Supplementary Material: Visual Semantic Search: Retrieving Videos via Complex Textual Queries

Dahua Lin ${ }^{1} \quad$ Sanja Fidler ${ }^{1,2} \quad$ Chen Kong ${ }^{3} \quad$ Raquel Urtasun ${ }^{1,2}$
TTI Chicago ${ }^{1}$ University of Toronto ${ }^{2}$ Tsinghua University ${ }^{3}$
dhlin@ttic.edu, kc10@mails.tsinghua.edu.cn, \{fidler,urtasun\}@cs.toronto.edu

Abstract

This document provides some technical details related to the learning problem presented in the paper [1]. In particular, we review the concept of conciseness, and provide the proof to the Proposition 1 in [1], which establishes the fact that our learning problem is concise, and finally give the detailed derivation of the simplified optimization problem given in Eq.(7).

1 The Learning Problem

The problem of learning the optimal combination weights of scores was formulated in section 4.5.1 of the paper. For self-containedness, we briefly revisit the problem below.

$$
\begin{align*}
\operatorname{minimize} & \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i} \xi_{i} \tag{1}\\
\text { s.t. } & \mathbf{w}^{T} \boldsymbol{\phi}_{i}\left(\mathbf{y}^{(i)}\right) \geq \mathbf{w}^{T} \boldsymbol{\phi}_{i}(\mathbf{y})+\Delta\left(\mathbf{y}, \mathbf{y}^{(i)}\right)-\xi_{i}, \quad \forall \mathbf{y}^{(i)} \in \mathcal{Y}^{(i)} . \\
& \xi_{i} \geq 0, \forall i=1, \ldots, N
\end{align*}
$$

Here, $\mathbf{y}^{(i)}$ is the ground-truth matching for the i-th instance, $\phi_{i}(\mathbf{y})$ is a vector of matching scores for \mathbf{y}, and $\Delta\left(\mathbf{y}, \mathbf{y}^{(i)}\right)$ the loss function. In particular, $\phi_{i}(\mathbf{y})$ can be expressed as

$$
\begin{equation*}
\phi_{i}(\mathbf{y})=\left[\phi_{i}^{(1)}(\mathbf{y}), \ldots, \phi_{i}^{(K)}(\mathbf{y})\right], \quad \text { with } \phi_{i}^{(k)}(\mathbf{y})=\sum_{u v} f_{u v}^{(i k)} y_{u v} \tag{2}
\end{equation*}
$$

We use the Hamming loss, as

$$
\begin{equation*}
l\left(\mathbf{y} ; \mathbf{y}^{(i)}\right)=\sum_{u v} \mathbf{1}\left(y_{u v} \neq y_{u v}^{(i)}\right)=a^{(i)}-\sum_{u v} y_{u v} y_{u v}^{(i)} \tag{3}
\end{equation*}
$$

where $a^{(i)}=\sum_{u} s_{u}^{(i)}$ is the total number of matching edges, which is a constant.
The domain $\mathcal{Y}^{(i)}$ depends on particular instance, and can be written as

$$
\begin{equation*}
\mathcal{Y}^{(i)}=\left\{\mathbf{y}: \sum_{v} y_{u v}=s_{u}^{(i)}, \sum_{u} y_{u v} \leq t_{v}^{(i)}, 0 \leq y_{u v} \leq c_{u v}^{(i)}\right\} \tag{4}
\end{equation*}
$$

2 The Notion of Conciseness

The learning problem given by Eq.(1) can be re-written as

$$
\begin{align*}
\operatorname{minimize} & \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i} \xi_{i} \tag{5}\\
\text { s.t. } & \mathbf{w}^{T} \boldsymbol{\phi}_{i}\left(\mathbf{y}^{(i)}\right) \geq \max _{\mathbf{y} \in \mathcal{Y}^{(i)}}\left(\mathbf{w}^{T} \boldsymbol{\phi}_{i}(\mathbf{y})+\Delta\left(\mathbf{y} ; \mathbf{y}^{(i)}\right)\right)-\xi_{i}, \quad \xi_{i} \geq 0, \quad \forall i=1, \ldots, N .
\end{align*}
$$

This model is called concise if there exists a function \tilde{f}_{i} that is concave in $\boldsymbol{\mu}$ and a convex set $\mathcal{U}^{(i)}$ for each i such that

$$
\begin{equation*}
\max _{\mathbf{y} \in \mathcal{Y}^{(i)}}\left(\mathbf{w}^{T} \boldsymbol{\phi}_{i}(\mathbf{y})+\Delta\left(\mathbf{y} ; \mathbf{y}^{(i)}\right)\right)=\max _{\boldsymbol{\mu} \in \mathcal{U}^{(i)}} \tilde{f}_{i}(\mathbf{w}, \boldsymbol{\mu}) \tag{6}
\end{equation*}
$$

Next, we review how conciseness can be exploited to simplify the learning problem. Without losing generality, we express $\boldsymbol{\mu} \in \mathcal{U}^{(i)}$ using a convex function \mathbf{g}_{i} as

$$
\begin{equation*}
\mathbf{g}_{i}(\boldsymbol{\mu}) \leq 0 \tag{7}
\end{equation*}
$$

Then the Lagrangian for $\tilde{f}_{i}(\mathbf{w}, \boldsymbol{\mu})$ is

$$
\begin{equation*}
L_{i}(\boldsymbol{\mu}, \boldsymbol{\lambda} ; \mathbf{w})=\tilde{f}_{i}(\mathbf{w}, \boldsymbol{\mu})-\boldsymbol{\lambda}^{T} \mathbf{g}_{i}(\boldsymbol{\mu}) \quad \text { with } \boldsymbol{\lambda} \geq 0 \tag{8}
\end{equation*}
$$

This provides an upper bound for $\tilde{f}_{i}(\mathbf{w}, \boldsymbol{\mu})$ within $\mathcal{U}^{(i)}$. By strong duality (which can be easily verified), we have:

$$
\begin{align*}
\max _{\boldsymbol{\mu} \in \mathcal{U}^{(i)}} \tilde{f}_{i}(\mathbf{w}, \boldsymbol{\mu}) & =\max _{\boldsymbol{\mu} \in \mathcal{U}^{(i)}} \min _{\boldsymbol{\lambda} \geq 0} L_{i}(\boldsymbol{\mu}, \boldsymbol{\lambda} ; \mathbf{w}), \\
& =\min _{\boldsymbol{\lambda} \geq 0} \max _{\boldsymbol{\mu} \in \mathcal{U}^{(i)}} L_{i}(\boldsymbol{\mu}, \boldsymbol{\lambda} ; \mathbf{w}) \tag{9}
\end{align*}
$$

Suppose $\max _{\boldsymbol{\mu} \in \mathcal{U}^{(i)}} L_{i}(\boldsymbol{\mu}, \boldsymbol{\lambda}, \boldsymbol{\nu} ; \mathbf{w})$ has a Lagrangian dual given by

$$
\begin{equation*}
\rho_{i}(\boldsymbol{\lambda} ; \mathbf{w}) \text { s.t. } \boldsymbol{\eta}_{i}(\boldsymbol{\lambda} ; \mathbf{w}) \leq 0 . \tag{10}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
\max _{\boldsymbol{\mu} \in \mathcal{U}^{(i)}} \tilde{f}_{i}(\mathbf{w}, \boldsymbol{\mu})=\min _{\boldsymbol{\eta}^{(i)}(\boldsymbol{\lambda} ; \mathbf{w}) \leq 0} \rho_{i}(\boldsymbol{\lambda} ; \mathbf{w}) \tag{11}
\end{equation*}
$$

For conciseness, the condition $\boldsymbol{\lambda} \geq 0$ is merged into $\boldsymbol{\eta}_{i}(\boldsymbol{\lambda} ; \mathbf{w}) \leq 0$. Incorporating this into Eq. (5) results in

$$
\begin{align*}
\operatorname{minimize} & \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i} \xi_{i} \tag{12}\\
\text { s.t. } & \mathbf{w}^{T} \boldsymbol{\phi}_{i}\left(\mathbf{y}^{(i)}\right) \geq \min _{\boldsymbol{\eta}^{(i)}(\boldsymbol{\lambda} ; \mathbf{w}) \leq 0} \rho_{i}(\boldsymbol{\lambda} ; \mathbf{w})-\xi_{i}, \quad \xi_{i} \geq 0, \quad \forall i=1, \ldots, N .
\end{align*}
$$

Combining the optimization over \mathbf{w} and that over $\boldsymbol{\lambda}$, we finally gets the following problem:

$$
\begin{align*}
\operatorname{minimize} & \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i} \xi_{i} \tag{13}\\
\text { s.t. } & \mathbf{w}^{T} \boldsymbol{\phi}_{i}\left(\mathbf{y}^{(i)}\right) \geq \rho_{i}(\boldsymbol{\lambda}, \boldsymbol{\nu} ; \mathbf{w})-\xi_{i}, \quad \forall i=1, \ldots, N \\
& \boldsymbol{\eta}_{i}(\boldsymbol{\lambda}, \boldsymbol{\nu} ; \mathbf{w}) \leq 0, \quad \xi_{i} \geq 0, \quad \forall i=1, \ldots, N
\end{align*}
$$

3 Proof of Proposition 1

Proposition 1 in the paper establishes the fact that our learning problem is concise. Below, we prove this proposition.

With Eq. (2) and Eq. (3), we have

$$
\begin{align*}
\mathbf{w}^{T} \boldsymbol{\phi}_{i}(\mathbf{y})+\Delta\left(\mathbf{y} ; \mathbf{y}^{(i)}\right) & =\sum_{k=1}^{K} w_{k} \sum_{u v} f_{u v}^{(i k)} y_{u v}+\left(a^{(i)}-\sum_{u v} y_{u v} y_{u v}^{(i)}\right) \\
& =a^{(i)}+\sum_{u v}\left(\sum_{k=1}^{K} w_{k} f_{u v}^{(i k)}-y_{u v}^{(i)}\right) y_{u v} \\
& =a^{(i)}+\left(\mathbf{F}^{(i)} \mathbf{w}-\mathbf{y}^{(i)}\right)^{T} \mathbf{y} \tag{14}
\end{align*}
$$

Here, each $\mathbf{F}^{(i)}$ is an $m n$-by- K matrix, where each row corresponding to a particular matching pair (u, v) and each column corresponds to a score channel. According to Eq. (6), we can conclude that this model is concise, with

$$
\begin{align*}
\tilde{f}_{i}(\mathbf{w}, \boldsymbol{\mu}) & =a^{(i)}+\left(\mathbf{F}^{(i)} \mathbf{w}-\mathbf{y}^{(i)}\right)^{T} \boldsymbol{\mu} \\
& =a^{(i)}+\sum_{u v}\left(\mathbf{w}^{T} \mathbf{f}_{u v}^{(i)}-y_{u v}^{(i)}\right) \mu_{u v} . \tag{15}
\end{align*}
$$

Here, $\mathbf{f}_{u v}^{(i)}$ is the $u v$-th row of $\mathbf{F}^{(i)}$, which is a K-dimensional vector. In addition, the constraint $\boldsymbol{\mu} \in \mathcal{U}^{(i)}$ can be written explicitly as

$$
\begin{equation*}
\sum_{v} \mu_{u v}=s_{u}^{(i)} \forall u, \quad \sum_{u} \mu_{u v} \leq t_{v}^{(i)} \forall v, \quad 0 \leq \mu_{u v} \leq c_{u v}^{(i)} \forall u, v \tag{16}
\end{equation*}
$$

The proof is completed.

4 Simplified Optimization Problem

Then, we can derive the Lagrangian dual as follows

$$
\begin{equation*}
\rho^{(i)}(\boldsymbol{\lambda}, \boldsymbol{\eta}, \boldsymbol{\nu}, \mathbf{w})=a^{(i)}+\sum_{u} \lambda_{u} s_{u}^{(i)}+\sum_{v} \eta_{v} t_{v}^{(i)}+\sum_{u v} \nu_{u v} c_{u v}^{(i)} \tag{17}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathbf{w}^{T} \mathbf{f}_{u v}^{(i)} \leq y_{u v}^{(i)}+\lambda_{u}+\eta_{v}+\nu_{u v}, \quad \eta_{v} \geq 0, \quad \nu_{u v} \geq 0 \forall u, v \tag{18}
\end{equation*}
$$

Finally, according to Eq. (13), the learning problem can be written as

$$
\begin{align*}
\operatorname{minimize} & \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i} \xi_{i} \tag{19}\\
\text { s.t. } & \mathbf{w}^{T} \mathbf{z}^{(i)} \geq \rho^{(i)}(\boldsymbol{\lambda}, \boldsymbol{\eta}, \boldsymbol{\nu}, \mathbf{w})-\xi_{i}, \quad \forall i=1, \ldots, N, \\
& \mathbf{w}^{T} \mathbf{f}_{u v}^{(i)} \leq y_{u v}^{(i)}+\lambda_{u}^{(i)}+\eta_{v}^{(i)}+\nu_{u v}^{(i)}, \quad \forall u, v, i \\
& \eta_{v}^{(i)} \geq 0, \quad \nu_{u v}^{(i)} \geq 0, \quad \xi^{(i)} \geq 0, \quad \forall u, v, i
\end{align*}
$$

Here, $\mathbf{z}^{(i)}=\left[z_{1}^{(i)}, \ldots, z_{K}^{(i)}\right]$ with $z_{k}^{(i)}=\sum_{u v} f_{u v}^{(i k)} y_{u v}^{(i)}$.

References

[1] D. Lin, S. Fidler, C. Kong, and R. Urtasun. Visual semantic search: Retrieving videos via complex textual queries. In $C V P R, 2014$.

