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@ Dimensionality Reduction

e PCA

@ Autoencoders
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Mixture models and Distributed Representations

@ One problem with mixture models: each observation assumed to come from
one of K prototypes

@ Constraint that only one active (responsibilities sum to one) limits the
representational power

@ Alternative: Distributed representation, with several latent variables relevant
to each observation

@ Can be several binary/discrete variables, or continuous
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Example: Continuous Underlying Variables

@ What are the intrinsic latent dimensions in these two datasets?

ss=sssss

geeeegecse

@ How can we find these dimensions from the data?
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Principal Components Analysis

@ PCA: most popular instance of second main class of unsupervised learning
methods, projection methods, aka dimensionality-reduction methods

@ Aim: find a small number of “directions” in input space that explain
variation in input data; re-represent data by projecting along those directions

@ Important assumption: variation contains information
@ Data is assumed to be continuous:

> linear relationship between data and the learned representation
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PCA: Common Tool

@ Handles high-dimensional data

» If data has thousands of dimensions, can be difficult for a classifier to
deal with

@ Often can be described by much lower dimensional representation
@ Useful for:

» Visualization

» Preprocessing

» Modeling — prior for new data
» Compression
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PCA: Intuition

@ As in the previous lecture, training data has N vectors, {x,}N_,, of
dimensionality D, so x; € RP
@ Aim to reduce dimensionality:
> linearly project to a much lower dimensional space, M << D:
x~Uz+a
where U a D x M matrix and z a M-dimensional vector
@ Search for orthogonal directions in
space with the highest variance u

> project data onto this subspace

u X X
. % X
@ Structure of data vectors is encoded « xS x X
in sample covariance oKX
< X X
X % X
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Finding Principal Components

@ To find the principal component directions, we center the data (subtract the
sample mean from each variable)

@ Calculate the empirical covariance matrix:
L
C=4 ;(x(”) —x)(x"M —x)T
with X the mean

@ What's the dimensionality of C?

@ Find the M eigenvectors with largest eigenvalues of C: these are the
principal components

@ Assemble these eigenvectors into a D x M matrix U

@ We can now express D-dimensional vectors x by projecting them to
M-dimensional z
z=U"x
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Standard PCA

@ Algorithm: to find M components underlying D-dimensional data

1. Select the top M eigenvectors of C (data covariance matrix):
1N
C=v > =) (x = %) = USUT & Unm Tim Uiy

where U is orthogonal, columns are unit-length eigenvectors
utu=uuT =1

and ¥ is a matrix with eigenvalues on the diagonal, representing the
variance in the direction of each eigenvector
2. Project each input vector x into this subspace, e.g.,

_ . _ T
Zi = u; X; z = U yx
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Two Derivations of PCA

@ Two views/derivations:

» Maximize variance (scatter of green points)
» Minimize error (red-green distance per datapoint)

. / u;
T2

X

Xn
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PCA: Minimizing Reconstruction Error

@ We can think of PCA as projecting the data onto a lower-dimensional
subspace

@ One derivation is that we want to find the projection such that the best
linear reconstruction of the data is as close as possible to the original data

J(u,z,b) Z||x< %M 2

where

Zz")uj—i— Z bju;

j=M+1

@ Objective minimized when first M components are the eigenvectors with the
maximal eigenvalues
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Applying PCA to faces

Run PCA on 2429 19x19 grayscale images (CBCL data)

@ Compresses the data: can get good reconstructions with only 3 components

Pl S s P bl gl s

PCA for pre-processing: can apply classifier to latent representation

» PCA with 3 components obtains 79% accuracy on face/non-face
discrimination on test data vs. 76.8% for GMM with 84 states

Can also be good for visualization
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Applying PCA to faces: Learned basis
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Applying PCA to digits

reconstructed with 2 bases reconstructed with 10 bases
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Relation Neural Networks

@ PCA is closely related to a particular form of neural network

@ An autoencoder is a neural network whose outputs are its own inputs

@ The goal is to minimize reconstruction error
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Autoencoders

@ Define
=f(Wx); x=g(Vz)
@ Goal:
(n) 2
min 2,\,ZIIX ]
@ If g and f are linear

N
1
in — (m) _ (m)]2
min N n§:1\|x VIWx\"||

@ In other words, the optimal solution is PCA.
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Autoencoders: Nonlinear PCA

@ What if g() is not linear?
@ Then we are basically doing nonlinear PCA

@ Some subtleties but in general this is an accurate description
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Comparing Reconstructions

Real data

30-d deep autoencoder
30-d logistic PCA

30-d PCA
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