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Logistics

The tutorial is online:

http://www.cs.toronto.edu/~fidler/3DsceneTutorialCVPR15.html

with:

Slides

References

Links to datasets and code

Links to other similar tutorials

Today: break 3.45-4.15pm
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Why Indoors?

Robotics
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Why Indoors?

Robotics Real-estate

Gaming
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Why Indoors?

Robotics Real-estate

Gaming
Virtual
tours
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“Full” Scene Understanding?

Full understanding of a scene?
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“Full” Scene Understanding?

Full understanding of a scene? You can answer any question about it

[M. Malinowski, M. Fritz, A Multi-World Approach to Question Answering about Real-World Scenes based on Uncertain Input,

NIPS, 2014]
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Overview

Monocular 3D Object Detection

Room Layout Estimation

Monocular

Holistic Models

Reconstruction and Localization

Inferring Semantics in RGB-D
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Indoor vs Outdoor vs Generic Scenes

In what way are indoor scenes “special”?
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Generic Scenes
Examples from Microsoft Coco
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Outdoor Scenes

Objects typically on the ground. Biased viewpoint.
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Outdoor Scenes

Objects typically on the ground. Biased viewpoint.
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Indoor Scenes
[C. Kong, D. Lin, M. Bansal, R. Urtasun, S. Fidler, What are you talking about? Text-to-Image Coreference, CVPR’14]

Description: This room is filled with different types of furniture and home goods. The
lights on the ceiling are strung across the room, they are circular and bright. At the
back of the room, there are shelves filled with an assortment of pillows and blankets.
There are a few couches facing away from those shelves. The couches have many pillows
on top of them. On the second couch, which is dark green, sits a man in a plaid shirt.
Another black couch faces the second couch. In front of the black couch is a shelf
containing large brown bowls on the bottom shelf, towels on the second shelf, and vases
on the top shelf. In front of the shelf is a dining table with brown wooden chairs, pink
placemats, white dinnerware, and a brown glass bottle.
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Indoor Scenes – Manhattan World

Manhattan WorldS. Fidler, R. Urtasun 3D Indoor Scene Understanding 11 / 61



Indoor Scenes – Lots of Structure
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Difficult problem?

Lots of instances Viewpoint, aspect-ratio variation

Occlusion Beyond the Visible Scene

Figure by Derek Hoiem
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Difficult problem?

Noisy depth Missing depth

For example, 30% of chairs have more than 50% missing depth pixels [Gupta
et al., CVPR’15]
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Difficult problem?

Noisy depth Missing depth

PASCAL

[Gupta’14]
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Basic Geometry
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Basic Geometry

Parallel lines converge at a vanishing point

Each different direction in the world has its own vanishing point

[Adopted from: N. Snavely, R. Urtasun]
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Basic Geometry

Parallel lines converge at a vanishing point

Each different direction in the world has its own vanishing point

All lines with the same 3D direction intersect at the same vanishing point

[Pic: R. Szeliski]
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Basic Geometry

Parallel lines converge at a vanishing point

Each different direction in the world has its own vanishing point

For lines on the same 3D plane, the vanishing points lie on a line. We call it
a vanishing line. Vanishing line for the ground plane is a horizon line.
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Basic Geometry

Parallel lines converge at a vanishing point

For lines on the same 3D plane, the vanishing points lie on a line. We call it
a vanishing line or a horizon line.

Parallel planes in 3D have the same horizon line in the image.
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Example

Can I tell how much above ground this picture was taken?
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Example

Same distance as where the horizon intersects a building
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Example

Same distance as where the horizon intersects a building: 50 floors up
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Cross-ratio

[Figure by Steve Seitz]
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Cross-ratio

When the camera is upright and not slanted:

[Figure by Derek Hoiem]
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Camera Estimation for a Manhattan World

For images where you see lines corresponding to 3 orthogonal directions you
can compute the camera matrix K as well as rotation matrix R

Reference: Zisserman & Hartley book.
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Single Image Reconstruction

One can reconstruct the scene in 3D from a single image, under certain
assumptions.

link to video
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Single Image Reconstruction

One can reconstruct the scene in 3D from a single image, under certain
assumptions.

A. Criminisi, I. Reid, and A. Zisserman

Single View Metrology

International Journal of Computer Vision, vol 40, num 2, 2000

http://www.cs.cmu.edu/ ph/869/papers/Criminisi99.pdf
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Estimating Vanishing Points

Detect lines in an image
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Estimating Vanishing Points

Detect lines in an image

Find all intersections of lines

Vote for each intersection

Solve: vp1, vp2, vp3 = argmax
ortho(p,q,r)

(
vote(p) + vote(q) + vote(r)

)
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Estimating Vanishing Points

Detect lines in an image

Find all intersections of lines

Vote for each intersection

Solve: vp1, vp2, vp3 = argmax
ortho(p,q,r)

(
vote(p) + vote(q) + vote(r)

)

Greedy: Lee et al., NIPS’10,
Hedau et al., ICCV’09 (code)

Exact (when K known): Bazin et
al., CVPR’12
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Estimate K and R

Direction in 3D:

d =
K−1vp

||K−1vp||
where p denotes a point in homogeneous coordinates
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Direction in 3D:

d =
K−1vp

||K−1vp||
where p denotes a point in homogeneous coordinates

The three directions are orthogonal:

(K−1vp1)T · K−1vp2 = 0

(K−1vp1)T · K−1vp3 = 0

(K−1vp2)T · K−1vp3 = 0
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Estimate K and R

Direction in 3D:

d =
K−1vp

||K−1vp||
where p denotes a point in homogeneous coordinates

The three directions are orthogonal:

(K−1vp1)T · K−1vp2 = 0

(K−1vp1)T · K−1vp3 = 0

(K−1vp2)T · K−1vp3 = 0

Compute K

Compute R =
[
d1,d2,d3

]
, where di is a direction corresponding to the

vanishing point vpi
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3D Object Detection

Monocular Case
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Object detection
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Object detection

Usually detectors output 2D boxes around the objects.
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3D Object detection

Important to also infer accurate object pose.
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3D Object detection

as well as location and extent of objects in 3D.
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3D Object Detection Indoors

Important for free space estimation.

Figure from: Choi et al., CVPR 2013
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3D Object Detection Indoors

Accurate prediction is important.

Figure from: Hedau et al., CVPR 2012
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Literature – 3D Object Detection

Essentially two types of approaches:

Viewer-centered: object is modeled by a collection of 2D
appearance models [Torralba07, Felzenswalb10, Pepik12, etc], one for
each viewpoint

Object-centered: represent object classes with a 3D model typically
equipped with view-invariant geometry and appearance [Leibelt08,
Savarese07, Glasner11, Yan07]
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Types of Approaches

Object is a:

box

Object is:

polygonal

Object is a detailed

CAD model

Hedau et al., ECCV’10
Fidler et al., NIPS’12
Hedau et al., CVPR’12

Xiang et al., CVPR’12 Lim et al., ICCV’13
Aubry et al., CVPR’14

S. Fidler, R. Urtasun 3D Indoor Scene Understanding 33 / 61



Thinking Inside the Box [Hedau et al., 2010]

V. Hedau, D. Hoiem, D. Forsyth, Thinking Inside the Box: Using Appearance Models and Context Based on Room
Geometry, ECCV 2010

Object is a box, aligned with the (Manhattan) room
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Thinking Inside the Box [Hedau et al., 2010]

Object is a box, aligned with the (Manhattan) room

Assume the camera is distance h above ground

Place a point on the floor, assume box of known physical height

Place the points only below the horizon
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Thinking Inside the Box [Hedau et al., 2010]

Object is a box, aligned with the (Manhattan) room

Assume the camera is distance h above ground

Place a point on the floor, assume box of known physical height

Additional constraints for placing the point when layout is known
(object cannot penetrate the walls)
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Thinking Inside the Box [Hedau et al., 2010]

Object is a box, aligned with the (Manhattan) room

Assume the camera is distance h above ground

Place a point on the floor, assume box of known physical height

Score each face in fronto-parallel coordinates
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Thinking Inside the Box [Hedau et al., 2010]

Object is a box, aligned with the (Manhattan) room

Assume the camera is distance h above ground

Place a point on the floor, assume box of known physical height

Score each face in fronto-parallel coordinates

Score a box by summing the scores of the visible faces

score(box) =

∑
i vi ·maxf∈N (fi ) sc(fi )∑

i vi
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Thinking Inside the Box [Hedau et al., 2010]

Inference:

Object is a box, aligned with the (Manhattan) room

Assume the camera is distance h above ground

Place a point on the floor, assume box of known physical height

Score each face in fronto-parallel coordinates

Score a box by summing the scores of the visible faces

Training:

Train each face independently using SVM
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Thinking Inside the Box [Hedau et al., 2010]

Bedroom dataset:

Dataset contains 181 train and 128 test images with annotated beds.

Indoor dataset (Hedau et al., CVPR’12):

592 indoor images (containing bedroom dataset as subset)

Annotated: sofas, chairs, tables, and dressers
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Thinking Inside the Box [Hedau et al., 2010]
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Extension [Hedau et al., 2012]

V. Hedau, D. Hoiem, D. Forsyth, Recovering Free Space of Indoor Scenes from a Single Image, CVPR 2012

Adds headrest as a latent variable (scores it only if the overall score
increases)
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Extension [Hedau et al., 2012]

Adds headrest as a latent variable (scores it only if the overall score
increases)

Relocalizes the box more precisely via several cues:

Edge-based features (line segments) on the cuboid edges
Corner-based features (Harris cornerness measure) on cuboid corners
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Extension [Hedau et al., 2012]

Adds headrest as a latent variable (scores it only if the overall score
increases)

Relocalizes the box more precisely via several cues:

Edge-based features (line segments) on the cuboid edges
Corner-based features (Harris cornerness measure) on cuboid corners
“Peg” detector
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Results [Hedau et al., 2012]
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Results [Hedau et al., 2012]
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Deformable 3D Cuboid Model [Fidler et al., 2012]

S. Fidler, S. Dickinson, R. Urtasun, 3D Object Detection and Viewpoint Estimation with a Deformable 3D Cuboid
Model, NIPS 2012

Represent objects with a deformable 3D cuboid model:

that score parts and spatially relates them to the cuboid faces

scores visible faces and spatially relates them to the stitching point, the
intersection point of the visible faces
reasons about the faces and parts in
rectified coordinates

explicitly reasons about face
visibility patterns called aspects

shares appearance models for the
faces and parts across aspects

Figure: Aspects: topologically different visibility patterns
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Deformable 3D Cuboid Model [Fidler et al., 2012]

Following Felzenswalb et al, the model is scored as:

fw(x) = max
(y ,z)

w · φ(x , y , z)

x . . . image features

y = ±1

z . . . hypothesis representing
angle θ, positions and scales of
stitching point, faces and parts

Reasoning about face visibility
via θ, position, scale of 3D bbox
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Deformable 3D Cuboid Model [Fidler et al., 2012]

score(x , θ, s, f) =
6∑

i=1

V (i , a) · scoreparts(fi , θ) +

+
6∑

i=1

V (i , a)
(
score(fi , θ)− d stitch

a,i · φstichd (fi , s, θ)
)

+

−
6∑

i>ref

V (i , a) · d face
i ,ref φ

face
d (fi , fref , θ) + ba

where V (i , a) a binary variable encoding visibility of face i under aspect a.
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Deformable 3D Cuboid Model [Fidler et al., 2012]

In inference, the model slides and rotates in 3D
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Deformable 3D Cuboid Model [Fidler et al., 2012]

For each viewpoint, the faces are scored in frontal coords.
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Deformable 3D Cuboid Model [Fidler et al., 2012]

Compute deformation with respect to stitching point.
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Deformable 3D Cuboid Model [Fidler et al., 2012]

Compute deformations between face sides

And stitch the hypotheses into a proper deformable cuboid.

For training the model latent SVM [Felzenswalb et al] is used
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Deformable 3D Cuboid Model [Fidler et al., 2012]

Evaluation on Hedau’s bedroom dataset

Bed model was trained with 5 aspects, 4 faces and two parts per face

Faces + parts were shared between different aspects

Figure: Aspects, together with the range of θ that they cover.
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Deformable 3D Cuboid Model [Fidler et al., 2012]

Detectors’ performance Layout rescoring
DPM 3D det. combined DPM 3D det. combined

Hedau et al. 54.2% 51.3% 59.6% - - 62.8%
ours 55.6% 59.4% 60.5% 60.0% 64.6% 63.8%

Table: Detection performance (measured in AP at 0.5 IOU overlap) for the
bedroom dataset.

3D measure DPM fit3D 3D det comb. 3D det+layout comb.+layout
convex hull 48.2% 53.9% 53.9% 57.8% 57.1%
face overlap 16.3% 33.0% 34.4% 33.5% 33.6%

Table: 3D detection performance in AP of predicted and GT boxes)

convex hull measure: convex hulls of our 3D box hypotheses projected to
the image plane and groundtruth annotations overlap at least 50% IOU

face overlap measure: average of the overlaps between top faces and
vertical faces exceeds 50% IOU
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Deformable 3D Cuboid Model [Fidler et al., 2012]
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Deformable 3D Cuboid Model [Fidler et al., 2012]
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Deformable 3D Cuboid Model [Fidler et al., 2012]

Used room layout estimation from [Schwing and Urtasun, ECCV 2012]
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Objects as Compositions of Aspect Parts [Xiang et al., 2012]

Y. Xiang and S. Savarese, Estimating the Aspect Layout of Object Categories, CVPR 2012

Code, data: http://wwweb.eecs.umich.edu/vision/projects/ALM/ALMproj.html

Objects represented as deformable aspect parts (not necessarily orthogonal)

Aspect parts: surfaces either fully visibly or invisible (e.g. a plane)
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Objects as Compositions of Aspect Parts [Xiang et al., 2012]

Obtaining the aspect parts:

Align the poses and scales of CAD models for a class

Aggregate the point cloud and manually mark the parts

Fit planar surfaces (with bounding boxes) to the point cloud of each part
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Objects as Compositions of Aspect Parts [Xiang et al., 2012]

Model the object in each section of a viewpoint sphere as a Conditional
Random Field:

p(object, view) ∼ exp
(
E (
∑
i

wu,iφu(x ,parti ) +
∑
i,j

wp,iφp(parti ,partj)
)
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Objects as Compositions of Aspect Parts [Xiang et al., 2012]

Model the object in each section of a viewpoint sphere as a Conditional
Random Field:

p(object, view) ∼ exp
(
E (
∑
i

wu,iφu(x ,parti ) +
∑
i,j

wp,iφp(parti ,partj)
)

Unary potential:

score each aspect part
in frontal view
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Objects as Compositions of Aspect Parts [Xiang et al., 2012]

Model the object in each section of a viewpoint sphere as a Conditional
Random Field:

p(object, view) ∼ exp
(
E (
∑
i

wu,iφu(x ,parti ) +
∑
i,j

wp,iφp(parti ,partj)
)

Pairwise potentials:

score deformations between
pairs of parts

part dependency forms a tree

S. Fidler, R. Urtasun 3D Indoor Scene Understanding 52 / 61



Objects as Compositions of Aspect Parts [Xiang et al., 2012]

Model the object in each section of a viewpoint sphere as a Conditional
Random Field:

p(object, view) ∼ exp
(
E (
∑
i

wu,iφu(x ,parti ) +
∑
i,j

wp,iφp(parti ,partj)
)

Inference: Dynamic programming

Learning: Structure SVM
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Objects as Compositions of Aspect Parts [Xiang et al., 2012]
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Predicting the Full Extent of Objects

Get a detailed description of objects, going beyond what’s visible

Predict accurate viewpoint, style, full extent of objects

[Guo, Hoiem, Support surface prediction in indoor scenes, ICCV 2013]

motivation video by Efros et al.
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Fitting CAD Models

Goal: Match known detailed 3D CAD model to image:

Before: Do some grouping on the image side to get corners, lines, etc

Before: match one known 3D model to the image evidence

Refs: Dickinson, Lowe, Huttenlocher, etc
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Fitting CAD Models

Now: 3D Warehouse (https://3dwarehouse.sketchup.com/) has
millions of accurate CAD models of objects. 8,375 search results for query
“IKEA”.

Figure: http://ikea.csail.mit.edu/
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Fitting CAD Models

127,915 CAD models for 662 object categories in modelnet

Figure: http://modelnet.cs.princeton.edu/
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Fitting CAD Models

Idea: Train classifiers and learn which local patches can be reliably detected
for each 3D model.

Refs: [Lim et al., ICCV 2013], [Aubry et al., CVPR 2014]
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Parsing IKEA Objects [Lim et al., 2013]

J. J. Lim, H. Pirsiavash, Antonio Torralba. Parsing IKEA Objects: Fine Pose Estimation. ICCV’13]

Data: http://ikea.csail.mit.edu/

Train an LDA classifier for each local patch, find discriminative patches

Feature space: HOG on edge-map

Global alignment via global features (agreement on edges, superpixels,
texture) and RANSAC-style optimization
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Parsing IKEA Objects [Lim et al., 2013]

Figure: Learned discriminative patches vs Harris corners
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Parsing IKEA Objects [Lim et al., 2013]

Figure: Results
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Parsing IKEA Objects [Lim et al., 2013]

Figure: Some failure modes
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Seeing 3D Chairs [Aubry et al., 2010]

M. Aubry, D. Maturana, A. A. Efros, B. Russell, J. Sivic, Seeing 3D chairs: exemplar part-based 2D-3D alignment using
a large dataset of CAD models, CVPR 2014

Code, data: http://www.di.ens.fr/willow/research/seeing3Dchairs/
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Seeing 3D Chairs [Aubry et al., 2010]

Detection:

Retrieval:
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Seeing 3D Chairs [Aubry et al., 2010]

Detection results:

User study:
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CAD Model Datasets

219 models of IKEA furniture from 3D Warehouse:

http://ikea.csail.mit.edu/

1,393 chairs:

http://www.di.ens.fr/willow/research/seeing3Dchairs/

200 cars, 200 beds, 296 sofas, 90 tables, where all models are annotated

with viewpoint and aligned:

http://www.cs.toronto.edu/~fidler/projects/CAD.html

128,000 models for 662 categories, where 10 classes (bathtub, bed, chair,

desk, dresser, monitor, night-stand, sofa, table, toilet) are annotated with

viewpoint (aligned up to scale):

http://modelnet.cs.princeton.edu/
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Indoor Object Detection Datasets

Indoor dataset by Hedau et al., CVPR 2013:

http://vision.cs.uiuc.edu/~vhedau2/Research/data/indoordataset.zip

Indoor-Scene-Objects dataset:

http://wwweb.eecs.umich.edu/vision/3DGP/

Parsing IKEA dataset (has CAD models aligned with images):

http://wwweb.eecs.umich.edu/vision/3DGP/

NYUv2 dataset:

http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html

Additional annotations:

http://aqua.cs.uiuc.edu/site/projects/scenemodel.html

RMRC challenge:

http://cs.nyu.edu/~silberman/rmrc2014/indoor.php
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