Part III: Reconstruction, Localization, Semantics in RGB-D CVPR'15 Tutorial

Sanja Fidler and Raquel Urtasun

June 7, 2015

Reconstruction / Localization

D. F. Fouhey, V. Delaitre, A. Gupta A Efros, I. Laptev, J. Sivic, People Watching: Human Actions as a Cue for Single View Geometry, *ECCV*, 2012

• Exploit human actions and location in time-lapse videos (or single image) to infer functional room geometry (walkable, seatable and reachable surfaces)

Room A

Room B

Room C

Figure: In which room are these people?

D. F. Fouhey, V. Delaitre, A. Gupta A Efros, I. Laptev, J. Sivic, People Watching: Human Actions as a Cue for Single View Geometry, *ECCV*, 2012

• Exploit human actions and location in time-lapse videos (or single image) to infer functional room geometry (walkable, seatable and reachable surfaces)

Room A

Room B

Room C

Figure: In which room are these people?

Answer: Room A

- Detect people and parse their pose
- Infer room layout by imposing that humans are inside the room
- Use layout and human pose to predict the interacting surfaces
- Human pose used to predict contact points with the surfaces

- Detect people and parse their pose
- Infer room layout by imposing that humans are inside the room
- Use layout and human pose to predict the interacting surfaces
- Human pose used to predict contact points with the surfaces

Figure: Poses indicate contact points with the interacting surface.

[Fouhey et al., 2012]

(a) Appearances Only (Hedau *et al*).

(b) Appearances + People (Our approach).

	Location	Appea Lee <i>et al.</i>	rance Only Hedau <i>et al</i> .	People On	ly Appearance + People						
Overall	64.1%	70.4~%	74.9%	70.8%	82.5%						
	Figure: Time-lapse videos										
	Location	ı App	earance Or	ily A	ppearance + People						
		Lee et e	al. Hedau et	al. Ours	with Ground Truth Poses						
Overall	66.4%	71.3%	77.0%	79.6%	80.8%						

S. Fidler, R. Urtasun

[Fouhey et al., 2012]

S. Fidler, R. Urtasun

3D Indoor Scene Understanding

Xiaolong Wang, David F. Fouhey, Abhinav Gupta, Designing Deep Networks or Surface Normal Estimation, Arxiv, Nov 2014

- Goal is to predict surface normals from a single image
- For amazing performance use deep learning

Input Image

Surface Normal (Output)

Normals from Single Image

- Train three networks:
 - Global: input full image, output coarse normals and layout
 - Local: local image patches, output finer normals and edge classification (concave, convex, occlusion)
 - Fusion: take a result form both networks and feed it to another network

- Train three networks:
 - Global: input full image, output coarse normals and layout
 - *Local*: local image patches, output finer normals and edge classification (concave, convex, occlusion)
 - Fusion: take a result form both networks and feed it to another network

- Train three networks:
 - Global: input full image, output coarse normals and layout
 - Local: local image patches, output finer normals and edge classification (concave, convex, occlusion)
 - Fusion: take a result form both networks and feed it to another network

Normals from Single Image

[Wang et al., 2014]

S. Fidler, R. Urtasun

8 / 53

Normals from Single Image

[Wang et al., 2014]

Table 1: Results on NYU v2 for per-pixel surface normal estimation, evaluated over valid pixels.

	Sum	mary Sta	% Good Pixels			
	(L	ower Be	etter)	(Higher Better)		
	Mean	Median	RMSE	11.25°	22.5°	30°
Our Network	25.0	13.8	35.9	44.2	63.2	70.3
UNFOLD [7]	35.1	19.2	48.7	37.6	53.3	58.9
Discr. [20]	32.5	22.4	43.3	27.4	50.2	60.2
3DP (MW) [6]	36.0	20.5	49.4	35.9	52.0	57.8
3DP [6]	34.2	30.0	41.4	18.6	38.6	49.9

K. Karsch, V. Hedau, D. Forsyth, D. Hoiem, Rendering synthetic objects into legacy photographs, SIGGRAPH'11

link to video

How Many Times Have You Looked for Apartments?

United States:

• 11.7% per year

Craigslist:

- 90,000 rental ads per day only in New York
- 10 million people visit the website per day

[From Rent3D slides]

Example Rental Data

• Plus some meta information e.g. wall height

[From Rent3D slides]

Rent3D: View Rental Ads in 3D

[Liu et al., 2015]

C. Liu, A. Schwing, K. Kundu, R. Urtasun, S. Fidler, Rent3D: Floor-Plan Priors for Monocular Layout Estimation, CVPR'15 2015

Data: http://www.cs.utoronto.ca/~fidler/projects/rent3D.html

Rent3D: View Rental Ads in 3D

[Liu et al., 2015]

• Camera localization within apartment

[Liu et al., 2015]

bedroom

Accurate camera localization:

• Scene cues

Accurate camera localization:

- Scene cues
- Semantic cues

[Liu et al., 2015]

Accurate camera localization:

- Scene cues
- Semantic cues
- Geometric cues by exploiting the dimension information

• $r \in \{1, \ldots, R\}$... discrete random variable representing the room

• $r \in \{1, \ldots, R\}$... discrete random variable representing the room

Front wall is the plane defined by vp_0 and vp_1

- $r \in \{1, \ldots, R\}$... discrete random variable representing the room
- $c_r \in \{1, \ldots, |C_r|\}$... a discrete variable representing within room r which wall the picture is facing $(|C_r|$ the number of walls in a room)

- $r \in \{1, \ldots, R\}$... discrete random variable representing the room
- $c_r \in \{1, \ldots, |C_r|\}$... a discrete variable representing within room r which wall the picture is facing $(|C_r|$ the number of walls in a room)

- $r \in \{1, \ldots, R\}$... discrete random variable representing the room
- $c_r \in \{1, \ldots, |C_r|\}$... a discrete variable representing within room r which wall the picture is facing $(|C_r|$ the number of walls in a room)

- $r \in \{1, \ldots, R\}$... discrete random variable representing the room
- $c_r \in \{1, \ldots, |C_r|\}$... a discrete variable representing within room r which wall the picture is facing $(|C_r|$ the number of walls in a room)

- $r \in \{1, \ldots, R\}$... discrete random variable representing the room
- $c_r \in \{1, \ldots, |C_r|\}$... a discrete variable representing within room r which wall the picture is facing $(|C_r|$ the number of walls in a room)
- y ... rays representing a room layout

Typical parametrization for room layout (Hedau et al.):

- Room is a 3D cuboid
- $\mathbf{y} = (y_1, y_2, y_3, y_4)$
- 4 rays needed to define it

- $r \in \{1, \ldots, R\}$... discrete random variable representing the room
- $c_r \in \{1, \ldots, |C_r|\}$... a discrete variable representing within room r which wall the picture is facing ($|C_r|$ the number of walls in a room)
- y ... rays representing a room layout
- The problem formulated as inference in a Conditional Random Field with the following energy:

$$E(r, c_r, \mathbf{y}) = E_{scene_type}(r) + E_{layout}(r, c_r, \mathbf{y}) + E_{win}(r, c_r, \mathbf{y})$$

$$E(r, c_r, \mathbf{y}) = E_{scene_type}(r) + E_{layout}(r, c_r, \mathbf{y}) + E_{win}(r, c_r, \mathbf{y})$$

• **Potential:** Score of a scene classifier predicting scene type (e.g., bedroom, kitchen, reception)

$$E(r, c_r, \mathbf{y}) = E_{scene_type}(r) + E_{layout}(r, c_r, \mathbf{y}) + E_{win}(r, c_r, \mathbf{y})$$

• **Potential:** Score of a scene classifier predicting scene type (e.g., bedroom, kitchen, reception)

Energy Terms: Layout

$$E(r, c_r, \mathbf{y}) = E_{scene_type}(r) + E_{layout}(r, c_r, \mathbf{y}) + E_{win}(r, c_r, \mathbf{y})$$

Orientation Map (Lee et al.)

Geometric Context (Hedau et al.)

Energy Terms: Layout

$$E(r, c_r, \mathbf{y}) = E_{scene_type}(r) + E_{layout}(r, c_r, \mathbf{y}) + E_{win}(r, c_r, \mathbf{y})$$

- Potentials: Counts of blue, red, etc, pixels inside and outside of each wall
- Fast computation using integral geometry [Schwing et al., 2012]

Energy Terms: Layout

$$E(r, c_r, \mathbf{y}) = E_{scene_type}(r) + E_{layout}(r, c_r, \mathbf{y}) + E_{win}(r, c_r, \mathbf{y})$$

17 / 53
Energy Terms: Layout

$$E(r, c_r, \mathbf{y}) = E_{scene_type}(r) + E_{layout}(r, c_r, \mathbf{y}) + E_{win}(r, c_r, \mathbf{y})$$

•
$$\mathbf{y} = (y_1, y_2, y_3, \mathbf{y}_4), \quad y_4 = f(r, c_r, y_1, y_2, y_3)$$

Energy Terms: Layout

$$E(r, c_r, \mathbf{y}) = E_{scene_type}(r) + E_{layout}(r, c_r, \mathbf{y}) + E_{win}(r, c_r, \mathbf{y})$$

- $\mathbf{y} = (y_1, y_2, y_3, \mathbf{y}_4), \quad y_4 = f(r, c_r, y_1, y_2, y_3)$
- Additional constraint on **y**: Camera is **inside** the room

Energy Terms: Windows

$$E(r, c_r, \mathbf{y}) = E_{scene_type}(r) + E_{layout}(r, c_r, \mathbf{y}) + E_{win}(r, c_r, \mathbf{y})$$

• Window-background segmentation

Energy Terms: Windows

$$E(r, c_r, \mathbf{y}) = E_{scene_type}(r) + E_{layout}(r, c_r, \mathbf{y}) + E_{win}(r, c_r, \mathbf{y})$$

- Window-background segmentation
- Potential: count window pixels inside and outside the window area

Learning and Inference

• We are minimizing the energy:

$$(r^*, c_r^*, \mathbf{y}^*) = \underset{r, c_r, \mathbf{y}}{\operatorname{argmin}} \left(E_{scene_type}(r) + E_{layout}(r, c_r, \mathbf{y}) + E_{win}(r, c_r, \mathbf{y}) \right)$$

Learning and Inference

• We are minimizing the energy:

$$(r^*, c_r^*, \mathbf{y}^*) = \underset{r, c_r, \mathbf{y}}{\operatorname{argmin}} \left(E_{scene_type}(r) + E_{layout}(r, c_r, \mathbf{y}) + E_{win}(r, c_r, \mathbf{y}) \right)$$

Inference:

- Exhaustive enumeration of r and cr
- Exact branch and bound inference for y [Schwing & Urtasun, 2012]

Learning and Inference

• We are minimizing the energy:

$$(r^*, c_r^*, \mathbf{y}^*) = \underset{r, c_r, \mathbf{y}}{\operatorname{argmin}} \left(E_{scene_type}(r) + E_{layout}(r, c_r, \mathbf{y}) + E_{win}(r, c_r, \mathbf{y}) \right)$$

Inference:

- Exhaustive enumeration of r and cr
- Exact branch and bound inference for y [Schwing & Urtasun, 2012]
- S-SVM for training

Dataset

• Crawled a London apartment rental site

# apartments	215
# of images	1570
# of indoor images	1259
# images without GT alignment	82
avg. $\#$ rooms per apt	6
avg. $\#$ walls per apt	31
avg. $\#$ windows per apt	6
avg. $\#$ doors per apt	9

- We assume we know which wall the camera is facing
- Metrics: Pixel accuracy for predicting 5 walls

	Layout error	Evaluations	Test time [s]
Schwing'12	13.88	16012.4	0.0208
Rent3D	11.69	1271.5	0.0037

- We assume we know which wall the camera is facing
- Metrics: Pixel accuracy for predicting 5 walls

	Layout error	Evaluations	Test time [s]
Schwing'12	13.88	16012.4	0.0208
Rent3D	11.69	1271.5	0.0037

• 2% reduction in layout error

- We assume we know which wall the camera is facing
- Metrics: Pixel accuracy for predicting 5 walls

	Layout error	Evaluations	Test time [s]
Schwing'12	13.88	16012.4	0.0208
Rent3D	11.69	1271.5	0.0037

- 2% reduction in layout error
- 10 times less branching operations

- We assume we know which wall the camera is facing
- Metrics: Pixel accuracy for predicting 5 walls

	Layout error	Evaluations	Test time [s]
Schwing'12	13.88	16012.4	0.0208
Rent3D	11.69	1271.5	0.0037

- 2% reduction in layout error
- 10 times less branching operations
- 10x speedup

• Metrics: % of correct assignments of front wall to the apartment wall

	Aspect	+Scene	+Room
Random	0.0328	0.1138	0.1954
Rent3D (no windows)	0.0686	0.1945	0.2654
Rent3D (windowGT)	0.2128	0.4737	0.5995
Rent3D (window)	0.1670	0.3982	0.5080

• Metrics: % of correct assignments of front wall to the apartment wall

	Aspect	+Scene	+Room
Random	0.0328	0.1138	0.1954
Rent3D (no windows)	0.0686	0.1945	0.2654
Rent3D (windowGT)	0.2128	0.4737	0.5995
Rent3D (window)	0.1670	0.3982	0.5080

Aspect: Only aspect ratio information (and not scene) used

• Metrics: % of correct assignments of front wall to the apartment wall

	Aspect	+Scene	+Room
Random	0.0328	0.1138	0.1954
Rent3D (no windows)	0.0686	0.1945	0.2654
Rent3D (windowGT)	0.2128	0.4737	0.5995
Rent3D (window)	0.1670	0.3982	0.5080

+Scene: Aspect information and scene classifier are used

• Metrics: % of correct assignments of front wall to the apartment wall

	Aspect	+Scene	+Room
Random	0.0328	0.1138	0.1954
Rent3D (no windows)	0.0686	0.1945	0.2654
Rent3D (windowGT)	0.2128	0.4737	0.5995
Rent3D (window)	0.1670	0.3982	0.5080

+Room: We know which room the picture was taken in

• Metrics: % of correct assignments of front wall to the apartment wall

	Aspect	+Scene	+Room
Random	0.0328	0.1138	0.1954
Rent3D (no windows)	0.0686	0.1945	0.2654
Rent3D (windowGT)	0.2128	0.4737	0.5995
Rent3D (window)	0.1670	0.3982	0.5080

• Metrics: % of correct assignments of front wall to the apartment wall

	Aspect	+Scene	+Room
Random	0.0328	0.1138	0.1954
Rent3D (no windows)	0.0686	0.1945	0.2654
Rent3D (windowGT)	0.2128	0.4737	0.5995
Rent3D (window)	0.1670	0.3982	0.5080

Results: Joint Layout and Localization

[Liu et al., 2015]

Red arrow: Groundtruth camera

Green arrow: Predicted camera

S. Fidler, R. Urtasun

23 / 53

Results

J. Xiao and Y. Furukawa, Reconstructing the Worlds Museums, IJCV, 2014

- Virtual tour of large indoor spaces (e.g., museums)
- Uses a rig of cameras and three linear laser range sensors

Reconstructing Museums

- Virtual tour of large indoor spaces (e.g., museums)
- Uses a rig of cameras and three linear laser range sensors

Figure: Red and blue points obtained with two different laser scanners

S. Fidler, R. Urtasun

Reconstructing Museums

[Xiao and Furukawa, 2014]

S. Fidler, R. Urtasun

Reconstructing Museums

[Xiao and Furukawa, 2014]

Reconstructing Indoor Tourist Sites

R. Martin-Brualla, Y. He, B. C. Russell, S. M. Seitz, The 3D jigsaw puzzle: mapping large indoor spaces, *ECCV*, 2014 **Project page:** http://grail.cs.washington.edu/projects/jigsaw3d/

- SfM using Internet photos of popular tourist sites
- Place 3D models in a global reference frame (a floormap)

Reconstructing Indoor Tourist Sites

[Brualla et al., 2014]

Figure: Localization results

Figure: Interactive visualization (link to video

S. Fidler, R. Urtasun

3D Indoor Scene Understanding

Indoor Scene Understanding with RGB-D Data

Difficult problem?

Occlusion

Viewpoint, aspect-ratio variation

S. Fidler, R. Urtasun

S. Gupta, R. Girshick, P. Arbelaez, J. Malik, Learning Rich Features from RGB-D Images for Object Detection and Segmentation, *ECCV'14* Code, data: https://github.com/s-gupta/rcnn-depth

- Observation: The standard R-CNN pipeline doesn't work well for detection on NYU-v2
- Can we train a better network that includes depth?

	mean	bath	bed	book	\mathbf{box}	chair	count-	desk	door	dress-	garba-	lamp	monit-	night	pillow	sink	sofa	table	tele	toilet
		tub		shelf			-er			-er	-ge bin		-or	stand					vision	
RGB DPM	9.0	0.9	27.6	9.0	0.1	7.8	7.3	0.7	2.5	1.4	6.6	22.2	10.0	9.2	4.3	5.9	9.4	5.5	5.8	34.4
RGBD-DPM	23.9	19.3	56.0	17.5	0.6	23.5	24.0	6.2	9.5	16.4	26.7	26.7	34.9	32.6	20.7	22.8	34.2	17.2	19.5	45.1
RGB R-CNN	22.5	16.9	45.3	28.5	0.7	25.9	30.4	9.7	16.3	18.9	15.7	27.9	32.5	17.0	11.1	16.6	29.4	12.7	27.4	44.1

- Trick: Use network pre-trained on e.g. ImageNet and fine-tune it on a 3D depth encoding "HHA"
- HHA: horizontal disparity, height above ground, and the angle between pixel's normal and the inferred gravity direction

• Fine-tune network on synthetic views generated with Guo & Hoiem's models

[Gupta et al., 2014]

	A	в	C	D	E	\mathbf{F}	G	H	Ι	J	Κ	L	
	DPM	DPM	CNN	CNN	CNN	CNN	CNN	CNN	CNN	CNN	CNN	CNN	
finetuned?			no	yes	no	yes	yes	yes	yes	yes	yes	yes	
input channels	RGB	RGBD	RGB	RGB	disparity	disparity	HHA	HHA	HHA	HHA	HHA	RGB+HHA	
synthetic data?								2x	15x	2x	2x	2x	
CNN layer			fc6	fc6	fc6	fc6	fc6	fc6	fc6	pool5	fc7	fc6	
bathtub	0.1	12.2	4.9	5.5	3.5	6.1	20.4	20.7	20.7	11.1	19.9	22.9	
bed	21.2	56.6	44.4	52.6	46.5	63.2	60.6	67.2	67.8	61.0	62.2	66.5	
bookshelf	3.4	6.3	13.8	19.5	14.2	16.3	20.7	18.6	16.5	20.6	18.1	21.8	
box	0.1	0.5	1.3	1.0	0.4	0.4	0.9	1.4	1.0	1.0	1.1	3.0	
chair	6.6	22.5	21.4	24.6	23.8	36.1	38.7	38.2	35.2	32.6	37.4	40.8	
counter	2.7	14.9	20.7	20.3	18.5	32.8	32.4	33.6	36.3	24.1	35.0	37.6	
desk	0.7	2.3	2.8	6.7	1.8	3.1	5.0	5.1	7.8	4.2	5.4	10.2	
door	1.0	4.7	10.6	14.1	0.9	2.3	3.8	3.7	3.4	2.8	3.3	20.5	
dresser	1.9	23.2	11.2	16.2	3.7	5.7	18.4	18.9	26.3	13.1	24.7	26.2	
garbage-bin	8.0	26.6	17.4	17.8	2.4	12.7	26.9	29.1	16.4	21.4	25.3	37.6	
lamp	16.7	25.9	13.1	12.0	10.5	21.3	24.5	26.5	23.6	22.3	23.2	29.3	
monitor	27.4	27.6	24.8	32.6	0.4	5.0	11.5	14.0	12.3	17.7	13.5	43.4	
night-stand	7.9	16.5	9.0	18.1	3.9	19.1	25.2	27.3	22.1	25.9	27.8	39.5	
pillow	2.6	21.1	6.6	10.7	3.8	23.4	35.0	32.2	30.7	31.1	31.2	37.4	
$_{\rm sink}$	7.9	36.1	19.1	6.8	20.0	28.5	30.2	22.7	24.9	18.9	23.0	24.2	
sofa	4.3	28.4	15.5	21.6	7.6	17.3	36.3	37.5	39.0	30.2	34.3	42.8	
table	5.3	14.2	6.9	10.0	12.0	18.0	18.8	22.0	22.6	21.0	22.8	24.3	
television	16.2	23.5	29.1	31.6	9.7	14.7	18.4	23.4	26.3	18.9	22.9	37.2	
toilet	25.1	48.3	39.6	52.0	31.2	55.7	51.4	54.2	52.6	38.4	48.8	53.0	
mean	8.4	21.7	16.4	19.7	11.3	20.1	25.2	26.1	25.6	21.9	25.3	32.5	

S. Fidler, R. Urtasun

[Gupta et al., 2014]

Aligning CAD Models in RGB-D

S. Gupta, P. Arbelaez, R. Girshick, J. Malik , Aligning 3D Models to RGB-D Images of Cluttered Scenes, CVPR'15

• Goal: Align CAD models in RGB-D scenes

Aligning CAD Models in RGB-D

- Generate object candidates using previous approach
- A deep net that predicts coarse pose (trained with model net)
- A modified ICP to match a small number of category CAD models

[Gupta et al., 2015]

task		fine tuning set	mean	bath tub	bed	book shelf	box	chair	counter	desk	door	dresser	garbage bin	lamp	monitor	night stand	pillow	sink	sofa	table	tele vi- sion	toilet
AP^b	[13]	train	35.9	39.5	69.4	32.8	1.3	41.9	44.3	13.3	21.2	31.4	35.8	35.8	50.1	31.4	39.0	42.4	50.1	23.5	33.3	46.4
	[13] + Region Features	train	39.3	50.0	70.6	34.9	3.0	45.2	48.7	15.2	23.5	32.6	48.3	34.9	50.2	32.2	44.2	43.1	54.9	23.4	41.5	49.9
	[13]	trainval	38.8	36.4	70.8	35.1	3.6	47.3	46.8	14.9	23.3	38.6	43.9	37.6	52.7	40.7	42.4	43.5	51.6	22.0	38.0	47.7
	[13] + Region Features	trainval	41.2	39.4	73.6	38.4	5.9	50.1	47.3	14.6	24.4	42.9	51.5	36.2	52.1	41.5	42.9	42.6	54.6	25.4	48.6	50.2
AP^r	[13] (Random Forests)	train	32.1	18.9	66.1	10.2	1.5	35.5	32.8	10.2	22.8	33.7	38.3	35.5	53.3	42.7	31.5	34.4	40.7	14.3	37.4	50.3
	[13] + Region Features	train	34.0	33.8	64.4	9.8	2.3	36.6	41.3	9.7	20.4	30.9	47.4	26.6	51.6	27.5	42.1	37.1	44.8	14.7	42.7	62.6
	[13] + Region Features	trainval	37.5	42.0	65.1	12.7	5.1	42.0	42.1	9.5	20.5	38.0	50.3	32.8	54.5	38.2	42.0	39.4	46.6	14.8	48.0	68.4

Figure: Detection and instance segmentation

			3D	all			3D clean							
	mean	bed	chair	sofa	table	toilet	mean	bed	chair	sofa	table	toilet		
Our (3D Box on instance segm. from [13])	48.4	74.7	18.6	50.3	28.6	69.7	66.1	90.9	45.9	68.2	25.5	100.0		
Our (3D Box around estimated model)	58.5	73.4	44.2	57.2	33.4	84.5	71.1	82.9	72.5	75.3	24.6	100.0		
Song and Xiao [34]	39.6	33.5	29.0	34.5	33.8	67.3	64.6	71.2	78.7	41.0	42.8	89.1		
Our [no RGB1] (3D Box on instance segm. from [13])	46.5	71.0	18.2	49.6	30.4	63.4	62.3	86.9	43.6	57.4	26.6	96.7		
Our [no RGB1] (3D Box around estimated model)	57.6	72.7	47.5	54.6	40.6	72.7	70.7	84.9	75.7	62.8	33.7	96.7		

Figure: 3D detection
Aligning CAD Models in RGB-D

[Gupta et al., 2015]

Holistic Scene Understanding

• Reasoning jointly about multiple related tasks may help

mirror shower towels beauty curtain products toilet sink cabinet

bathroom

Holistic Scene Understanding

D. Lin, S. Fidler, R. Urtasun, Holistic Scene Understanding for 3D Object Detection with RGBD cameras, *ICCV'13* Code, data: http://www.cs.utoronto.ca/~fidler/projects/scenes3D.html

- Exploit RGBD imagery for category-level 3D object detection
- Holistic approach: jointly reason about scene, objects, and context

image

depth

point cloud with cuboids around objects

Cuboid Candidates

- Get candidate "objectness" regions with CPMC [Carreira et al., PAMI 2012] extended to 3D
- Take top K candidates ranked by objectness score
- Project each region to 3D
- Fit a minimal cube that contains 95% of the 3D points
- Enforce the gravity vector of each cube to be orthogonal to the floor

[Lin et al., 2013]

example regions

regions in 3D

fit cuboids

S. Fidler, R. Urtasun

3D Indoor Scene Understanding

Holistic 3D Scene Model

[Lin et al., 2013]

$$p(\mathbf{y}, s) \propto \exp\left(\mathbf{w}_{\mathbf{s}}^{\mathsf{T}} \phi_{s}(s) + \mathbf{w}_{\mathbf{y}}^{\mathsf{T}} \sum_{i=1}^{K} \phi_{y}(y_{i}) + \mathbf{w}_{\mathbf{yy}}^{\mathsf{T}} \sum_{(i,j)} \phi_{yy}(y_{i}, y_{j}) + \mathbf{w}_{\mathbf{sy}}^{\mathsf{T}} \sum_{i=1}^{K} \phi_{sy}(s, y_{i})\right)$$

cuboid class: $y_i \in \{0, \ldots, C\}$

scene class: $s \in \{1, \dots, S\}$

Unary:

- appearance
- geometry

Pairwise:

- spatial relations
- semantic relations

Unary Potentials

- Scene appearance: Classifier on RGB-D features
- **Ranking potential:** Predicts amount of overlap of object candidate with ground-truth [CPMC-o2p, Carreira et al., 2012]
- Segmentation potential: Classifier on superpixels using RGB-D kernel descriptors
- Object geometry: Classifier on geometric features

RGB-D features:

- RGB: gradient, color, LBP, self-similarity, SIFT
- Depth: depth gradient, spin/surface normal

Semantic context:

scene-object potential:

 $\phi_{sy}(s = k, y = l) = \text{scene-object co-occurrence stats}$

object-object potential

 $\phi_{yy}(y = l, y' = l') = \text{object-object co-occurrence stats}$

Geometric relations:

- **close-to**: Two objects are *close to* each other if their distance is less than 0.5 meters.
- **on-top-of**: Object *A* is *on top of B* if *A* is higher than *B* and (at least) 80% of *A*'s bottom face is contained within the top face of *B*.

Learning and Inference

- Loss: how far from GT is each hypothesis
 - $\bullet~$ Object: 0/1~loss based on IOU with GT
 - Scene: 0/1 loss
- Learning: Primal dual method blending learning and inference [Hazan and Urtasun, NIPS 2010]
- Inference: Distributed message passing [Schwing et al., CVPR 2011]
- Timings:
 - learning takes 2 minutes (\sim 800 images)
 - inference takes 15 ms per image (15 cuboids per image)

On Intel i7 quad-core CPU (4 threads)

Results

- NYUv2 [Silberman et al, 2012]: 1449 scenes, 6680 objects, 21 object classes + background
- Ground truth: Fit 3D cuboids around GT regions and correct bad fits
- Standard split: 60% of images used for training and 40% for test

Results on GT Cuboids

- Performance of scene measured in classification accuracy
- Performance evaluated on GT cuboids, measured as classification accuracy

configuration	object	scene
scene appearance only	-	55.20
segmentation only	54.46	-
geometry only	42.85	-
all unaries	59.02	55.20
unaries + scene-obj	60.00	57.65
full model	60.49	58.72

Full Detection Pipeline

- Performance measured as average of per-class F-measures
- DPM: [Felzenswalb et al., TPAMI, 2010]
- Jiang'13: Cuboids from [H. Jiang and J. Xiao, CVPR, 2013]

	DPM	seg.	seg.+geo.	all unaries	+scene-object	full model
[Jiang'13]	-	11.11	21.13	21.90	22.19	22.3
K = 8	8.01	28.98	30.22	35.17	35.18	35.23
K = 15	6.54	28.33	29.44	34.92	34.95	35.56
K = 30	4.96	24.81	25.58	32.54	32.57	33.10

[Lin et al., 2013]

Example Detections

[Lin et al., 2013]

S. Fidler, R. Urtasun

3D Indoor Scene Understanding

Predicting Complete 3D Models

R. Guo, C. Zou, D. Hoiem, Predicting Complete 3D Models of Indoor Scenes , arXiv:1504.02437, 2015

 Generates layout and object candidates, and re-reasons about the best configuration in a holistic way

Predicting Complete 3D Models

[Guo et al., 2015]

link to video

51 / 53

• NYUv2 dataset:

http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html

• RMRC challenge:

http://cs.nyu.edu/~silberman/rmrc2014/indoor.php

- B3DO: Berkeley 3-D Object Dataset: http://kinectdata.com/
- SUN RGB-D:

http://rgbd.cs.princeton.edu/

Discussion

- What is missing?
- What are the next steps?