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Abstract

In this paper we present an approach to enhance exist-
ing maps with fine grained segmentation categories such as
parking spots and sidewalk, as well as the number and lo-
cation of road lanes. Towards this goal, we propose an ef-
ficient approach that is able to estimate these fine grained
categories by doing joint inference over both, monocular
aerial imagery, as well as ground images taken from a
stereo camera pair mounted on top of a car. Important to
this is reasoning about the alignment between the two types
of imagery, as even when the measurements are taken with
sophisticated GPS+IMU systems, this alignment is not suf-
ficiently accurate. We demonstrate the effectiveness of our
approach on a new dataset which enhances KITTI [8] with
aerial images taken with a camera mounted on an airplane
and flying around the city of Karlsruhe, Germany.

1. Introduction
We are in an exciting time for computer vision, and more

broadly AI, as the development of fully autonomous sys-
tems such as self-driving cars seems possible in the near
future. These systems have to robustly estimate the scene
in 3D, its semantics as well as be able to self-localize at all
times. Key to the success of these tasks is the use of maps
containing detailed information such as road location, num-
ber of lanes, speed limit, traffic signs, parking spots, traffic
rules at intersections, etc.

Current maps, however, have been created with the use
of semi-automatic systems that employ many man-hours of
laborious and tedious labeling. An alternative to this costly
labeling is to employ existing maps and correct/enhance
them based on ground imagery or LIDAR point clouds, cap-
tured, for example, by a Velodyne/cameras mounted on top
of a car. Systems like TESLA auto-pilot [1] are currently
using their deployed fleet of cars, which are equipped with
cameras, to perform such corrections. However, it is dif-
ficult to create full coverage of the world as we will need

access to imagery/LIDAR from millions of cars in order to
reliably enhance maps at a world-scale.

Alternatively, aerial images provide us with full coverage
of a significant portion of the world, but at a much lower
resolution than ground images. This makes semantic seg-
mentation from aerial images a very difficult task. In this
paper, we propose to use both aerial and ground images to
jointly infer fine grained segmentation of roads. Towards
this goal, we take advantage of the OpenStreetMap (OSM)
project, which provides us with freely available maps of the
road topology in the form of piece-wise linear road seg-
ments. We formulate the problem as energy minimization,
inferring the number and location of the lanes for each road
segment, parking spots, sidewalks and background, as well
as the alignment between the ground and aerial images. We
employ deep learning to estimate semantics from both aerial
and ground images, and define a set of potentials exploiting
these semantic cues, as well as road constraints, relation-
ships between parallel roads, and the smoothness of both
the estimations along the road as well as the alignment be-
tween consecutive ground frames.

We demonstrate the effectiveness of our approach in a
new dataset which covers a wide area of the city of Karl-
sruhe in Germany, both from the ground and from the air.
We provide pixel-level annotations for the aerial images in
terms of fine-grained road categories. We call our dataset
Air-Ground-KITTI. We show that our approach is able to
estimate these categories reliably, while significantly reduc-
ing the alignment error between the ground and aerial im-
ages when compared to a sophisticated GPS+IMU system.

2. Related work

For several decades, researchers from various communi-
ties (e.g., vision, remote sensing) have been working on au-
tomatic extraction of semantic information from aerial im-
ages. In the following, we summarize the approaches most
relevant to our work.
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Figure 1. Illustration of our model: (a) Parameterization of our approach. Our random variables are the absolute location of the different
region boundaries (e.g., sidewalk) as well as the alignment between air and ground. (b) Our formulation allows a random variable to take
the same state as the previous node, collapsing a region to have 0 width. (c). For each ground-view image, a random variable models the
alignment noise. (d). Projection of our parameterization on the ground-view.

Aerial image parsing: Early approaches employed prob-
abilistic models that aimed to produce topologically con-
nected roads. [2] defined a probabilistic model that tiled the
image into patches, performed road inference inside each
patch via dynamic programming, and then “stitched” to-
gether high-confidence patches to ensure road connectiv-
ity. Recent work exploits learned classifiers to perform se-
mantic segmentation. [15, 16] trained a neural net to clas-
sify pixels in local patches as road. They employ a post-
processing step to ensure a consistent road topology across
the patches, which is, however, prone to block-effects. [26]
segments the road by defining an MRF on superpixels.
High-order cliques are sampled over straight segments or
junctions to encourage a road-like network structure. Due to
complexity of high order terms a sampling scheme is used
to concentrate on more important cliques. [4] samples graph
junction-points using image consistency and shape priors.
A full review of this large field is out of scope of this paper,
and we refer the reader to [14] for a detailed review.

Aerial parsing with maps: While proven useful in many
computer vision and robotics applications [9, 13, 3, 25],
few works employ map information for parsing aerial im-
ages. [20] uses a screenshot of the vector map as a weak
source of ground-truth for training a road classifier. [27]
exploit road center-lines from OSM maps as a ground-truth
road location and performs road segmentation by estimat-
ing the width of the road. This is done by finding bound-
aries of superpixels along the direction of the road, and ig-
noring dependencies across different line (road) segments.
However, the alignment between OSM and aerial images
is far from perfect. To solve this problem, [12] proposed a
MRF which reasons about re-positioning the road centerline
and estimating the width of the road. Smoothness is incor-
porated between consecutive line segments by encouraging
their widths to be similar. In our work we go beyond this
approach by introducing a formulation that reasons about

more fine-grained road semantics such as lanes, sidewalks
and parking spots, and exploits simultaneously aerial im-
ages as well as ground imagery to infer this information.

Fine-grained road parsing: Very few works exist that
extract detailed segmentation. [17] propose a hierarchical
probabilistic grammar to parse smaller-scale aerial regions
into roads, buildings, vehicles and parking lots. Classifiers
are first employed to generate object/building/vegetation
proposals while the grammar imposes semantic and geo-
metric constraints in order to derive the final parse. Learn-
ing and inference are both hard in grammars, and computa-
tionally expensive sampling techniques typically need to be
employed. In our work, we are aiming at a detailed pars-
ing of the roads into sub-categories. Unlike [17], we exploit
OSM information in order to derive an efficient formulation.

The work most related to ours is [21] which exploits the
map as a screenshot of the road vector map to perform road
and lane estimation. The authors take a pipeline approach,
where, in the first step, road lane hypotheses are generated
based on the output of the road classifier and detected lane
markings. In the second step, the authors provide heuris-
tics to “track” the lane hypotheses and connect them into a
single lane labeling.

Aerial-to-ground reasoning: Recent work aims to ex-
ploit both aerial and the ground-view, mainly for the prob-
lem of geo-localization. In [11], a deep neural network is
used to match ground images with aerial images in oblique
views. The matches come from facade to facade matching
and therefore can not be extended to orthographic aerial im-
ages. In [22], 3D reconstructions from the ground images
are matched to oblique views of aerial images. [10] learn
cross-view matching between ground images, aerial ortho-
graphic photos and land cover attributes. This extends the
image geolocalization to areas not covered by ground im-
ages. Forster et al. [7] match the computed 3D maps of
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(a) Along Road (b) Perpendicular to Road (c) Along ground image sequence

Figure 2. BCD: The graph shows a simplified network with two parallel roads (each with 3 random variables) and one ground image
per segment connected to the right road. BCD alternates between three types of updates. (a) Along the road updates: we optimize over
each chain with the same color (while holding all other variables fix). The pairwise terms fold to unaries (see dashed black lines). (b)
Perpendicular to the road updates: we do inference for the nodes with the same color (holding the rest fix). (c) Along the ground alignments:
We minimize only the t variables which are depicted in green. The y variables are fixed and are depicted in black.

MAVs and ground robots for localization and map augmen-
tation. This method relies on matching 3D information and
therefore needs multiview images both from above and on
ground. In our work, we exploit the maps as well as ground
and aerial imagery to perform fine-grained road parsing. We
are not aware of prior work that tackles this problem.

3. Fine-grained Semantic Parsing of Roads
We now describe our model that infers fine-grained se-

mantic categories of roads from aerial and ground images.
In particular, we are interested in estimating sidewalks,
parking, road lanes as well as background (e.g., vegetation,
buildings). Towards this goal we exploit freely available
cartographic maps (we use OSM), that provide us with the
topology of the road network in the area of interest. Our
approach takes as input an aerial image xA, a road map xM

and a set of ground stereo images xG, which are taken by a
calibrated stereo pair mounted on top of a car. The map xM

is composed of a set of roads, where each road is defined as
a piece-wise linear curve representing its centerline.

3.1. Model Formulation

We formulate the problem as the one of inference in a
Markov random field (MRF), which exploits deep features
encoding appearance in both aerial and ground images,
edge information, smoothness in the direction of the road as
well as restrictions between parallel roads to avoid double
counting the evidence. Our model encodes each street seg-
ment in the aerial image with 15 random variables encoding
all possible combinations of background (B), sidewalk (S),
road lanes (L) and parking (P). In particular,

y = (y1, · · · , y15)

= (B1, S1, B2, S2, P1, L, P2, S3, B3, S4, B4)

with B1, B4 the rightmost (leftmost) border of the back-
ground. We model roads with up to 6 lanes, i.e., L =
(L1, L2, L3, L4, L5, L6). We allow all variables (but L6)
to take the state of the previous random variable in the se-
quence (i.e., yi = yi−1), encoding the fact that some of

these regions might be absent, e.g., there is no parking or
sidewalk. This is not the case for L6 forcing the fact that
at least one lane should be present. We define the states of
each random variable to be [−15, 15]m from the projection
of the OSM centerline in the aerial image (Fig. 1). This
discretization represents pixel increments. Note that while
there are 15 random variables, y defines 16 different re-
gions as B1 and B4 are not limited on the left (right). Each
region width is simply defined by wi = yi − yi−1, while
the width of B1 is defined as w1 = −15m + y1, and the
width of B4 as w16 = 15m − y16, since −15m and 15m
are the beginning and end of the state space. Note that the
combination (B,S,B, S) is necessary (both on the left and
right), as there are many bike lines in Germany (where our
imagery is captured), and it is not possible to distinguish
them from the sidewalk. Fig. 1 illustrates the model.

Each of our ground images comes with a rough align-
ment with the aerial image as we have access to a
GPS+IMU and the cameras are registered w.r.t these sen-
sors. This alignment is, however, noisy with 1.67m error
on average. Thus, our model reasons about the alignment
when scoring the ground images. Towards this goal, we de-
fine t = (t1, · · · , tn) to be a set of random variables (one
per ground image) representing the displacement in the di-
rection perpendicular to the OSM road segment. We define
the state space of each misalignment to be ti ∈ (−4m, 4m).
This is discretized to represent pixel increments.

We define the energy of the MRF as to encode the infor-
mation contained in the ground and aerial images as well as
smoothness terms and constraints on the possible solutions:

E(y, t,xA,xM ,xG) = Eair(y,xA) + Eground(y, t,xG)

+ Esmooth(y, t,xM ) + Econst(y)
(1)

We now define the potentials we employ in more detail.

Aerial semantics: We take advantage of deep learning in
order to estimate semantic information from aerial images.
In particular, we create pixel-wise estimates of 5 semantic
categories: road, sidewalk, background, building and park-
ing. We exploit the CNN for segmentation [23, 19] trained
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GPS+IMU Our alignment
Figure 3. Effect of reasoning about alignment: (left) alignment
given by GPS+IMU, (right) alignment inferred by our model.
(top) Ground road classifier projected into the aerial image (shown
in red). (bottom) Our semantic classes projected on the ground
image. Our joint reasoning significantly improves alignment.

on ILSVRC-2014, which we fine-tune for a 5-label clas-
sification task: road, parking spot, sidewalk, building and
background. To train the network we created training exam-
ples by extracting patches centered on the projection of the
OSM road segments. If the road segment is too long (i.e.,
long straight road) we create an example every 20m. We
further perform data augmentation by applying small rota-
tions, shifts and flips to the training examples. The output of
the soft-max is a downsampled segmentation. To create our
features, we upsample the softmax output using linear inter-
polation as in [5]. To save computation, we only apply the
network in the region of interest (regions of the image that
are close to OSM roads). The aerial semantic potential then
encodes the fact that our final segmentation should agree
with the semantics estimated by the deep net. Towards this
goal, we define 5 features for each of our 16 regions, one
per label of the deep net. Each feature simply aggregates
the output of the softmax in that region. Recall that each
region is defined by two consecutive random variables, e.g.
the first sidewalk is defined by y1, y2, that is B1, S1. We
refer the reader to Fig. 1 for an illustration. While this po-
tential seems pairwise in nature, we can further decompose
it into unary potentials via accumulatorsA perpendicular to
the road direction. These are simply generalizations of inte-
gral images from axis aligned accumulators to accumulators
over arbitrary directions. We thus define

φcl(y
j
i , y

j
i−1) =

∑
p∈Ωj

i (yj
i ,y

j
i+1)

ϕ(p) = A(yji+1)−A(y
j
i )

with yji the i-th variable of the j-th road segment, and ϕ(p)
the softmax output interpolated at pixel p. To compute this
features, we only need 5 accumulators per road segment,
one for each semantic class that the deep net predicts.

Aerial edges: This potential encodes the fact that the lo-
cation of the boundaries between regions should be close
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Figure 4. Precision-Recall curves for our deep classifier and the
road classifier of [12] marked with * and in dashed.

to image edges. We thus apply the edge detector of [6] to
detect edges in our aerial images. We then define the po-
tential to be the sum of the edges on the boundary between
consecutive regions. To make it more robust we thicken the
boundary to be of size 3 pixels.

Along the road smoothness: We encode smoothness
along the road by encouraging consecutive road segments
to be similar. In particular, we use the `1 distance between
consecutive road estimations in the direction of the road, i.e.

φsm(y
j
i , y

j+1
i ) = |yji − y

j+1
i |

Parallel roads: The regions of close by parallel roads can
overlap. To avoid double counting the evidence, we incor-
porate an additional constraint that forces S1 of the second
road to be bigger or equal to B4 of the first road or vice
versa. We refer the reader to Fig. 1 for an illustration.

Road collapse constraints: We force each variable yi to
have a state higher or equal than the previous variable, so
that the order is preserved. Note that equal means that a
road can collapse (i.e., does not exist)

φcoll(yi, yi+1) =

{
∞ if yi+1 < yi

0 otherwise

The only exception is L6, which we force to have non-zero
width as otherwise we could have a road segment without
road. Thus

φex(L5, L6) =

{
∞ if L6 ≤ L5

0 otherwise

Lane size constraint: This constraint forces each region,
if present, (i.e., if it is not taking state 0) to have a minimal
and maximal size. In particular, we use (1m-3m) for side-
walk, (1.8m-4.5m) for parking and (2.3m-4.6m) for each
road lane. Note that width 0 is allowed so that regions can
disappear if they are not present in the road segment (e.g.,
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(a) Intersection with tram line. (b) Small town.

(c) A road with three lanes. (d) Two roads with tram stop in between.

(e) Dense urban area. (f) Splitting road plus a bike lane along the street.
Figure 5. Visualization of our semantic road parsing results using only aerial images. The road lanes are shown with shades of pink, the
sidewalk with blue and the parking spots with yellow.

we only have two lanes, there is no sidewalk on the high-
way). The intervals for the lanes are estimated based on the
standards of German roads, while the sidewalk and parking
intervals are computed based on empirical estimates.

Centerline prior: As our images are well registered with
OSM, we include a prior that the centerline of our model
should be close to the centerline of OSM. In particular,

φcen(L3) =

{
||L3 − l||2 if − 7.5 ≤ L3 ≤ 7.5

∞ otherwise

with l the location of the centerline.

Ground semantics: We take advantage of deep learning
in order to estimate semantic information from ground im-

ages. We exploit the VGG [23] implementation of [19]
trained on PASCAL VOC, which we fine-tuned to predict
the same 5 classes as the aerial semantics (road, park-
ing, sidewalk, building and background). We estimate the
ground plane from the stereo image and project pixels be-
longing to this plane to the aerial image via a homography.
We then define our ground semantic potential to encourage
the segmentation to agree with the aligned ground image
segmentation projected to the aerial image. Towards this
goal, we define 5 features for each of our road regions, each
counting the amount of softmax output for the given class:

φground(tk, y
j
i , y

j
i−1) = G(tk, y

j
i+1)− G(tk, y

j
i )

Note that via the integral accumulator the 3-way potential
decomposes into pairwise terms G(t, y). In this case we
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Aerial Ground
Figure 6. Left: The ground road detection with red projected into the aerial image after alignment and road layout estimation. Right:
The semantic lanes projected back into the aligned ground image. These scenes are all challenging with parallel roads, parking spots and
intersections. The bottom image is especially difficult since it is an urban pedestrian area. Note that the aerial and ground images were
taken with several years difference in different seasons. Pink is road, blue is sidewalk and yellow marks parking spots.

only need 5 integral accumulators per ground image.

Ground alignment smoothness: This potential encodes
the fact that two consecutive alignments should be similar.

φgsm(tk, tk+1) = |tk − tk+1|

This assumes that GPS+IMU have smooth errors and no
outliers.

3.2. Inference via Block Coordinate Descent (BCD)

Inference in our model can be performed by minimizing
the energy function:

y∗, t∗ = argmin
y,t

E(y, t,xA,xM ,xG)

with E(y, t,xA,xM ,xG) defined as in Eq. (1). Unfortu-
nately, inference in our model is NP-hard, as our graphi-
cal model contains many loops. We thus take advantage of
block coordinate descent to perform efficient inference. We
refer the reader to Alg. 1 and Fig. 2 for inference steps.

Our block coordinate descent algorithm (BCD) alter-
nates by doing inference in the direction along the road,

doing inference in the direction perpendicular to the road
and aligning the ground and aerial images. Note that when
a road is not connected to a parallel road, the second step
results in a graphical model with 15 variables, while when
there are k parallel roads, this involves doing inference over
a graphical model with 15k variables. Note also that in or-
der to minimize the same objective, each of these iterations
is performing conditional inference, and the pairwise po-
tentials involving variables that are not optimized collapse
to unaries.

3.3. Training with S-SVM

We employ structured SVM (S-SVM) [24] to learn the
weights of the aerial unaries and the smoothness in our
model. In particular, we use the parallel cutting plane im-
plementation of [18]. We employ a combination of two
loss functions. The first is a truncated L2 loss: `data =
min(||yji − ŷ

j
i ||2, 100m2), encouraging our prediction yji to

be close to the ground truth ŷji . We compute ŷji by perform-
ing inference in our model with features computed from the
ground truth annotation (segmentation). The second loss
term encourages smoothness of the prediction along the
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Algorithm 1 Block coordinate descent inference (BCD).
1: Set all alignments t = 0, and initialize y by minimizing

Eq. (1) ignoring the along road smoothness.
2: repeat
3: for for all yj do
4: Minimize Eq. (1) along the road w.r.t yj , holding

the rest fixed.
5: end for
6: for all yi at one segment of the road do
7: Minimize Eq. (1) w.r.t yi, holding the rest fixed.
8: end for
9: for all t variables do

10: Minimize Eq. (1) w.r.t t, holding y fixed.
11: end for
12: until no energy reduction or max number iterations

road, `sm = |yji − y
j+1
i |. Note that the geometrical con-

straints in our model are either 0 or∞ and are not trained.

4. Experiments
We collected a new dataset which we call Air-Ground-

KITTI, which is composed of both ground images from
the KITTI tracking benchmark [8] and newly acquired or-
thorectified aerial images over the same area. We neglected
the KITTI sequences where the car is mostly static, result-
ing in 20 KITTI sequences for a total of 7603 ground stereo
images. We annotated every 30th ground image with 4
semantic classes (parking, sidewalk, road, building). The
aerial images were acquired by a DSLR camera mounted
on an airplane and projected on the earth surface with 9
cm/pixel Ground Sampling Distance (GSD). We split the
data into 10 training and 10 test aerial image/KITTI se-
quences, with special care to avoid overlaps in the aerial im-
ages. We manually annotated the aerial images with 4 cat-
egories (parking, sidewalk, road, building) as closed poly-
gons and the lane markings as polylines. This took 70h of
annotation, at a mean of 21h/km2, the area is 3.23 km2.

To perform fine-grained segmentation using both aerial
and ground images, we estimate a homography that trans-
forms the ground plane in KITTI to the UTM coordinate
system based on the KITTI’s GPS+IMU measurements and
the camera calibration. We assign each ground image to
the closest parallel road segment. Our model then refines
this estimate in the direction perpendicular to each road seg-
ment. We process every 5th ground image in the sequence.

As metrics for the fine-grained segmentation we calcu-
late the pixelwise Intersection over Union (IoU), Precision,
Recall and F1 metrics for three classes (i.e. road, parking,
sidewalk). Note that we only measure the areas laying in
the area of interest (i.e. ±15m around the road map center-
line). We consider two parallel roads overlapping over the
same area as a serious error. To reflect this, we handle these

(a) (b)

(c) (d)

(e) (f)
Figure 7. It is hard to estimate the number of lanes if there are
no lane markings. (a) Our method, (b) Oracle (i.e., our method
with ground truth potentials). (c) The OnlyLane model without the
parallel constraint allows the road to ”jump” to the nearby parallel
road. (d) The parallel constraints of LaneRoadParallel prevents
this from happing. (e) Dense, urban pedestrian streets are difficult
to estimate. (f) Our model is not intended for intersections, as it
does not reason about turn lanes.

areas as if they were background. The metrics in Table 1
are calculated according to this.

For the roads, we additionally compute whether we have
estimated the correct number of lanes. This is measured as
the average `1 error in terms of number of lanes (EN). Note
that if there are no lane markings, estimating the number of
lanes is very difficult. Fig. 7 (a-b) shows this difficulty.

In our experiments, we compare our approach to the
state-of-the-art method of [12], which uses OSMs to es-
timate road width. We also tested different model con-
figurations for our approach. We refer to Lane as a
model that employs Aerial semantics, Aerial Edges, Road
collapse constraints, Lane size constraint and Centerline
prior energy terms. Inference is done independently for
each road segment via dynamic programming along the
yj = yj1, · · · , y

j
15 chains. We refer by LaneParallel to a

model where we additionally include the constraint between
nearby parallel road. We refer by LaneRoad as a model that
contains all the potentials in Lane plus smoothness along the
road. We apply BCD inference by alternating between the
chains perpendicular to the road (the lanes) and along the
roads (segments). We refer by LaneRoadParallel a model
that contains all potentials but the ground. Finally, Ground
contains all potentials. We evaluate this case only where
ground images are available.
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Model
Average Road Sidewalk Parking

IoU F1 IoU F1 Pr. R. EN IoU F1 Pr. R. IoU F1 Pr. R.
Mattyus et al. [12] - - 62.1 76.4 68.0 87.0 - - - - - - - - -

[12] Deep Un* - - 64.4 78.4 66.7 94.7 - - - - - - - - -
Lane 43.6 59.6 61.9 76.5 82.8 71.0 0.730 31.8 48.3 67.2 37.7 37.0 54.1 58.5 50.3

LaneParallel 44.8 60.3 66.5 79.9 85.0 75.4 0.543 31.6 48.0 69.8 36.6 36.1 53.1 70.8 42.4
LaneRoad 45.4 61.6 61.9 76.4 82.7 71.0 0.707 38.3 55.4 62.4 49.7 36.1 53.1 52.2 54.1

LaneRoadParallel 48.6 64.3 68.0 80.9 83.5 78.5 0.555 39.5 56.6 63.5 51.1 38.4 55.5 63.8 49.1
LaneRoadParallel** 41.9 58.5 54.9 70.9 86.9 59.9 0.559 34.9 51.7 68.7 41.5 35.8 52.7 69.9 42.3

Full** 42.0 58.6 55.3 71.2 86.8 60.4 0.556 34.9 51.7 68.7 41.5 35.8 52.7 69.9 42.3

Table 1. Performance for the semantic classes (i.e. road, parking spot, sidewalk) with various models and the two baselines. The values are
in %, except EN which is the average road lane number l1 error with respect to the oracle. * Marks the method of [12] with our deep road
classifier. The last two rows marked with ** evaluate only over areas where ground images are also available.

GPS+IMU [m] Ours [m]
Alignment error 1.67 0.57

Table 2. Ground to air image misalignment based on the camera
calibrations (GPS+IMU) and after our alignment measured in me-
ters. Using ±4 meter interval.

Comparison to the state-of-the-art: As shown in Ta-
ble 1, our method outperforms [12] in almost all metrics,
even when we apply our deep features instead of their road
classifier in their method. Furthermore, we retrieve more
semantic categories such as sidewalk, individual road lanes
and parking. The constraint between parallel roads is im-
portant to achieve good results on roads. Without it, our
model cannot outperform [12], which has this constraint.

Deep semantic features in aerial Images: We show the
performance of our Deep Network in Fig. 4. Note that it is
much better than the road classifier of [12].

Alignment between aerial and ground images: As
shown in Table 2 and Fig. 3 reasoning about the alignment
between ground and aerial images while doing fine-grained
segmentation improves the alignment significantly.

Qualitative Results: We visualize our results when using
only aerial images in Fig. 5, and when using joint aerial
and ground reasoning in Fig. 6. Our approach is able to
estimate well the lanes, sidewalk and parking as well as the
alignment between the ground and the aerial images.

Ablation studies: As shown in Table 1, the metrics for
different versions of our model are fairly similar, however
qualitatively, as we add more potentials, the results get bet-
ter. This is illustrated in Fig. 7 (c), where the OnlyLane
model moves the middle road to a parallel road resulting in
a noncontinuous structure. In contrast, the LaneRoadParal-
lel model prevents overlaps and favors smoothness, see the
Fig. 7 (d). Including the ground images only slightly im-
proves performance. We believe this could be overcome by
using stronger features in the ground images, i.e., leverag-
ing the full 3D point cloud, not just the ground plane. Note

that since our approach gives us very precise alignments be-
tween the ground and the aerial images it could be used to
enhance OSM with object locations, e.g. traffic signs.

Inference time: Inference in our full model takes 6 sec-
onds per km of road, with a single thread on a laptop com-
puter. Note that BCD can easily be parallelized.

Limitations: Our model is designed for individual roads
and it does not reason about turning lanes connecting dif-
ferent roads at intersections (see Fig. 7 (f)). Dealing with
such scenarios is part of our future work. Semantic seg-
mentation from aerial images reasons mainly about the vis-
ible parts of the street. Therefore covered areas (e.g. by
building, bridges, trees) can be a problem. However, when
ground images are available, our approach can handle this
problem. Our aerial images were acquired in early spring,
and thus trees occluding the roads is not a big problem.

5. Conclusion
We proposed an approach to enhance existing freely

available maps with fine grained segmentation categories
such as parking spots and sidewalk, as well as the number
and location of road lanes. Towards this goal, we proposed
an efficient method that produces very accurate estimates
by performing joint inference over both, monocular aerial
imagery captured by a plane and ground images taken from
a stereo pair mounted on top of a car. We have demon-
strated the effectiveness of our approach on a new dataset
which enhances KITTI with aerial images taken with a cam-
era mounted on an airplane and flying around the city of
Karlsruhe. In the future, we plan to reason about other fine
grained categories such as traffic signs in order to further
enhance the maps. As our method reasons about the accu-
rate alignment between the map and the ground images, we
envision its use for precise, lane-wise self localization of the
vehicle on the road.
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