i)uv + λu + ηv + νuv, ηv ≥ 0, νuv ≥ 0 ∀u, v. (18)

Finally, according to Eq.(13), the learning problem can be written as

minimize
1

2
‖w‖2 + C

∑
i

ξi (19)

s.t. wT z(i) ≥ ρ(i)(λ,η,ν,w)− ξi, ∀i = 1, . . . , N,

wT f (i)uv ≤ y(i)uv + λ(i)u + η(i)v + ν(i)uv , ∀u, v, i
η(i)v ≥ 0, ν(i)uv ≥ 0, ξ(i) ≥ 0, ∀u, v, i

Here, z(i) = [z
(i)
1 , . . . , z

(i)
K ] with z(i)k =

∑
uv f

(ik)
uv y

(i)
uv .
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