CSC 411: Lecture 02: Linear Regression

Class based on Raquel Urtasun & Rich Zemel's lectures
Sanja Fidler

University of Toronto

Jan 13, 2016

(Most plots in this lecture are from Bishop's book)
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Problems for Today

@ What should | watch this Friday?

Movies, TV
& Showtimes

News &
Community

Celebs, Events

v & Photos > Watchlist

\H OM E¢

MARTIAN

See More on IMDb Pro »

tasun, Zemel, Fidler

The Martian o015

PG-13 144 min Adventure, Comedy, Drama
2 October 2015 (USA)

Your rating: -
Ratings: 8.1/10 from 271,829 users Metascore: 80/100
Reviews: 750 user | 499 critic | 46 from Metacritic.com

8.1

During a manned mission to Mars, Astronaut Mark
Watney is presumed dead after a fierce storm and left
behind by his crew. But Watney has survived and finds
himself stranded and alone on the hostile planet. With
only meager supplies, he must draw upon his ingenuity,
wit and spirit to subsist and find a way to signal to Earth
that he is alive.

Director:
Writers:

Ridley Scott
Drew Goddard (screenplay), Andy Weir (book)
Stars: Matt Damon, Jessica Chastain, Kristen Wiig

See full cast and crew »

Watch Trailer

+ Watchlist Share...
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Problems for Today

@ What should | watch this Friday?

Movies, TV
& Showtimes

See More on IMDb Pro »

tasun, Zemel, Fidler

News &
Community

Celebs, Events

& Photos . Watchlist

Point Break (2015

PG-13 | 114 min | Action, Crime, Sport
25 December 2015 (USA)

Your rating: -
Metascore: 34/100
19 from Metacritic.com

Ratings: 5.4/1
Reviews: 60 user

from 7,322 users
84 critic

5.4

A young FBI agent infiltrates an extraordinary team of
extreme sports athletes he suspects of masterminding a
string of unprecedented, sophisticated corporate heists.
"Point Break" is inspired by the classic 1991 hit.

Director: Ericson Core

Writers: Kurt Wimmer (screenplay), Rick King (story), 5
more credits »

Stars: Edgar Ramirez, Luke Bracey, Ray Winstone

See full cast and crew »

+ Watchlist Watch Trailer Share...

v
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Problems for Today

@ Goal: Predict movie rating automatically!

Movies, TV Celebs, Events News & . "
& Showtimes ~ & Photos = Community ~ Watchlist -~

Po”’]t rpak (2015) - .
o | Predict this automatically!
u?’rating: =

tings: 5.4, from 7,322 users Metascore: 34/100
Rifviews: 60 user | 84 critic | 19 from Metacritic.com

Y A young FBI agent infiltrates an extraordinary team of
extreme sports athletes he suspects of masterminding a
string of unprecedented, sophisticated corporate heists.
"Point Break" is inspired by the classic 1991 hit.

Director: Ericson Core

Writers: Kurt Wimmer (screenplay), Rick King (story), 5
more credits »

Stars: Edgar Ramirez, Luke Bracey, Ray Winstone
See More on IMDb Pro » See full cast and crew »

+ Watchlist  ~ Watch Trailer Share...
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Problems for Today

@ Goal: How many followers will | get?

Red Leather Jacket
Updated on Jan 09, 2016

From This User :

G £ [wle [ t[<]]
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Problems for Today

@ Goal: Predict the price of the house

Why choose Nationwide? | Haveyoursay | Corporateinformation | Media, Policy & Legal House Price Index Investor relations

Nationwide

House Price Index

House Price calculator I Report archive Download data L Methodology

House Price Calculator

Instructions
Please note: The Nationwide House Price Calculator is
intended to illustrate general movement in prices

Property Value: Enter the price paid for, or a more recent valuation of your property. Please ensure
the value is entered without commas, for example 150000, rather than 150,000.

« Valuation Date 1: The date when your property was purchased, or revalued. The calculator s based on the Nationwide House
Price Index. Results are based on movements in prices

only.

Valuation Date 2: Date for which you would like a new estimate of your property's value. i the regions of the UK rather than in specific towns

« Region: Select region which the property in situated in. If you are not sure which region the and cities. The data is based on movements in the
property is in, click on the link below to find your region. price of a typical property in the region, and cannot
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Regression

@ What do all these problems have in common?
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Regression

@ What do all these problems have in common?

» Continuous outputs, we'll call these t

(eg, a rating: a real number between 0-10, # of followers, house price)
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Regression

@ What do all these problems have in common?
» Continuous outputs, we'll call these t
(eg, a rating: a real number between 0-10, # of followers, house price)

@ What do | need in order to predict these outputs?

Predicting continuous outputs is called regression
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Regression

@ What do all these problems have in common?
» Continuous outputs, we'll call these t
(eg, a rating: a real number between 0-10, # of followers, house price)

@ What do | need in order to predict these outputs?

Predicting continuous outputs is called regression

» Features (inputs), we'll call these x (or x if vectors)
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Regression

@ What do all these problems have in common?
» Continuous outputs, we'll call these t
(eg, a rating: a real number between 0-10, # of followers, house price)
@ What do | need in order to predict these outputs?
Predicting continuous outputs is called regression

» Features (inputs), we'll call these x (or x if vectors)
» Training examples, many x{) for which t() is known (eg, many movies

for which we know the rating)
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Regression

@ What do all these problems have in common?

» Continuous outputs, we'll call these t

(eg, a rating: a real number between 0-10, # of followers, house price)

@ What do | need in order to predict these outputs?

Predicting continuous outputs is called regression

» Features (inputs), we'll call these x (or x if vectors)
» Training examples, many x{) for which t() is known (eg, many movies
for which we know the rating)

» A model, a function that represents the relationship between x and t
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Regression

@ What do all these problems have in common?

» Continuous outputs, we'll call these t

(eg, a rating: a real number between 0-10, # of followers, house price)

@ What do | need in order to predict these outputs?

Predicting continuous outputs is called regression

» Features (inputs), we'll call these x (or x if vectors)

» Training examples, many x{) for which t() is known (eg, many movies
for which we know the rating)

» A model, a function that represents the relationship between x and t

» A loss or a cost or an objective function, which tells us how well our

model approximates the training examples
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Regression

@ What do all these problems have in common?

» Continuous outputs, we'll call these t

(eg, a rating: a real number between 0-10, # of followers, house price)

@ What do | need in order to predict these outputs?

Predicting continuous outputs is called regression

» Features (inputs), we'll call these x (or x if vectors)

» Training examples, many x{) for which t() is known (eg, many movies
for which we know the rating)

» A model, a function that represents the relationship between x and t

» A loss or a cost or an objective function, which tells us how well our
model approximates the training examples

» Optimization, a way of finding the parameters of our model that

minimizes the loss function

Urtasun, Zemel, Fidler (UofT) CSC 411: 02-Regression Jan 13, 2016 3/22

/



Today: Linear Regression

@ Linear regression

> continuous outputs

» simple model (linear)
@ Introduce key concepts:

» loss functions

> generalization

> optimization

» model complexity

> regularization
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Simple 1-D regression

@ Circles are data points (i.e., training examples) that are given to us
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Simple 1-D regression

@ Circles are data points (i.e., training examples) that are given to us
@ The data points are uniform in x, but may be displaced in y
t(x) = f(x) + ¢

with € some noise
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Simple 1-D regression

@ Circles are data points (i.e., training examples) that are given to us
@ The data points are uniform in x, but may be displaced in y
t(x) = f(x) + ¢
with € some noise

@ In green is the "true” curve that we don't know
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Simple 1-D regression

@ Circles are data points (i.e., training examples) that are given to us
@ The data points are uniform in x, but may be displaced in y
t(x) = f(x) + ¢
with € some noise
@ In green is the "true” curve that we don't know

@ Goal: We want to fit a curve to these points
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Simple 1-D regression

@ Key Questions:
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Simple 1-D regression

@ Key Questions:

» How do we parametrize the model?
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Simple 1-D regression

@ Key Questions:

» How do we parametrize the model?

» What loss (objective) function should we use to judge the fit?
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Simple 1-D regression

@ Key Questions:

» How do we parametrize the model?
» What loss (objective) function should we use to judge the fit?

» How do we optimize fit to unseen test data (generalization)?
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Example: Boston Housing data

@ Estimate median house price in a neighborhood based on neighborhood
statistics
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Example: Boston Housing data

@ Estimate median house price in a neighborhood based on neighborhood
statistics

@ Look at first possible attribute (feature): per capita crime rate

Median House Price ($1000)

40 50 60 70 80 30
Per Capita Crime Rate
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Example: Boston Housing data

@ Estimate median house price in a neighborhood based on neighborhood
statistics

@ Look at first possible attribute (feature): per capita crime rate

50§0 @

Median House Price ($1000)

L L L L s
40 50 60 70 80 30
Per Capita Crime Rate

@ Use this to predict house prices in other neighborhoods
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Example: Boston Housing data

@ Estimate median house price in a neighborhood based on neighborhood
statistics

@ Look at first possible attribute (feature): per capita crime rate

50§0 @

Median House Price ($1000)

L L L L s
40 50 60 70 80 30
Per Capita Crime Rate

@ Use this to predict house prices in other neighborhoods

@ Is this a good input (attribute) to predict house prices?
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Represent the Data

@ Data is described as pairs D = {(x(1), tM) ... (x(M) ¢(M))1
» x € R is the input feature (per capita crime rate)
» t € R is the target output (median house price)
» () simply indicates the training examples (we have N in this case)
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Represent the Data

@ Data is described as pairs D = {(x(1), tM) ... (x(M) ¢(M))1
» x € R is the input feature (per capita crime rate)
» t € R is the target output (median house price)
» () simply indicates the training examples (we have N in this case)

@ Here t is continuous, so this is a regression problem
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Represent the Data

@ Data is described as pairs D = {(x(1), tM) ... (x(M) ¢(M))1
» x € R is the input feature (per capita crime rate)
» t € R is the target output (median house price)
» () simply indicates the training examples (we have N in this case)

@ Here t is continuous, so this is a regression problem

@ Model outputs y, an estimate of t

y(x) = wp + wix
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Represent the Data

@ Data is described as pairs D = {(x(1), tM) ... (x(M) ¢(M))1
» x € R is the input feature (per capita crime rate)
» t € R is the target output (median house price)
» () simply indicates the training examples (we have N in this case)

@ Here t is continuous, so this is a regression problem

@ Model outputs y, an estimate of t

y(x) = wp + wix

@ What type of model did we choose?
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Represent the Data

@ Data is described as pairs D = {(x(1), tM) ... (x(M) ¢(M))1
» x € R is the input feature (per capita crime rate)
» t € R is the target output (median house price)
» () simply indicates the training examples (we have N in this case)

@ Here t is continuous, so this is a regression problem

@ Model outputs y, an estimate of t

y(x) = wp + wix

@ What type of model did we choose?

@ Divide the dataset into training and testing examples
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Represent the Data

@ Data is described as pairs D = {(x(1), tM) ... (x(M) ¢(M))1
» x € R is the input feature (per capita crime rate)
» t € R is the target output (median house price)
» () simply indicates the training examples (we have N in this case)

@ Here t is continuous, so this is a regression problem

@ Model outputs y, an estimate of t

y(x) = wp + wix

@ What type of model did we choose?

@ Divide the dataset into training and testing examples

» Use the training examples to construct hypothesis, or function

approximator, that maps x to predicted y
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Represent the Data

@ Data is described as pairs D = {(x(1), tM) ... (x(M) ¢(M))1
» x € R is the input feature (per capita crime rate)
» t € R is the target output (median house price)
» () simply indicates the training examples (we have N in this case)

@ Here t is continuous, so this is a regression problem

@ Model outputs y, an estimate of t

y(x) = wp + wix

@ What type of model did we choose?

@ Divide the dataset into training and testing examples
» Use the training examples to construct hypothesis, or function
approximator, that maps x to predicted y
» Evaluate hypothesis on test set
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Noise

@ A simple model typically does not exactly fit the data — lack of fit can be
considered noise
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Noise

@ A simple model typically does not exactly fit the data — lack of fit can be
considered noise

@ Sources of noise:
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Noise

@ A simple model typically does not exactly fit the data — lack of fit can be
considered noise

@ Sources of noise:

» Imprecision in data attributes (input noise, eg noise in per-capita crime)
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Noise

@ A simple model typically does not exactly fit the data — lack of fit can be
considered noise

@ Sources of noise:

» Imprecision in data attributes (input noise, eg noise in per-capita crime)

» Errors in data targets (mis-labeling, eg noise in house prices)
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Noise

@ A simple model typically does not exactly fit the data — lack of fit can be

considered noise

@ Sources of noise:
» Imprecision in data attributes (input noise, eg noise in per-capita crime)
» Errors in data targets (mis-labeling, eg noise in house prices)
» Additional attributes not taken into account by data attributes, affect
target values (latent variables). In the example, what else could affect

house prices?

Jan 13, 2016 9 /22
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Noise

@ A simple model typically does not exactly fit the data — lack of fit can be
considered noise

@ Sources of noise:

» Imprecision in data attributes (input noise, eg noise in per-capita crime)

» Errors in data targets (mis-labeling, eg noise in house prices)

» Additional attributes not taken into account by data attributes, affect
target values (latent variables). In the example, what else could affect
house prices?

» Model may be too simple to account for data targets

Urtasun, Zemel, Fidler (UofT) CSC 411: 02-Regression Jan 13, 2016 9 /22



Least-Squares ression
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Least-Squares Regression

@ Define a model
y(x) = function(x, w)
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Least-Squares Regression

Linear Regression

@ Define a model

Linear: y(x) = wo + wix
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Least-Squares Regression

@ Define a model
Linear: y(x) = wo + wix

@ Standard loss/cost/objective function measures the squared error between y

and the true value t
N

fw) = [t — y(x")?

n=1
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Least-Squares Regression

@ Define a model
Linear: y(x) = wp + wix

@ Standard loss/cost/objective function measures the squared error between y
and the true value t

N
Linear model: /(w) = Z[t(") — (wo + wyxM)P?
n=1
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Least-Squares Regression

t oln

@ Define a model
Linear: y(x) = wp + wix

@ Standard loss/cost/objective function measures the squared error between y
and the true value t

N
Linear model: /(w) = Z[t(") — (wo + wyx™M)P?
n=1

@ For a particular hypothesis (y(x) defined by a choice of w, drawn in red),
what does the loss represent geometrically?
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Least-Squares Regression

@ Define a model
Linear: y(x) = wp + wix

@ Standard loss/cost/objective function measures the squared error between y
and the true value t

N
Linear model: /(w) = Z[t(") — (wo + wyxM)P?
n=1

@ The loss for the red hypothesis is the sum of the squared vertical errors
(squared lengths of green vertical lines)
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Least-Squares Regression

@ Define a model
Linear: y(x) = wp + wix

@ Standard loss/cost/objective function measures the squared error between y
and the true value t

N
Linear model: /(w) = Z[t(") — (wo + wyxM)P?
n=1

@ How do we obtain weights w = (wp, wy)?
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Least-Squares Regression

@ Define a model
Linear: y(x) = wp + wix

@ Standard loss/cost/objective function measures the squared error between y
and the true value t

N
Linear model: /(w) = Z[t(") — (wo + wyxM)P?
n=1

@ How do we obtain weights w = (wp, wy)? Find w that minimizes loss ¢(w)
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Least-Squares Regression

@ Define a model

Linear: y(x) = wp + wix

Standard loss/cost/objective function measures the squared error between y
and the true value t

N
Linear model: /(w) = Z[t(") — (wo + wyxM)P?
n=1

How do we obtain weights w = (wp, wy)?

For the linear model, what kind of a function is ¢(w)?
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Optimizing the Objective

@ One straightforward method: gradient descent
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Optimizing the Objective

@ One straightforward method: gradient descent

> initialize w (e.g., randomly)
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Optimizing the Objective

@ One straightforward method: gradient descent
> initialize w (e.g., randomly)

> repeatedly update w based on the gradient
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Optimizing the Objective

@ One straightforward method: gradient descent
> initialize w (e.g., randomly)

> repeatedly update w based on the gradient
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Optimizing the Objective

@ One straightforward method: gradient descent
> initialize w (e.g., randomly)

> repeatedly update w based on the gradient

@ ) is the learning rate
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Optimizing the Objective

@ One straightforward method: gradient descent

> initialize w (e.g., randomly)

> repeatedly update w based on the gradient

@ ) is the learning rate

@ For a single training case, this gives the LMS update rule:

w o w + 2X(t — y(x(M))x(M
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Optimizing the Objective

@ One straightforward method: gradient descent
> initialize w (e.g., randomly)

> repeatedly update w based on the gradient

@ ) is the learning rate

@ For a single training case, this gives the LMS update rule:

w —w + 2X (£ — y(x(M)) x(")
N’

error

@ Note: As error approaches zero, so does the update (w stops changing)
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Optimizing Across Training Set

@ Two ways to generalize this for all examples in training set:
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Optimizing Across Training Set

@ Two ways to generalize this for all examples in training set:

1. Batch updates: sum or average updates across every example n, then
change the parameter values

N
w w220 (8 — y(x())x()

n=1
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Optimizing Across Training Set

@ Two ways to generalize this for all examples in training set:

1. Batch updates: sum or average updates across every example n, then
change the parameter values

N
W w+ 2\ Z(t(") — y(xM))x(™
n=1

2. Stochastic/online updates: update the parameters for each training
case in turn, according to its own gradients

Algorithm 1 Stochastic gradient descent
1: Randomly shuffle examples in the training set
2: for i=1to N do
3: Update:

w — w + 2X(t) — y(x(D))x() (update for a linear model)

4: end for
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Optimizing Across Training Set

@ Two ways to generalize this for all examples in training set:

1. Batch updates: sum or average updates across every example n, then
change the parameter values

N
w w220 (8 — y(x())x()
n=1

2. Stochastic/online updates: update the parameters for each training
case in turn, according to its own gradients

» Underlying assumption: sample is independent and identically
distributed (i.i.d.)
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Analytical Solution?

@ For some objectives we can also find the optimal solution analytically
@ This is the case for linear least-squares regression

@ How?
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Analytical Solution?

@ For some objectives we can also find the optimal solution analytically
@ This is the case for linear least-squares regression
@ How?

@ Compute the derivatives of the objective wrt w and equate with 0
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Analytical Solution?

@ For some objectives we can also find the optimal solution analytically
@ This is the case for linear least-squares regression
@ How?
@ Compute the derivatives of the objective wrt w and equate with 0
@ Define:
t=[tMW, @ M7
1, xM
e
X — 1, x
1, xN)
@ Then:

(work it out!)
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Multi-dimensional Inputs

@ One method of extending the model is to consider other input dimensions

y(x) = wo + wixy + woxo
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Multi-dimensional Inputs

@ One method of extending the model is to consider other input dimensions
y(x) = wo + wixs + waxo

@ In the Boston housing example, we can look at the number of rooms

S0 o © 0 0 0 O @O W ©
o

Median House Price ($1000)
P e T N
a8 & 8 & & &
o
o

=

@

Average Number of Rooms
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Linear Regression with Multi-dimensional Inputs

@ Imagine now we want to predict the median house price from these
multi-dimensional observations
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Linear Regression with Multi-dimensional Inputs

@ Imagine now we want to predict the median house price from these
multi-dimensional observations

@ Each house is a data point n, with observations indexed by j:

(M) — (xl("’,~-- IR 7X§"))

@ We can incorporate the bias wy into w, by using xo = 1, then

d

y(x) = wo+ Y wix; = w'x
j=1
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Linear Regression with Multi-dimensional Inputs

@ Imagine now we want to predict the median house price from these
multi-dimensional observations

@ Each house is a data point n, with observations indexed by j:

(M) — (xl("’,~-- IR ,xf,”))

@ We can incorporate the bias wy into w, by using xo = 1, then

d
y(x) =wy + Z wix; = w'x
j=1
@ We can then solve for w = (wg, wy, - , wy). How?

@ We can use gradient descent to solve for each coefficient, or compute w
analytically (how does the solution change?)
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More Powerful Models?

@ What if our linear model is not good? How can we create a more
complicated model?
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Fitting a Polynomial

@ What if our linear model is not good? How can we create a more
complicated model?

@ We can create a more complicated model by defining input variables that are
combinations of components of x
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Fitting a Polynomial

@ What if our linear model is not good? How can we create a more
complicated model?

@ We can create a more complicated model by defining input variables that are
combinations of components of x
@ Example: an M-th order polynomial function of one dimensional feature x:
M
y(x,w) = wp + Z w;x’
j=1

where x/ is the j-th power of x
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Fitting a Polynomial

@ What if our linear model is not good? How can we create a more
complicated model?

@ We can create a more complicated model by defining input variables that are
combinations of components of x

@ Example: an M-th order polynomial function of one dimensional feature x:

M

y(x,w) = wp + Z w;x!
j=1

where x/ is the j-th power of x

@ We can use the same approach to optimize for the weights w
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Fitting a Polynomial

@ What if our linear model is not good? How can we create a more
complicated model?

@ We can create a more complicated model by defining input variables that are
combinations of components of x

@ Example: an M-th order polynomial function of one dimensional feature x:

M

y(x,w) = wp + Z w;x!
j=1

where x/ is the j-th power of x
@ We can use the same approach to optimize for the weights w

@ How do we do that?
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Which Fit is Best?
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Generalization

@ Generalization = model's ability to predict the held out data

@ What is happening?

1
loss —©— Training
—— Test
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Generalization

@ Generalization = model's ability to predict the held out data

@ What is happening?

@ Our model with M = 9 overfits the data (it models also noise)
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Generalization

@ Generalization = model's ability to predict the held out data
@ What is happening?
@ Our model with M = 9 overfits the data (it models also noise)

@ Not a problem if we have lots of training examples
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Generalization

@ Generalization = model's ability to predict the held out data
@ What is happening?
@ Our model with M = 9 overfits the data (it models also noise)

@ Let's look at the estimated weights for various M in the case of fewer

examples

M=0 M=1 M=6 M=9
wy 0.19 0.82 0.31 0.35
wy -1.27 7.99 232.37
w -25.43 -5321.83
wj 17.37 48568.31
wy -231639.30
wE 640042.26
wg -1061800.52
wy 1042400.18
wi -557682.99
wy 125201.43
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Generalization

Generalization = model's ability to predict the held out data

What is happening?

Our model with M = 9 overfits the data (it models also noise)

@ Let's look at the estimated weights for various M in the case of fewer
examples

The weights are becoming huge to compensate for the noise
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Generalization

@ Generalization = model's ability to predict the held out data
@ What is happening?
@ Our model with M = 9 overfits the data (it models also noise)

@ Let's look at the estimated weights for various M in the case of fewer
examples

@ The weights are becoming huge to compensate for the noise

@ One way of dealing with this is to encourage the weights to be small (this
way no input dimension will have too much influence on prediction). This is
called regularization.
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Regularized Least Squares

@ Increasing the input features this way can complicate the model considerably
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Regularized Least Squares

@ Increasing the input features this way can complicate the model considerably
@ Goal: select the appropriate model complexity automatically

@ Standard approach: regularization

N
Z(w) = Z[t(") — (wo + W1X(n))]2 +aw’w
n=1
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@ Standard approach: regularization

N
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@ Intuition: Since we are minimizing the loss, the second term will encourage
smaller values in w
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Regularized Least Squares

@ Increasing the input features this way can complicate the model considerably
@ Goal: select the appropriate model complexity automatically

@ Standard approach: regularization

N
Z(w) = Z[t(") — (wo + W1X("))]2 +aw’w
n=1

@ Intuition: Since we are minimizing the loss, the second term will encourage
smaller values in w

@ The penalty on the squared weights is known as ridge regression in statistics

@ Leads to a modified update rule for gradient descent:

N
W< w+ 2)\[2(1‘(”) — y(xM)x("M — aw]

n=1
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Regularized Least Squares

@ Increasing the input features this way can complicate the model considerably
@ Goal: select the appropriate model complexity automatically

@ Standard approach: regularization

N
Z(w) = Z[t(") — (wo + W1X("))]2 +aw’w
n=1

@ Intuition: Since we are minimizing the loss, the second term will encourage
smaller values in w

@ The penalty on the squared weights is known as ridge regression in statistics

@ Leads to a modified update rule for gradient descent:

N
W< w+ 2)\[2(1‘(”) — y(xM)x("M — aw]

n=1

@ Also has an analytical solution: w = (X"X+ al)71XTt  (verify!)
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Regularized least squares

@ Better generalization

@ Choose « carefully
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1-D regression illustrates key concepts

@ Data fits — is linear model best (model selection)?
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» Simple models may not capture all the important variations (signal) in
the data: underfit
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1-D regression illustrates key concepts

@ Data fits — is linear model best (model selection)?

» Simple models may not capture all the important variations (signal) in
the data: underfit

» More complex models may overfit the training data (fit not only the
signal but also the noise in the data), especially if not enough data to
constrain model

@ One method of assessing fit: test generalization = model's ability to predict
the held out data

@ Optimization is essential: stochastic and batch iterative approaches; analytic
when available
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So...

@ Which movie will you watch?

Now Playing
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=
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