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SUMMARY

We apply a battery of modern, adaptive non-linear learning methods to a large real database of cardiac
patient data. We use each method to predict 30 day mortality from a large number of potential risk factors,
and we compare their performances. We find that none of the methods could outperform a relatively simple
logistic regression model previously developed for this problem. ( 1998 John Wiley & Sons, Ltd.

1. INTRODUCTION

In this study we apply a variety of modern learning methods to the GUSTO-I database. The
GUSTO-1 trial was a four-arm randomized study that compared the efficacy of different
intravenous thrombolytic regimens for acute myocardial infarction. Acute myocardial infarction
(or ‘heart attack’) is caused by the formation of a clot in one of the coronary arteries that supply
blood to the heart muscle. Thrombolytic drugs work by breaking up the clot and restoring blood
flow through the artery. Earlier studies had shown that a new and more expensive thrombolytic
drug — tissue plasminogen activator [tPA] — restored blood flow more quickly and more often
than alternative drug regimens. The study hypothesis was accordingly that the tPA arm would
show a 1 per cent absolute short-term (30-day) mortality advantage over any or all of the
other arms. Treatments in the other arms included: streptokinase, an older and less expensive
thrombolytic drug, which was given with two different regimens of heparin (a drug that
helps keep the coronary artery open after the initial break-up of the clot by a thrombolytic
drug), and a combination of tPA and streptokinase. The trial involved 41,021 patients admitted
to 1081 hospitals in 15 countries, and the study hypothesis was confirmed (the GUSTO-1
Investigators1).

In our analysis, we focus on risk factors for the binary outcome 30-day mortality. Lee et al.2 fit
linear logistic regression models to these data and reported some success in accurately predicting
mortality. In this paper we apply to this problem some recently developed adaptive methods for
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prediction, specifically neural networks, classification trees, generalized additive models (GAM)
and multivariate adaptive regression splines (MARS). Descriptions of these techniques appear in
many books, for example, Ripley.3 Some of these methods are designed for very large data sets
and such data sets are still relatively rare in statistical applications. The GUSTO-I trial data
provided a valuable opportunity to apply the methods on a large problem and to compare their
performances.

2. METHODS

There were a total of 2851 patients (7 per cent) who died within 30 days. Although the complete
database contains over 100 predictor variables, we decided to use the same variables that Lee et
al. included in their final model, after consulting a specialist who confirmed that there are few
other variables of clinical interest. The predictors were:

1. DIABETES — yes or no
2. PREVMI — previous myocardial infarction 1"yes
3. PREVCVD — previous cardiovascular disease 1"yes
4. PREVCABG — previous coronary artery bypass graft surgery 1"yes
5. PREVPTCA — previous angioplasty 1"yes
6. SEX
7. HTN — hypertension
8. TX — treatment four groups: tPA"1; streptokinase and intravenous heparin"2;

streptokinase and tPA"3; streptokinase#subcutaneous heparin"4
9. SMKD — smoking status 1"current, 2"former, 3"never

10. MILOCC — part of the heart muscle affected by the blocked artery, coded3—5 unordered
3"anterior, 4"inferior, 5"other (including posterior, lateral, apical), 6"no MI,
Z"missing

11. KILLIPB — killip class (see definition below) coded I"3, II"4, III"5, IV"6
12. AGE
13. HEIGHT
14. PULSE — heart rate
15. SYSBP — systolic blood pressure
16. TTTRTTM — time (hrs) from the arrival in the emergency department to treatment

with a thrombolytic drug.
17. WEIGHT

Lee et al.’s logistic regression model contained linear terms for AGE, SBP, KILLIPB, PULSE,
MILOCC, PREVMNI, HEIGHT, TTRTTM, SMKD, DIABETES, WEIGHT, PREVCABG,
TX, HTN, and PREVCVD; a piecewise linear spline for PULSE, a cubic spline for HEIGHT, and
a product interaction between AGE and KILLIPB.

The data set has no missing values since Lee et al. used an imputation procedure to fill in any
missing explanatory variables. Categorical variables were changed into dummy variables for use
in logistic regression, MARS and GAM. As in the paper, systolic blood pressure was upper
truncated at 120 and time to treatment lower truncated at two hours.

We randomly divided the data set into two parts: two-thirds of the data form the training set
(n"27220), and the rest the test set (n"13610). We used the training set for model development.
Where we had to choose parameters in model development, they were determined by dividing the
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training set into a smaller training set (n"18147) and a validation set (n"9073). We determined
all these subsets once by random draw and all procedures used the same training and test sets
thereafter. The test set was used only for the final assessment of the model. After fitting a model
via the training set, we found the predicted probabilities p

i
of death for the test set observations

from that model. Comparisons were made in terms of the log-likelihood for the test set
+ln (pyi

i
/(1!p

i
)1~yi) where y

i
3 M0, 1N indicates the observed outcomes. We also looked at the

area under the ROC curve obtained for the test set.

2.1. Logistic regression

We fitted four different logistic regression models to the training set. Model 1 has covariates for
AGE and KILLIPB only while model 2 has covariates for age, Killip class and interactions
between age and Killip class. Model 3 has all the covariates in Lee et al.’s model, but no
interactions and no non-linear (spline) terms. Model 4 has all the covariates, interactions and
spline terms exactly as in Lee’s model. As above, we estimated the parameters in these models
using just the training set.

2.2. Generalized additive models

We built a generalized additive logistic regression model using the S-plus routine ‘gam’. This
model is a non-linear generalization of the usual linear logistic model that uses smooth spline
functions in place of linear risk terms (see Hastie and Tibshirani5). The model we used contained
linear terms for all the dummy variables, while we entered the variables for age, height, weight,
pulse rate, systolic blood pressure and time to treatment as smoothing splines with 4 degrees of
freedom. (The value 4 was fixed a priori). We did not use any interaction terms.

2.3. Classification trees

We grew a classification tree using the S-plus routine ‘tree’ on the smaller training set. Classifica-
tion trees stratify the population in a binary tree form, and are especially good at finding
interactions between risk factors (Breiman et al.6). We found the cost-complexity parameter that
minimized the misclassification rate on the validation set. We then pruned the tree using this
cost-complexity parameter, reducing the number of terminal nodes from 168 to 31. We obtained
predictions for the test set by running the test set covariates down the pruned tree.

2.4 MARS

We fit MARS models of degree 1 (additive) and 17 (all interactions allowed) to the smaller
training set with different penalty settings ranging between 0 and 15. MARS stands for ‘multivari-
ate additive regression splines’, and is a kind of hybrid between generalized additive models and
classification tree (Friedman7). It is designed to find low-order additive structure as well as
interactions between risk factors. Since MARS is designed for regression rather than classifica-
tion, we first fit MARS regression models with a 0 —1 response. Then we converted each model
into a logistic model by using the model matrix produced by the MARS procedure as the design
matrix for logistic regression. From these logistic MARS models corresponding to the different
penalty values, we picked the one that maximized the validation set log-likelihood. The degree 1
model was maximized at a penalty setting of 1 and the full degree model at 16.
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Table I. Test results for various models. Model 1 has AGE and
KILLIPB; model 2 has AGE, KILLIPB and interactions be-
tween AGE and KILLIPB; model 3 has all the covariates in Lee
et al.’s model, but no interactions and no non-linear (spline)
terms; model 4 has all the covariates, interactions and spline
terms exactly as in Lee et al.’s model; models 5, 6, 7 have access
to all of the predictors; model 5 allows additive terms, while

model 6 permits interactions of any order

Model Log-likelihood ROC curve area

1 Logistic !2939)5 0)787
2 Logistic !2930)5 0)788
3 Logistic !2791)8 0)818
4 Logistic !2785)0 0)820
5 MARS-1 !2797)1 0)817
6 MARS-full !2872)3 0)810
7 Tree !3028)9 0)752
8 GAM !2789)6 0)819

3. RESULTS

We evaluated the models developed by means of the training set on the test set. Summary results
appear in Table I. None of the methods outperformed Lee et al.’s model (4), either in log-
likelihood or area under the ROC curve. The no-interaction models 3, 5 and 8 come very close to
the best performance. In view of this, it is not surprising that the least additive, model 7,
performed worst.

4. BACK-PROPAGATION NEURAL NETS

We experimented with fitting multi-layer neural networks to the training data using the back-
propagation algorithm of Rumelhart et al.,8 in which one fits the unknown weight parameters
using a gradient search method. In this setting, a neural network is a non-linear generalization of
the linear logistic model; it essentially replaces the raw risk factors by adaptively chosen
non-linear functions of linear combinations of risk factors.

The networks we used had one or more layers of sigmoidal units with a single sigmoidal output
unit. The networks were all feedforward, so that there were no backward connections from higher
layers to lower layers. We interpret the output as estimating the posterior probability of death,
and so the loss function minimized during training was log probability of the data.

The first issue to resolve when using a neural network is to choose the complexity, that is, the
number of weights in the network. Once one has fixed the architecture, means must be sought to
control the bias-variance trade-off during training. To obtain an estimate of an upper bound on
the network complexity we noted that each of the 18, 147 training examples has about 0)35 bits of
information.* Assuming it takes about 3 bits per weight, this means that we can afford to have

* There is about a 7 per cent mortality rate in the data. Thus the entropy of the output is 0)07 log 0)07#(1!0)07)
]log (1!0)07)"0)25 nats or about 0)35 bits per training case
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Figure 1. Performance (log P) of neural networks with a single layer of hidden units on the training (lower data points)
and validation sets (upper data points) as a function of conjugate gradient epoch number. Results starting from two
different points in weight space are shown for each architecture. Performance is similar for all networks. All networks

show evidence of overfitting

about 2000 weights in the network. After coding the categorical variables, there are 21 inputs.
This suggests a network with 100 hidden units. We also experimented with much larger networks
(up to 1000 hidden units) and smaller nets. We also tried nets with more than one hidden layer.
Figure 1 shows the results of this exploratory analysis. From these data, it was clear that the size
of the network was not crucial and so we selected nets with a single hidden layer containing 100
units (net100) and one with two hidden layers with 20 and 10 units (net20—10) for further work. In
all cases we allowed only feedforward connections, including direct connection from the input to
the output unit. Including bias connections, net100 has 2322 connections and net20—10 has 682
connections.

The conventional way of controlling the bias-variance trade-off in neural nets is to use weight
decay or early stopping. Another effective way is bagging (Breiman9). This method reduces
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Table II. Test results using bags on the two neural net
architectures. The top row gives the average log prob-
ability per test case, the second row is the area under
the ROC curve of the net’s prediction while the last

row gives bagged-ROC areas

Parameter net100 net20—10 netARD

log (P) (bits) 0)205 0)205 0)205
ROC 0)817 0)816 0)815
bagged-ROC 0)816 0)816

variance in the output by averaging predictions from multiple networks trained on B bootstrap
samples of the training data. In this work we used B"15 bootstrap samples. For each
sample, the network weights were initialized randomly from a uniform distribution in the range
[!0)3 : 0)3]. After each conjugate gradient weight update, we evaluated the performance on the
validation data and we retained the best performance. We attempted a maximum of 50 iterations,
but the minimum tended to occur after 25—30 iterations. Table II summarizes the test results.

Weight decay is most conveniently viewed as estimating the posterior probability of the
network weights given that the weights have a prior zero mean Gaussian distribution. For
training data T and weights w this leads to the objective function for network N

E"logP (DDw,N )#+
*

j
*
w2

*
. (1)

Conventional weight decay assumes that the prior distribution on the weight is spherical and so
uses the very crude assumption j"j

i
, but has the desired property that one needs to estimate

only a single parameter. The obvious drawback is that it is probably a poor model of the weight
distribution. For example, a weight connecting an irrelevant input to the output should have
a much tighter distribution around zero than a weight that is connected to a highly correlated
input to the output. This is the basic idea behind automatic relevance detection (ARD) (Neal10),
in which weights are grouped and given the same j parameter. For example, it makes sense to
collect all outgoing weights from an input unit to a hidden layer in a single group and those to the
output unit in another group. Choosing values for the j

i
is a difficult problem. Neal10 has

suggested a technique based on Monte Carlo sampling, while MacKay11 has suggested a simpler
method based on a Gaussian approximation. The weight decay parameter for group j is estimated
from

j
j
"c

j
/+

i

w2
i

(2)

where c
j

is the number of good parameter measurements (MacKay11). We tested MacKay’s
Gaussian approximation on a network with a single hidden layer with 20 units netARD. We
grouped together all outgoing weights from an input to the hidden units and gave them
a common j. Similarly we allotted a j to the hidden to output weights and bias to hidden weights.
Thus the network has 482 weights and 23 weight decay groups. We initialized all groups with
a small amount of weight decay, j

j
"0)1. The network was trained by doing j updates (equation
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Table III. Weight decay factors associated with each of the
input-hidden weights

Input Weight decay

KILLIP II 4)67
KILLIP III 1)59
KILLIP IV 1)83
Age 5)30
Previous MI 2)33
Previous cardiac vascular disease 2)10
Previous cardiac arterior bypass grafting 1)60
Hypertension 3)90
Strep#IV hep 3)30
Strep#tPA 2)72
Strep#SQ-hep 2)33
Former smoker 4)48
Never smoked 3)62
MI loc interior 5)42
MI loc other 4)01
Pulse 12)29
Systolic BP 14)22
Time to treatment 22)49
Height 14)40
Weight 11)14
Diabetes 2)69

(2)) after every two conjugate updates of the network weights. We repeated this 25 times. The
performance of the resulting network is listed in Table II.

A purported advantage to ARD is that it can indicate which units in the net are most important
and which are irrelevant for predicting the output. Weights with low values of j

j
are more

relevant than weights with large values. Table III lists the weight decay factors associated with
weights from each of the inputs. The smallest j

i
are associated with Killip class.

Again, none of these methods outperformed the model of Lee et al.

5. DISCUSSION

We found it surprising that with such a large data set, none of the adaptive non-linear methods
that we tried could outperform the logistic regression model of Lee et al. Below we discuss some
possible explanations for this.

(i) ºse of the entire data set. Lee et al. developed their model on the entire data set of 40,830
patients, rather than on just a smaller training set. Since they do not give an objective
algorithm for how they chose the model, it is impossible to quantify the possible bias that
this introduces into our comparisons. However the fact that their model is of relatively low
complexity makes it less likely that this bias is significant.

(ii) ¸ow predictability. The predictive power of all of the methods here is quite low. Although
the ROC area of the best model is fairly high (82 per cent), the per cent deviance (twice
log-likelihood) of the constant model it explains is only about 20 per cent. We suspect that
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adaptive non-linear methods are most useful in problems with high signal-to-noise ratio,
sometimes occurring in engineering and physical science. In human medical studies, the
signal-to-noise ratio is often quite low (as it is here), and hence the modern methods may
have less to offer.

(iii) KI¸¸IP class. This composite health measure is made up of many other predictors used
here, and it was the strongest factor in Lee et al.’s logistic model. Hence its presence in the
model leaves less of an opportunity for adventurous modelling of these predictors.

Generalizations about the predictive performance of adaptive non-linear algorithms versus more
standard statistical techniques must be made with caution. Specific data sets will be more or less
advantageous for each method. However, it is noteworthy that adaptive non-linear methods
offered no advantages in this large and rich data set. Comparatively few clinical data sets will
have over 40,000 subjects characterized as extensively as is the case in the GUSTO-1 trial. Thus,
our findings add evidence to support those who have suggested that adaptive non-linear
algorithms might have limited applicability in clinical settings.
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