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Proposed Solution

There is a orange van parked on the street on the right.
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There is a orange van parked on the street on the right.
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Matching Text and Video Segments
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Proposed Solution

Learning

tpin %!W\2+C;€i (3)

& >0, Vi=1,..., N.



bicyclist is biking on the road, to the right of my car. There are cars parked on the left side of the street and
white van is driving at safe distance in front of me. car parked on the right side of the street.

N i 118
= ‘;N ) o—
There is a car in front of us. people are sitting and pedestrians are on right sidewalk.
cars are in the opposite street. pedestrians on left sidewalk, and a van is parked.

And | see a cyclist.



B : 1
* our method - GT traj.2 ¥

and van are turning right at the intersection .
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Results

BASE REAL
noun verb adv n.+v. v.+a. all noun verb adv n.+v. v.+a. all

recall 8777 5897 .6726 4379 5700 5562 .6391 .6430 .6765

GT prec. 5182 .7006 3721 .6632 4906 4302 .6021 5434 .6243 6257 .6583
F1 3871 5517 3313 4830 3615 5674 4340 5856 .5497 .6316 .6342 .6673

recall 5301 5137 5246 .5246 5191 5301 3251 4563 3497 5328 4754 5710

real prec. 5357 5743 5633
F1 5342 5202 5672
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Table 3. Average hit rates of video segment retrieval.



Results

K || rand | noun | verb | adv n+v. | v4a. | all
GT | 1 0397 | .0613 | .0873 | .0967 | .1061 | .1274 | .1486
2 0794 | .1250 | .1533 | .1651 | .1910 | .2288 | .2335
3 A191 | 1840 | .2052 | 2217 | 2712 | .3160 | .3467
5 1985 | .3042 | .3443 | 3514 | 4057 | .4481 | .4693
real | 1 0425 | .0755 | .0566 | .0889 | .0836 | .1078 | .0943
2 0849 | .1375 | .1132 | .1321 | .1429 | .1698 | .1779
3 A274 | 1914 | 1752 | 1698 | .2022 | .2264 | .2399
5 2123 | 2722 | 2857 | 2722 | 3181 | .3342 | .3208
Table 3. Average hit rates of video segment retrieval.
K || rand | noun | verb | adv n+v. | v4a. | all
GT | 1 1673 | 2571 | .3029 | .2800 | .3286 | .3429 | .3629
2 1673 | 2686 | 2771 | .2600 | .3400 | .3386 | .3557
3 A673 | .2790 | 2714 | 2610 | .3410 | .3267 | .3533
5 1673 | .2749 | .2640 | .2589 | .3280 | .3109 | .3383
real | 1 1673 | 2680 | .2484 | .2876 | 2810 | .2941 | .2941
2 1673 | 2647 | 2304 | 2484 | .2843 | .2680 | .2908
3 1673 | 2702 | 2462 | .2495 | .2898 | .2800 | .3017
5 A673 | 2686 | .2444 | 2477 | 2784 | 2758 | .2869

Table 4. Average relevance of video segment retrieval.
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Point of Strength

» Efficient learning procedure (simplified learning).
* Robustness to tracking errors.

e Free-form complex language queries.



Point of Weakness



Point of Weakness

e Features extraction (preprocessing) might be slow
to compute (e.q., visual scores).

* Features are engineered - learned features could
Improve results.



Contributions



Contributions

 Matching individual words in the query to specific
objects, as opposed to find a video given a query.

e Collected a new dataset for semantic retrieval.

 Developed a new framework for semantic video
search.
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Conclusion

 We are getting closer to “real” Al, as perceived by
most people.

* The proposed method is heading exactly that way.

* |nteresting and a hard problem with proposed
method demonstrating effectiveness.
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Questions?



