CSC 411: Lecture 09: Naive Bayes

Class based on Raquel Urtasun & Rich Zemel's lectures
Sanja Fidler

University of Toronto

Feb 8, 2015

Urtasun, Zemel, Fidler (UofT) CSC 411: 09-Naive Bayes Feb 8, 2015 1/28



o Classification — Multi-dimensional (Gaussian) Bayes classifier

@ Estimate probability densities from data

@ Naive Bayes classifier
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Generative vs Discriminative

Two approaches to classification:

@ Discriminative classifiers estimate parameters of decision boundary/class
separator directly from labeled examples

> learn p(y|x) directly (logistic regression models)
> learn mappings from inputs to classes (least-squares, neural nets)

@ Generative approach: model the distribution of inputs characteristic of the
class (Bayes classifier)

> Build a model of p(x|y)
» Apply Bayes Rule
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Bayes Classifier

@ Aim to diagnose whether patient has diabetes: classify into one of two
classes (yes C=1; no C=0)

@ Run battery of tests

@ Given patient's results: x = [x1, %2, -+ ,x4]T we want to update class
probabilities using Bayes Rule:

p(x|€)p(C)

p(Clx) = ()

@ More formally
Class likelihood x prior

osterior = -
P Evidence

@ How can we compute p(x) for the two class case?

p(x) = p(x|C = 0)p(C = 0) + p(x|C =1)p(C =1)
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Classification: Diabetes Example

@ Last class we had a single observation per patient: white blood cell count
p(x =48[C=1)p(C=1)
p(x = 48)

p(C = 1|x = 48) =

@ Add second observation: Plasma glucose value

@ Now our input x is 2-dimensional
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Gaussian Discriminant Analysis (Gaussian Bayes Classifier)

@ Gaussian Discriminant Analysis in its general form assumes that p(x|t) is
distributed according to a multivariate normal (Gaussian) distribution

@ Multivariate Gaussian distribution:
1
X[t=k) = ————exp[—(x — p) T (x —
P( | ) (27T)d/2lzk|1/2 P [ ( /'l’k) k ( l'l’k)]
where |X| denotes the determinant of the matrix, and d is dimension of x
@ Each class k has associated mean vector g, and covariance matrix Xy

@ Typically the classes share a single covariance matrix X (“share” means that
they have the same parameters; the covariance matrix in this case):
Y=Y, ==Y,
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Multivariate Data

@ Multiple measurements (sensors)
@ d inputs/features/attributes

@ N instances/observations/examples

ORI )
@ 0 @)
X X .. X
X = 1 2 d
ORI
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Multivariate Parameters

@ Mean
Elx] = [p1,- -+ pa] "

@ Covariance

07 o1 - o4
; o1 03 -+ O

Y= Cov(x) =E[(x— ) (x—p)] = .
041 Og2 -+ 03

@ Correlation = Corr(x) is the covariance divided by the product of standard
deviation
Tij

Pij=——
gi0;j
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Multivariate Gaussian Distribution

@ x ~ N(p,X), a Gaussian (or normal) distribution defined as

P(X) = Gyarargrers & [ — ) TE e )]

//300 N\
O
AN
AN

@ Mahalanobis distance (x — px) T E~1(x — ux) measures the distance from x
to p in terms of &

@ It normalizes for difference in variances and correlations
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Bivariate Normal

10 1 0 10

Probability Density

Figure: Probability density function
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Figure: Contour plot of the pdf
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Bivariate Normal

var(xi) = var(xz) var(xi) > var(xa) var(xi) < var(xz)

Probability Density

Figure: Probability density function
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Figure: Contour plot of the pdf
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Bivariate Normal

Cov(xy,x2) =0 Cov(x1,x2) >0 Cov(xy,x2) <0

Probability Density

Figure: Probability density function

@

@

A od ol L s oo e
N - T I

-5 [ 5 -6 Bl 2 [ 2 4 3 <+ -2 [ H 4 [

Figure: Contour plot of the pdf
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Gaussian Discriminant Analysis (Gaussian Bayes Classifier)

@ GDA (GBC) decision boundary is based on class posterior:

log p(tk|x) = logp(x|tk) + log p(tx) — log p(x)
d 1 1 _
= —5log(2m) = S log |7 | = S (x — ) XN (x — ) +
+ log p(tx) — log p(x)

@ Decision: take the class with the highest posterior probability
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Decision Boundary

p(xIC,)

likelihoods . discriminant:
P(t;|x)=0.5

posterior for t, O
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Decision Boundary when Shared Covariance Matrix
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@ Learn the parameters using maximum likelihood
N
g(d)a /’L07/’L17Z) = - |Ong(X(n), t(n)|¢a ,U/Oa,ulaz)
n=1

N
= —log [ [ p(x™[t", o, 11, T)p(£\") )

n=1

@ What have we assumed?
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More on MLE

@ Assume the prior is Bernoulli (we have two classes)
p(to) = ¢'(1— )"~

@ You can compute the ML estimate in closed form

1 N
_ (n) _
¢ = N nEZI 1" =1]

ZnNzl 1[t(" = 0] - x("

l’l’ =
i Sy 1t = 0
SN[t = 1] - x(
M =
' Sl L[t =1]
Yy = Nzx(n (x(" = )7
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Gaussian Discriminative Analysis vs Logistic Regression

@ If you examine p(t = 1|x) under GDA, you will find that it looks like this:

1

p(t|x, ¢, po, p1, L) = T+ exp(—wTx)

where w is an appropriate function of (¢, uo, p1, )
@ So the decision boundary has the same form as logistic regression!

@ When should we prefer GDA to LR, and vice versa?
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Gaussian Discriminative Analysis vs Logistic Regression

@ GDA makes stronger modeling assumption: assumes class-conditional data is
multivariate Gaussian

@ If this is true, GDA is asymptotically efficient (best model in limit of large N)
@ But LR is more robust, less sensitive to incorrect modeling assumptions
@ Many class-conditional distributions lead to logistic classifier

@ When these distributions are non-Gaussian, in limit of large N, LR beats
GDA

Urtasun, Zemel, Fidler (UofT) CSC 411: 09-Naive Bayes Feb 8, 2015 20 / 28



Simplifying the Model

What if x is high-dimensional?

@ For Gaussian Bayes Classifier, if input x is high-dimensional, then covariance
matrix has many parameters

@ Save some parameters by using a shared covariance for the classes

@ Any other idea you can think of?

21/ 28
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@ Naive Bayes is an alternative generative model: Assumes features
independent given the class

d

p(xlt = k) = T[] plxilt = k)

i=1

@ Assuming likelihoods are Gaussian, how many parameters required for Naive
Bayes classifier?

@ Important note: Naive Bayes does not assume a particular distribution
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Naive Bayes Classifier

Given
@ prior p(t = k)
@ assuming features are conditionally independent given the class
@ likelihood p(x;|t = k) for each x;

The decision rule
d

y = arg max p(t = k) ilj[lp(x,-lt = k)

@ If the assumption of conditional independence holds, NB is the optimal
classifier

@ If not, a heavily regularized version of generative classifier

@ What's the regularization?

@ Note: NB's assumptions (cond. independence) typically do not hold in
practice. However, the resulting algorithm still works well on many problems,
and it typically serves as a decent baseline for more sophisticated models
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Gaussian Naive Bayes

@ Gaussian Naive Bayes classifier assumes that the likelihoods are Gaussian:

1 —(xi — pin)?
exp |: (X 2:U’/<) :|
V2o 207

(this is just a 1-dim Gaussian, one for each input dimension)

p(xilt = k) =

@ Model the same as Gaussian Discriminative Analysis with diagonal
covariance matrix

@ Maximum likelihood estimate of parameters

SV = k- x
Yooy L[E™ = K]

2 25:1 1[t(") = k] - (X,-(n) — 1k )?
ey L[E™ = K]
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Decision Boundary: Shared Variances (between Classes)

variances may be
different
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Decision Boundary: isotropic

@ Same variance across all classes and input dimensions, all class priors equal

@ Classification only depends on distance to the mean. Why?
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Decision Boundary: isotropic

@ In this case: o x = o (just one parameter), class priors equal (e.g.,
p(tx) = 0.5 for 2-class case)

@ Going back to class posterior for GDA:

log p(tk|x) = logp(x|tk) + log p(tx) — log p(x)
d 1 1 _
=~ log(2m) — Jlog [T | = S (x — ) TT, T (x = ) +

+ log p(t«) — log p(x)
where we take ¥4 = 02/ and ignore terms that don't depend on k (don't

matter when we take max over classes):

g pl(tx) = ——5(x = ) (x = 1)
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Spam Classification

@ You have examples of emails that are spam and non-spam
@ How would you classify spam vs non-spam?

@ Think about it at home, solution in the next tutorial
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