

University of Toronto Faculty of Arts and Science Department of Computer Science

Reasoning with Neural Networks

Rodrigo Toro Icarte (rntoro@cs.toronto.edu)

March 08, 2016

<ロ> (四) (四) (四) (日) (日)

Motivation

Reasoning with Neural Networks

Could a crocodile run a steeplechase?¹

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

Symbolic approach

KB:

 $\begin{array}{l} \cdots \\ \forall x.Crocodile(x) \supset WeakLegs(x) \\ \cdots \\ \forall x.WeakLegs(x) \supset \neg CanJump(x) \\ \cdots \\ \forall x.\neg CanJump(x) \supset \neg CanSteeplechase(x) \\ \cdots \end{array}$

Query: $\neg \exists x.Crocodile(x) \land CanSteeplechase(x)$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Symbolic approach

Strategy: Contradiction proof. Assume query is false: $Crocodile(a) \wedge CanSteeplechase(a)$

Question

ション ふゆ マ キャット マックシン

References

Symbolic approach

Strategy: Contradiction proof. Assume query is false: $Crocodile(a) \wedge CanSteeplechase(a)$

Questions

ション ふゆ マ キャット マックシン

References

Symbolic approach

Strategy: Contradiction proof. Assume query is false: $Crocodile(a) \wedge CanSteeplechase(a)$

Observations:

- This is SLD resolution.

Question

ション ふゆ マ キャット マックシン

References

Symbolic approach

Strategy: Contradiction proof. Assume query is false: $Crocodile(a) \wedge CanSteeplechase(a)$

Observations:

- This is SLD resolution.
- Scalability problems.

Reasoning with Neural Networks

Questions

References

A Neural Conversational Model Vinyals & Le (2015)

They trained a seq2seq:

Credit: Vinyals & Le

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

... with movie subtitles.

Reasoning with Neural Networks

Questions

うして ふゆう ふほう ふほう ふしつ

References

A Neural Conversational Model Vinyals & Le (2015)

Human: who is skywalker? Machine: he is a hero.

Human: what is the color of the sky ? Machine: blue .

Human: how many legs does a cat have ? Machine: four , i think .

Human: what is the purpose of living ? Machine: to live forever

Reasoning with Neural Networks

Question

References

Research question

Can we use neural networks for common sense reasoning?

ション ふゆ マ キャット マックシン

Long term goal

Reasoning with Neural Networks

Questions

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

References

Reasoning with Neural Networks

Two main branches:

- Common Sense embeddings.
- Neural Reasoners.

Reasoning with Neural Networks

Common Sense embeddings Hinton (1990)

Reasoning with Neural Networks

Questions

References

Common Sense embeddings Hinton (1990)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Reasoning with Neural Networks

Questions

References

Common Sense embeddings McClelland & Rogers (2003)

Reasoning with Neural Networks

Questions

References

Common Sense embeddings McClelland & Rogers (2003)

ł

Reasoning with Neural Networks

Questions

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

References

Common Sense embeddings McClelland & Rogers (2003)

DC's delayed copy of a swan

Reasoning with Neural Networks

Questions

ション ふゆ マ キャット マックシン

References

Common Sense embeddings Socher et al. (2013)

Reasoning with neural tensor networks for knowledge base completion.

Reasoning with Neural Networks

Questions

References

Common Sense embeddings Socher et al. (2013)

Reasoning with neural tensor networks for knowledge base completion.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへぐ

Reasoning with Neural Networks

Questions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

References

Common Sense embeddings Socher et al. (2013)

Reasoning with Neural Networks

Questions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

References

Common Sense embeddings Bowman et al. (2014)

Recursive neural networks can learn logical semantics.

Reasoning with Neural Networks

Questions

References

Common Sense embeddings Bowman et al. (2014)

Recursive neural networks can learn logical semantics.

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Reasoning with Neural Networks

Common Sense embeddings Bowman et al. (2014)

$$\overrightarrow{y}_{\text{TreeRNN}} = f\left(\mathbf{M}\left[\begin{array}{c}\overrightarrow{x}^{(l)}\\\overrightarrow{x}^{(r)}\end{array}\right] + \overrightarrow{b}\right)$$
$$\overrightarrow{y}_{\text{TreeRNTN}} = \overrightarrow{y}_{\text{TreeRNN}} + f(\overrightarrow{x}^{(l)T}\mathbf{T}^{[1...n]}\overrightarrow{x}^{(r)})$$

R

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Reasoning with Neural Networks

Question

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

References

Common Sense embeddings Bowman et al. (2014)

Name	Symbol	Set-theoretic definition	Example
(strict) entailment (strict) reverse entailment equivalence alternation negation cover independence	$\begin{array}{c} x \sqsubset y \\ x \sqsupset y \\ x \equiv y \\ x \mid y \\ x^{\wedge} y \\ x \smile y \\ x \# y \end{array}$	$ \begin{array}{l} x \subset y \\ x \supset y \\ x = y \\ x \cap y = \emptyset \land x \cup y \neq \mathcal{D} \\ x \cap y = \emptyset \land x \cup y = \mathcal{D} \\ x \cap y \neq \emptyset \land x \cup y = \mathcal{D} \\ (else) \end{array} $	turtle, reptile reptile, turtle couch, sofa turtle, warthog able, unable animal, non-turtle turtle, pet

Reasoning with Neural Networks

Questions

References

Common Sense embeddings Bowman et al. (2014)

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨ - のへで

Reasoning with Neural Networks

Questions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

References

Common Sense embeddings Bowman et al. (2014)

Reasoning with Neural Networks

Questions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

References

Common Sense embeddings Bowman et al. (2014)

Train	Test
$p_1 \equiv p_2$	$p_2 \wedge p_7$
$p_1 \sqsupseteq p_5$	$p_2 \sqsupseteq p_5$
$p_4 \sqsupseteq p_8$	$p_5 \equiv p_6$
$p_5 \mid p_7$	$p_7 \sqsubseteq p_4$
$p_7 \stackrel{\wedge}{} p_1$	$p_8 \sqsubset p_4$

Questions

References

Common Sense embeddings Bowman et al. (2014)

Train	Test
$p_1 \equiv p_2$	$p_2 \stackrel{\wedge}{} p_7$
$p_1 \ \square \ p_5 \ p_4 \ \square \ p_8$	$p_2 ot p_5 \ p_5 \equiv p_6$
$p_5 \mid p_7 \ n_7 \stackrel{\wedge}{} n_1$	$p_7 \sqsubseteq p_4$ $p_8 \sqsubseteq p_4$
$p_7 \stackrel{\wedge}{} p_1$	$p_8 \sqsubset p_4$

	Train	Test
# only	53.8 (10.5)	53.8 (10.5)
15d NN	99.8 (99.0)	94.0 (87.0)
15d NTN	100 (100)	99.6 (95.5)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Reasoning with Neural Networks

Questions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

References

Common Sense embeddings Bowman et al. (2014)

not p_3	\wedge	p_3
not not p_6	\equiv	p_6
p_3		$(p_3 \ or \ p_2)$
$(p_1 \ or (p_2 \ or p_4))$		$(p_2 and not p_4)$
<i>not</i> (<i>not</i> p_1 <i>and not</i> p_2)	\equiv	$(p_1 \ or \ p_2)$

Reasoning with Neural Networks

Questions

References

Common Sense embeddings Bowman et al. (2014)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Reasoning with Neural Networks

Common Sense embeddings Bowman et al. (2014)

> (most turtle) swim | (no turtle) move (all lizard) reptile \sqsubset (some lizard) animal (most turtle) reptile | (all turtle) (not animal)

> > ・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Reasoning with Neural Networks

Common Sense embeddings Bowman et al. (2014)

> (most turtle) swim | (no turtle) move (all lizard) reptile \sqsubset (some lizard) animal (most turtle) reptile | (all turtle) (not animal)

	Train	Test	
# only	35.4 (7.5)	35.4 (7.5)	
25d SumNN	96.9 (97.7)	93.9 (95.0)	
25d TreeRNN	99.6 (99.6)	99.2 (99.3)	
25d TreeRNTN	100 (100)	99.7 (99.5)	

Reference

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Reasoning with Neural Networks

Question

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

References

Common Sense embeddings Bowman et al. (2014)

${\bf SICK}$ textual entailment challenge

The patient is being helped by the doctor	entailment	The doctor is helping the patient (PASSIVE)
A little girl is playing the violin on a beach	contradiction	There is no girl playing the violin on a beach (NEG)
The yellow dog is drinking water from a bottle	contradiction	The yellow dog is drinking water from a pot (SUBST)
A woman is breaking two eggs in a bowl	neutral	A man is mixing a few ingredients in a bowl (MULTIED)
Dough is being spread by a man	neutral	A woman is slicing meat with a knife (DIFF)

Reasoning with Neural Networks

Questions

References

Common Sense embeddings Bowman et al. (2014)

n	<i>eutral</i> only	30d SumNN	30d TrRNN	50d TrRNTN
DG Train	50.0	68.0	67.0	74.0
SICK Train	56.7	96.6	95.4	97.8
SICK Test	56.7	73.4	74.9	76.9
PASSIVE (4%)	0	76	68	88
NEG (7%)	0	96	100	100
SUBST (24%)	28	72	64	72
MULTIED (39%)	68	61	66	64
DIFF (26%)	96	68	79	96
Short (47%)	50.0	73.9	73.5	77.3

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Questions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

References

ション ふゆ く は く は く む く む く し く

Reasoning about facts

The bAbI project (Weston et al. (2015)).

Task 15: Basic Deduction	Task 16: Basic Induction
Sheep are afraid of wolves.	Lily is a swan.
Cats are afraid of dogs.	Lily is white.
Mice are afraid of cats.	Bernhard is green.
Gertrude is a sheep.	Greg is a swan.
What is Gertrude afraid of? A:wolves	What color is Greg? A:white
Task 17: Positional Reasoning	Task 18: Size Reasoning
The triangle is to the right of the blue square.	The football fits in the suitcase.
The red square is on top of the blue square.	The suitcase fits in the cupboard.
The red sphere is to the right of the blue square.	The box is smaller than the football.
Is the red sphere to the right of the blue square? A:yes	Will the box fit in the suitcase? A:yes
Is the red square to the left of the triangle? A:ves	Will the cupboard fit in the box? A:no

Questions

ション ふゆ マ キャット マックシン

Reasoning about facts

Three models have been proposed:

- Dynamic Networks (Kumar et al. (2015))
- Memory Networks (Sukhbaatar et al. (2015))
- Neural Reasoner (Peng et al. (2015))

Questions

References

Reasoning about facts

Credit: Sukhbaatar et al. (2015)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Credit: Kumar et al. (2015)

Questions

References

Questions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

References

Credit: Sukhbaatar et al. (2015)

ション ふゆ マ キャット マックシン

Reasoning about facts

SLD resolution.

Reasoning with Neural Networks

Questions

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

References

Reasoning about facts Testing Memory Networks

Facts

mice are afraid of sheep wolves are afraid of cats jessica is a wolf sheep are afraid of cats winona is a mouse cats are afraid of mice gertrude is a cat emily is a wolf

Questions

what is jessica afraid of?

Reasoning with Neural Networks

Question

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

References

Reasoning about facts Testing Memory Networks

Facts

mice are afraid of sheep wolves are afraid of cats jessica is a wolf sheep are afraid of cats winona is a mouse cats are afraid of mice gertrude is a cat emily is a wolf

Questions

what is jessica afraid of? A: cat (99.74%)

Reasoning with Neural Networks

Question

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

References

Reasoning about facts Testing Memory Networks

Facts

mice are afraid of sheep wolves are afraid of cats jessica is a wolf sheep are afraid of cats winona is a mouse cats are afraid of mice gertrude is a cat emily is a wolf

Questions

what is jessica afraid of? A: cat (99.74%) is emily afraid of gertrude?

Reasoning with Neural Networks

Question

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

References

Reasoning about facts Testing Memory Networks

Facts

mice are afraid of sheep wolves are afraid of cats jessica is a wolf sheep are afraid of cats winona is a mouse cats are afraid of mice gertrude is a cat emily is a wolf

Questions

what is jessica afraid of?A: cat (99.74%)is emily afraid of gertrude?A: cat (71.79%)

Reasoning with Neural Networks

Question

うして ふゆう ふほう ふほう ふしつ

References

Reasoning about facts Testing Memory Networks

Facts

the triangle is to the left of the red square the pink rectangle is below the triangle

Questions

is the red square to the right of the pink rectangle?

Reasoning with Neural Networks

Question

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

References

Reasoning about facts Testing Memory Networks

Facts

the triangle is to the left of the red square the pink rectangle is below the triangle

Questions

is the red square to the right of the pink rectangle? A: yes (87%)

Reasoning with Neural Networks

Question

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

References

Reasoning about facts Testing Memory Networks

Facts

the triangle is to the left of the red square the pink rectangle is below the triangle

Questions

is the red square to the right of the pink rectangle? A: yes (87%) is the red square to the left of the pink rectangle?

Reasoning with Neural Networks

Question

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

References

Reasoning about facts Testing Memory Networks

Facts

the triangle is to the left of the red square the pink rectangle is below the triangle

Questions

is the red square to the right of the pink rectangle? A: yes (87%) is the red square to the left of the pink rectangle? A: yes (92%)

Reasoning with Neural Networks

Questions

うして ふゆう ふほう ふほう ふしつ

References

Reasoning about facts Testing Memory Networks

Facts

sandra and daniel journeyed to the bedroom john and sandra travelled to the garden sandra and john travelled to the bedroom mary and sandra went back to the kitchen sandra and mary travelled to the bedroom john and mary moved to the office

Questions

where is daniel?

Reasoning with Neural Networks

Questions

References

Reasoning about facts Testing Memory Networks

Facts

sandra and daniel journeyed to the bedroom john and sandra travelled to the garden sandra and john travelled to the bedroom mary and sandra went back to the kitchen sandra and mary travelled to the bedroom john and mary moved to the office

Questions

where is daniel?

A: bedroom (99.60%)

うして ふゆう ふほう ふほう ふしつ

Reasoning with Neural Networks

Questions

うして ふゆう ふほう ふほう ふしつ

References

Reasoning about facts Testing Memory Networks

Facts

sandra and daniel journeyed to the bedroom john and sandra travelled to the garden sandra and john travelled to the bedroom mary and sandra went back to the kitchen sandra and mary travelled to the bedroom john and mary moved to the office

Questions

where is daniel? A: bedroom (99.60%) is daniel in the bedroom?

Reasoning with Neural Networks

Questions

うして ふゆう ふほう ふほう ふしつ

References

Reasoning about facts Testing Memory Networks

Facts

sandra and daniel journeyed to the bedroom john and sandra travelled to the garden sandra and john travelled to the bedroom mary and sandra went back to the kitchen sandra and mary travelled to the bedroom john and mary moved to the office

Questions

where is daniel?A: bedroom (99.60%)is daniel in the bedroom?A: no (91.38%)

Questions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

References

Credit: Sukhbaatar et al. (2015)

Questions

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

References

Proposals: Explanations

Example 1:

- julius is white.
- What is julius color? White.

ション ふゆ マ キャット マックシン

Proposals: Explanations

Example 1:

- julius is white.
- What is julius color? White.

Example 2:

- julius is a lion.
- julius is white.
- greg is a lion.
- What is greg color? White.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Questions

References I

- Bowman, S. R., Potts, C., & Manning, C. D. (2014). Recursive neural networks can learn logical semantics. arXiv preprint arXiv:1406.1827.
- Hinton, G. E. (1990). Mapping part-whole hierarchies into connectionist networks. Artificial Intelligence, 46(1), 47–75.
- Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba, A., & Fidler, S. (2015). Skip-thought vectors. In Advances in neural information processing systems (pp. 3276–3284).
- Kumar, A., Irsoy, O., Su, J., Bradbury, J., English, R., Pierce, B., ... Socher, R. (2015). Ask me anything: Dynamic memory networks for natural language processing. arXiv preprint arXiv:1506.07285.

References II

- Levesque, H. J. (2014). On our best behaviour. Artificial Intelligence, 212, 27–35.
- McClelland, J. L., & Rogers, T. T. (2003). The parallel distributed processing approach to semantic cognition. *Nature Reviews Neuroscience*, 4(4), 310–322.
- Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
- Peng, B., Lu, Z., Li, H., & Wong, K.-F. (2015). Towards neural network-based reasoning. arXiv preprint arXiv:1508.05508.
- Socher, R., Chen, D., Manning, C. D., & Ng, A. (2013). Reasoning with neural tensor networks for knowledge base completion. In Advances in neural information processing systems (pp. 926–934).

うして ふゆう ふほう ふほう ふしつ

References III

- Sukhbaatar, S., Weston, J., Fergus, R., et al. (2015). End-to-end memory networks. In Advances in neural information processing systems (pp. 2431–2439).
- Vinyals, O., & Le, Q. (2015). A neural conversational model. arXiv preprint arXiv:1506.05869.
- Weston, J., Bordes, A., Chopra, S., & Mikolov, T. (2015). Towards ai-complete question answering: A set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698.