Siamese Network & Stereo

Wenjie Luo CSC2523

Feb 2nd, 2016

Outline

- Siamese network
- Application: stereo
- Discussion

- Recap on CNN:
 - Input: one image
 - Output: class label, bounding box etc..
- What if?
 - Input: two images, equivalent
 - Parameter sharing?

Siamese network

- Consists of two identical subnetworks: feature extraction
- Joined at their outputs: measure distance between feature vectors
- Date back to NIPS 1994

Source: J. Bromley et. al.

Applications

- Face verification/recognition
- Video sequence
- *Stereo* (depth estimation)

Why depth

 Structure and depth are inherently ambiguous from a single view

Stereo

• Estimate depth from stereo images.

Source: R. Urtasun

• Depth is inversely proportional to disparity.

$$Z = f \frac{B}{d}$$

Z: depth; f: focal length; B: baseline; d: disparity

We need..

- Correspondances on image locations(Matching)
 - *Good feature*
- Refinement in practice
 - Smoothing

Conv-Nets

• Input: two image patches

- Equivalent

• Output: matching cost

• What architecture would you use?

Network I

- Two stages:
 - Siamese network
 - Fully connected
- Input: small patch
- Binary prediction
- "Big" network(~600K)

Network II

- Dot-product
- Input: full content
- Larger patch
- Log loss
- Smaller network

KITTI 2012

Left input image

Right input image

- Gray image, outdoor/noisy, 194/195 split
- Disparity range: 256
- Saturation/Textureless(dynamic range)
- Evaluation metric

Training

- Preprocessing
 - full image or small patch
 - data-augmentation, loading
- Siamese network
 - Gradient aggregated
- Initialization, SGD
- Batch Normalization(variance shift, works well)

Test

- Image size: W, H; Disparity range: D
 - W * H * D: $1200 \times 370 \times 256 = 1.14 \times 10^8!$
- Computation
 - Feature shared
- Memory
 - One disparity at a time

Smoothing

- Cost-aggregation
 - Averaging neighboring locations
- CRF
 - Semiglobal matching
- Post-processing
 - Border fixing(CNN), left-right consistency, outlier detector

Stereo Evaluation 2012

	Method	Setting	Code	Out-Noc	Out-All	Avg-Noc	Avg-All	Density	Runtime	Environment	Compare
1	Displets v2		<u>code</u>	2.37 %	3.09 %	0.7 px	0.8 px	100.00 %	265 s	>8 cores @ 3.0 Ghz (Matlab + C/C++)	
G	uney and A. Geiger:	Displets: Res	solving St	ereo Ambigui	ities using O	bject Knowle	dge. Confere	ence on Comp	uter Vision and F	Pattern Recognition (CVPR) 2015.	
2	MC-CNN-acrt		<u>code</u>	2.43 %	3.63 %	0.7 px	0.9 px	100.00 %	67 s	Nvidia GTX Titan X (CUDA, Lua/Torch7)	
Zt	bontar and Y. LeCun:	Stereo Mato	ching by	Training a Co	nvolutional I	Neural Netwo	rk to Compa	re Image Pato	hes. Submitted	to JMLR .	
3	Displets		<u>code</u>	2.47 %	3.27 %	0.7 px	0.9 px	100.00 %	265 s	>8 cores @ 3.0 Ghz (Matlab + C/C++)	
G	uney and A. Geiger:	Displets: Res	solving St	ereo Ambigui	ities using O	bject Knowle	dge. Confere	ence on Comp	uter Vision and F	Pattern Recognition (CVPR) 2015.	
1	MC-CNN			2.61 %	3.84 %	0.8 px	1.0 px	100.00 %	100 s	Nvidia GTX Titan (CUDA, Lua/Torch7)	
Zt	bontar and Y. LeCun:	Computing	the Stere	o Matching C	ost with a C	onvolutional	Neural Netw	ork. Conferen	ce on Computer	Vision and Pattern Recognition (CVPR) 2015.	
5	PRSM	₽	<u>code</u>	2.78 %	3.00 %	0.7 px	0.7 px	100.00 %	300 s	1 core @ 2.5 Ghz (C/C++)	
V	ogel, K. Schindler an	d S. Roth: 30	D Scene F	low Estimati	on with a Pi	ecewise Rigid	Scene Mode	d. ijcv 2015.			
5	SPS-StFL	⇒米		2.83 %	3.64 %	0.8 px	0.9 px	100.00 %	35 s	1 core @ 3.5 Ghz (C/C++)	
Ya	amaguchi, D. McAlles	ster and R. U	Irtasun:	Efficient Join	t Segmentat	ion, Occlusion	n Labeling, S	stereo and Flo	w Estimation. EC	CCV 2014.	
1	VC-SF	3 B		3.05 %	3.31 %	0.8 px	0.8 px	100.00 %	300 s	1 core @ 2.5 Ghz (C/C++)	
V	ogel, S. Roth and K.	Schindler: Vi	iew-Cons	istent 3D Sce	ne Flow Esti	mation over M	Aultiple Fran	nes. Proceedi	ngs of European	Conference on Computer Vision. Lecture Notes in, Com	puter Science 2
3	Deep Embed			3.10 %	4.24 %	0.9 px	1.1 px	100.00 %	3 s	1 core @ 2.5 Ghz (C/C++)	
C	hen, X. Sun, Y. Yu, L	. Wang and (C. Huang	: A Deep Visu	al Correspor	dence Ember	dding Model	for Stereo Ma	tching Costs. ICC	CV 2015.	
)	JSOSM			3.15 %	3.94 %	0.8 px	0.9 px	100.00 %	105 s	8 cores @ 2.5 Ghz (C/C++)	
or	nymous submission	1									
0	OSF	3	code	3.28 %	4.07 %	0.8 px	0.9 px	99.98 %	50 min	1 core @ 3.0 Ghz (Matlab + C/C++)	

image id: 170

cnn error rate: 13.48%

cost aggregation error rate: 9.47%

sgm error rate: 1.39%

final error rate: 1.15%

Thank You

