
On the importance of initialization and momentum in deep learning

Ilya Sutskever1 ilyasu@google.com
James Martens jmartens@cs.toronto.edu
George Dahl gdahl@cs.toronto.edu
Geoffrey Hinton hinton@cs.toronto.edu

Abstract

Deep and recurrent neural networks (DNNs
and RNNs respectively) are powerful mod-
els that were considered to be almost impos-
sible to train using stochastic gradient de-
scent with momentum. In this paper, we
show that when stochastic gradient descent
with momentum uses a well-designed random
initialization and a particular type of slowly
increasing schedule for the momentum pa-
rameter, it can train both DNNs and RNNs
(on datasets with long-term dependencies) to
levels of performance that were previously
achievable only with Hessian-Free optimiza-
tion. We find that both the initialization
and the momentum are crucial since poorly
initialized networks cannot be trained with
momentum and well-initialized networks per-
form markedly worse when the momentum is
absent or poorly tuned.

Our success training these models suggests
that previous attempts to train deep and re-
current neural networks from random initial-
izations have likely failed due to poor ini-
tialization schemes. Furthermore, carefully
tuned momentum methods suffice for dealing
with the curvature issues in deep and recur-
rent network training objectives without the
need for sophisticated second-order methods.

1. Introduction

Deep and recurrent neural networks (DNNs and
RNNs, respectively) are powerful models that achieve
high performance on difficult pattern recognition prob-
lems in vision, and speech (Krizhevsky et al., 2012;
Hinton et al., 2012; Dahl et al., 2012; Graves, 2012).

Although their representational power is appealing,
the difficulty of training DNNs has prevented their

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

widepread use until fairly recently. DNNs became
the subject of renewed attention following the work
of Hinton et al. (2006) who introduced the idea of
greedy layerwise pre-training. This approach has since
branched into a family of methods (Bengio et al.,
2007), all of which train the layers of the DNN in a
sequence using an auxiliary objective and then “fine-
tune” the entire network with standard optimization
methods such as stochastic gradient descent (SGD).
More recently, Martens (2010) attracted considerable
attention by showing that a type of truncated-Newton
method called Hessian-free Optimization (HF) is capa-
ble of training DNNs from certain random initializa-
tions without the use of pre-training, and can achieve
lower errors for the various auto-encoding tasks con-
sidered by Hinton & Salakhutdinov (2006).

Recurrent neural networks (RNNs), the temporal ana-
logue of DNNs, are highly expressive sequence mod-
els that can model complex sequence relationships.
They can be viewed as very deep neural networks
that have a “layer” for each time-step with parame-
ter sharing across the layers and, for this reason, they
are considered to be even harder to train than DNNs.
Recently, Martens & Sutskever (2011) showed that
the HF method of Martens (2010) could effectively
train RNNs on artificial problems that exhibit very
long-range dependencies (Hochreiter & Schmidhuber,
1997). Without resorting to special types of memory
units, these problems were considered to be impossi-
bly difficult for first-order optimization methods due
to the well known vanishing gradient problem (Bengio
et al., 1994). Sutskever et al. (2011) and later Mikolov
et al. (2012) then applied HF to train RNNs to per-
form character-level language modeling and achieved
excellent results.

Recently, several results have appeared to challenge
the commonly held belief that simpler first-order
methods are incapable of learning deep models from
random initializations. The work of Glorot & Ben-
gio (2010), Mohamed et al. (2012), and Krizhevsky
et al. (2012) reported little difficulty training neural
networks with depths up to 8 from certain well-chosen

1Work was done while the author was at the University
of Toronto.



On the importance of initialization and momentum in deep learning

random initializations. Notably, Chapelle & Erhan
(2011) used the random initialization of Glorot & Ben-
gio (2010) and SGD to train the 11-layer autoencoder
of Hinton & Salakhutdinov (2006), and were able to
surpass the results reported by Hinton & Salakhutdi-
nov (2006). While these results still fall short of those
reported in Martens (2010) for the same tasks, they
indicate that learning deep networks is not nearly as
hard as was previously believed.

The first contribution of this paper is a much more
thorough investigation of the difficulty of training deep
and temporal networks than has been previously done.
In particular, we study the effectiveness of SGD when
combined with well-chosen initialization schemes and
various forms of momentum-based acceleration. We
show that while a definite performance gap seems to
exist between plain SGD and HF on certain deep and
temporal learning problems, this gap can be elimi-
nated or nearly eliminated (depending on the prob-
lem) by careful use of classical momentum methods
or Nesterov’s accelerated gradient. In particular, we
show how certain carefully designed schedules for the
constant of momentum µ, which are inspired by var-
ious theoretical convergence-rate theorems (Nesterov,
1983; 2003), produce results that even surpass those re-
ported by Martens (2010) on certain deep-autencoder
training tasks. For the long-term dependency RNN
tasks examined in Martens & Sutskever (2011), which
first appeared in Hochreiter & Schmidhuber (1997),
we obtain results that fall just short of those reported
in that work, where a considerably more complex ap-
proach was used.

Our results are particularly surprising given that mo-
mentum and its use within neural network optimiza-
tion has been studied extensively before, such as in the
work of Orr (1996), and it was never found to have such
an important role in deep learning. One explanation is
that previous theoretical analyses and practical bench-
marking focused on local convergence in the stochastic
setting, which is more of an estimation problem than
an optimization one (Bottou & LeCun, 2004). In deep
learning problems this final phase of learning is not
nearly as long or important as the initial “transient
phase” (Darken & Moody, 1993), where a better ar-
gument can be made for the beneficial effects of mo-
mentum.

In addition to the inappropriate focus on purely local
convergence rates, we believe that the use of poorly de-
signed standard random initializations, such as those
in Hinton & Salakhutdinov (2006), and suboptimal
meta-parameter schedules (for the momentum con-
stant in particular) has hampered the discovery of the
true effectiveness of first-order momentum methods in
deep learning. We carefully avoid both of these pit-
falls in our experiments and provide a simple to under-
stand and easy to use framework for deep learning that

is surprisingly effective and can be naturally combined
with techniques such as those in Raiko et al. (2011).

We will also discuss the links between classical mo-
mentum and Nesterov’s accelerated gradient method
(which has been the subject of much recent study in
convex optimization theory), arguing that the latter
can be viewed as a simple modification of the former
which increases stability, and can sometimes provide a
distinct improvement in performance we demonstrated
in our experiments. We perform a theoretical analysis
which makes clear the precise difference in local be-
havior of these two algorithms. Additionally, we show
how HF employs what can be viewed as a type of “mo-
mentum” through its use of special initializations to
conjugate gradient that are computed from the up-
date at the previous time-step. We use this property
to develop a more momentum-like version of HF which
combines some of the advantages of both methods to
further improve on the results of Martens (2010).

2. Momentum and Nesterov’s
Accelerated Gradient

The momentum method (Polyak, 1964), which we refer
to as classical momentum (CM), is a technique for ac-
celerating gradient descent that accumulates a velocity
vector in directions of persistent reduction in the ob-
jective across iterations. Given an objective function
f(θ) to be minimized, classical momentum is given by:

vt+1 = µvt − ε∇f(θt) (1)

θt+1 = θt + vt+1 (2)

where ε > 0 is the learning rate, µ ∈ [0, 1] is the mo-
mentum coefficient, and ∇f(θt) is the gradient at θt.

Since directions d of low-curvature have, by defini-
tion, slower local change in their rate of reduction (i.e.,
d>∇f), they will tend to persist across iterations and
be amplified by CM. Second-order methods also am-
plify steps in low-curvature directions, but instead of
accumulating changes they reweight the update along
each eigen-direction of the curvature matrix by the in-
verse of the associated curvature. And just as second-
order methods enjoy improved local convergence rates,
Polyak (1964) showed that CM can considerably accel-

erate convergence to a local minimum, requiring
√
R-

times fewer iterations than steepest descent to reach
the same level of accuracy, where R is the condition
number of the curvature at the minimum and µ is set
to (
√
R− 1)/(

√
R+ 1).

Nesterov’s Accelerated Gradient (abbrv. NAG; Nes-
terov, 1983) has been the subject of much recent at-
tention by the convex optimization community (e.g.,
Cotter et al., 2011; Lan, 2010). Like momentum,
NAG is a first-order optimization method with better
convergence rate guarantee than gradient descent in



On the importance of initialization and momentum in deep learning

certain situations. In particular, for general smooth
(non-strongly) convex functions and a deterministic
gradient, NAG achieves a global convergence rate of
O(1/T 2) (versus the O(1/T ) of gradient descent), with
constant proportional to the Lipschitz coefficient of the
derivative and the squared Euclidean distance to the
solution. While NAG is not typically thought of as a
type of momentum, it indeed turns out to be closely re-
lated to classical momentum, differing only in the pre-
cise update of the velocity vector v, the significance of
which we will discuss in the next sub-section. Specifi-
cally, as shown in the appendix, the NAG update may
be rewritten as:

vt+1 = µvt − ε∇f(θt + µvt) (3)

θt+1 = θt + vt+1 (4)

While the classical convergence theories for both meth-
ods rely on noiseless gradient estimates (i.e., not
stochastic), with some care in practice they are both
applicable to the stochastic setting. However, the the-
ory predicts that any advantages in terms of asymp-
totic local rate of convergence will be lost (Orr, 1996;
Wiegerinck et al., 1999), a result also confirmed in ex-
periments (LeCun et al., 1998). For these reasons,
interest in momentum methods diminished after they
had received substantial attention in the 90’s. And be-
cause of this apparent incompatibility with stochastic
optimization, some authors even discourage using mo-
mentum or downplay its potential advantages (LeCun
et al., 1998).

However, while local convergence is all that matters
in terms of asymptotic convergence rates (and on cer-
tain very simple/shallow neural network optimization
problems it may even dominate the total learning
time), in practice, the “transient phase” of convergence
(Darken & Moody, 1993), which occurs before fine lo-
cal convergence sets in, seems to matter a lot more
for optimizing deep neural networks. In this transient
phase of learning, directions of reduction in the ob-
jective tend to persist across many successive gradient
estimates and are not completely swamped by noise.

Although the transient phase of learning is most no-
ticeable in training deep learning models, it is still no-
ticeable in convex objectives. The convergence rate
of stochastic gradient descent on smooth convex func-
tions is given by O(L/T + σ/

√
T ), where σ is the

variance in the gradient estimate and L is the Lip-
shits coefficient of ∇f . In contrast, the convergence
rate of an accelerated gradient method of Lan (2010)
(which is related to but different from NAG, in that
it combines Nesterov style momentum with dual aver-
aging) is O(L/T 2 + σ/

√
T ). Thus, for convex objec-

tives, momentum-based methods will outperform SGD
in the early or transient stages of the optimization
where L/T is the dominant term. However, the two
methods will be equally effective during the final stages

Figure 1. (Top) Classical Momentum (Bottom) Nes-
terov Accelerated Gradient

of the optimization where σ/
√
T is the dominant term

(i.e., when the optimization problem resembles an es-
timation one).

2.1. The Relationship between CM and NAG

From Eqs. 1-4 we see that both CM and NAG compute
the new velocity by applying a gradient-based correc-
tion to the previous velocity vector (which is decayed),
and then add the velocity to θt. But while CM com-
putes the gradient update from the current position
θt, NAG first performs a partial update to θt, comput-
ing θt + µvt, which is similar to θt+1, but missing the
as yet unknown correction. This benign-looking dif-
ference seems to allow NAG to change v in a quicker
and more responsive way, letting it behave more sta-
bly than CM in many situations, especially for higher
values of µ.

Indeed, consider the situation where the addition of
µvt results in an immediate undesirable increase in
the objective f . The gradient correction to the ve-
locity vt is computed at position θt + µvt and if µvt
is indeed a poor update, then ∇f(θt + µvt) will point
back towards θt more strongly than ∇f(θt) does, thus
providing a larger and more timely correction to vt
than CM. See fig. 1 for a diagram which illustrates
this phenomenon geometrically. While each iteration
of NAG may only be slightly more effective than CM
at correcting a large and inappropriate velocity, this
difference in effectiveness may compound as the al-
gorithms iterate. To demonstrate this compounding,
we applied both NAG and CM to a two-dimensional
oblong quadratic objective, both with the same mo-
mentum and learning rate constants (see fig. 2 in the
appendix). While the optimization path taken by CM
exhibits large oscillations along the high-curvature ver-
tical direction, NAG is able to avoid these oscillations
almost entirely, confirming the intuition that it is much
more effective than CM at decelerating over the course
of multiple iterations, thus making NAG more tolerant
of large values of µ compared to CM.

In order to make these intuitions more rigorous and



On the importance of initialization and momentum in deep learning

help quantify precisely the way in which CM and
NAG differ, we analyzed the behavior of each method
when applied to a positive definite quadratic objective
q(x) = x>Ax/2 + b>x. We can think of CM and NAG
as operating independently over the different eigendi-
rections of A. NAG operates along any one of these
directions equivalently to CM, except with an effective
value of µ that is given by µ(1 − λε), where λ is the
associated eigenvalue/curvature.

The first step of this argument is to reparameterize
q(x) in terms of the coefficients of x under the basis
of eigenvectors of A. Note that since A = U>DU for
a diagonal D and orthonormal U (as A is symmetric),
we can reparameterize q(x) by the matrix transform
U and optimize y = Ux using the objective p(y) ≡
q(x) = q(U>y) = y>U

(
U>DU

)
U>y/2 + b>U>y =

y>Dy/2 + c>y, where c = Ub. We can further rewrite
p as p(y) =

∑n
i=1[p]i([y]i), where [p]i(t) = λit

2/2+[c]it
and λi > 0 are the diagonal entries of D (and thus
the eigenvalues of A) and correspond to the curva-
ture along the associated eigenvector directions. As
shown in the appendix (Proposition 6.1), both CM
and NAG, being first-order methods, are “invariant”
to these kinds of reparameterizations by orthonormal
transformations such as U . Thus when analyzing the
behavior of either algorithm applied to q(x), we can in-
stead apply them to p(y), and transform the resulting
sequence of iterates back to the default parameteriza-
tion (via multiplication by U−1 = U>).

Theorem 2.1. Let p(y) =
∑n

i=1[p]i([y]i) such that
[p]i(t) = λit

2/2 + cit. Let ε be arbitrary and fixed.
Denote by CMx(µ, p, y, v) and CMv(µ, p, y, v) the pa-
rameter vector and the velocity vector respectively, ob-
tained by applying one step of CM (i.e., Eq. 1 and then
Eq. 2) to the function p at point y, with velocity v,
momentum coefficient µ, and learning rate ε. Define
NAGx and NAGv analogously. Then the following
holds for z ∈ {x, v}:

CM z(µ, p, y, v) =

 CM z(µ, [p]1, [y]1, [v]1)
...

CM z(µ, [p]n, [y]n, [v]n)


NAGz(µ, p, y, v) =

 CM z(µ(1− λ1ε), [p]1, [y]1, [v]1)
...

CM z(µ(1− λnε), [p]n, [y]n, [v]n)



Proof. See the appendix.

The theorem has several implications. First, CM and
NAG become equivalent when ε is small (when ελ� 1
for every eigenvalue λ of A), so NAG and CM are
distinct only when ε is reasonably large. When ε is
relatively large, NAG uses smaller effective momentum
for the high-curvature eigen-directions, which prevents

oscillations (or divergence) and thus allows the use of
a larger µ than is possible with CM for a given ε.

3. Deep Autoencoders

The aim of our experiments is three-fold. First, to
investigate the attainable performance of stochastic
momentum methods on deep autoencoders starting
from well-designed random initializations; second, to
explore the importance and effect of the schedule for
the momentum parameter µ assuming an optimal fixed
choice of the learning rate ε; and third, to compare the
performance of NAG versus CM.

For our experiments with feed-forward nets, we fo-
cused on training the three deep autoencoder prob-
lems described in Hinton & Salakhutdinov (2006) (see
sec. A.2 for details). The task of the neural net-
work autoencoder is to reconstruct its own input sub-
ject to the constraint that one of its hidden layers is
of low-dimension. This “bottleneck” layer acts as a
low-dimensional code for the original input, similar to
other dimensionality reduction techniques like Princi-
ple Component Analysis (PCA). These autoencoders
are some of the deepest neural networks with pub-
lished results, ranging between 7 and 11 layers, and
have become a standard benchmarking problem (e.g.,
Martens, 2010; Glorot & Bengio, 2010; Chapelle & Er-
han, 2011; Raiko et al., 2011). See the appendix for
more details.

Because the focus of this study is on optimization, we
only report training errors in our experiments. Test
error depends strongly on the amount of overfitting in
these problems, which in turn depends on the type and
amount of regularization used during training. While
regularization is an issue of vital importance when de-
signing systems of practical utility, it is outside the
scope of our discussion. And while it could be ob-
jected that the gains achieved using better optimiza-
tion methods are only due to more exact fitting of the
training set in a manner that does not generalize, this
is simply not the case in these problems, where under-
trained solutions are known to perform poorly on both
the training and test sets (underfitting).

The networks we trained used the standard sigmoid
nonlinearity and were initialized using the “sparse ini-
tialization” technique (SI) of Martens (2010) that is
described in sec. 3.1. Each trial consists of 750,000
parameter updates on minibatches of size 200. No reg-
ularization is used. The schedule for µ was given by
the following formula:

µt = min(1− 2−1−log2(bt/250c+1), µmax ) (5)

where µmax was chosen from
{0.999, 0.995, 0.99, 0.9, 0}. This schedule was mo-
tivated by Nesterov (1983) who advocates using what
amounts to µt = 1−3/(t+5) after some manipulation



On the importance of initialization and momentum in deep learning

task 0(SGD) 0.9N 0.99N 0.995N 0.999N 0.9M 0.99M 0.995M 0.999M SGDC HF† HF∗

Curves 0.48 0.16 0.096 0.091 0.074 0.15 0.10 0.10 0.10 0.16 0.058 0.11
Mnist 2.1 1.0 0.73 0.75 0.80 1.0 0.77 0.84 0.90 0.9 0.69 1.40
Faces 36.4 14.2 8.5 7.8 7.7 15.3 8.7 8.3 9.3 NA 7.5 12.0

Table 1. The table reports the squared errors on the problems for each combination of µmax and a momentum type
(NAG, CM). When µmax is 0 the choice of NAG vs CM is of no consequence so the training errors are presented in a
single column. For each choice of µmax , the highest-performing learning rate is used. The column SGDC lists the results of
Chapelle & Erhan (2011) who used 1.7M SGD steps and tanh networks. The column HF† lists the results of HF without
L2 regularization, as described in sec. 5; and the column HF∗ lists the results of Martens (2010).

problem before after
Curves 0.096 0.074
Mnist 1.20 0.73
Faces 10.83 7.7

Table 2. The effect of low-momentum finetuning for NAG.
The table shows the training squared errors before and
after the momentum coefficient is reduced. During the pri-
mary (“transient”) phase of learning we used the optimal
momentum and learning rates.

(see appendix), and by Nesterov (2003) who advocates
a constant µt that depends on (essentially) the con-
dition number. The constant µt achieves exponential
convergence on strongly convex functions, while the
1−3/(t+5) schedule is appropriate when the function
is not strongly convex. The schedule of Eq. 5 blends
these proposals. For each choice of µmax , we report
the learning rate that achieved the best training error.
Given the schedule for µ, the learning rate ε was
chosen from {0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}
in order to achieve the lowest final error training error
after our fixed number of updates.

Table 1 summarizes the results of these experiments.
It shows that NAG achieves the lowest published
results on this set of problems, including those of
Martens (2010). It also shows that larger values of
µmax tend to achieve better performance and that
NAG usually outperforms CM, especially when µmax

is 0.995 and 0.999. Most surprising and importantly,
the results demonstrate that NAG can achieve results
that are comparable with some of the best HF results
for training deep autoencoders. Note that the previ-
ously published results on HF used L2 regularization,
so they cannot be directly compared. However, the
table also includes experiments we performed with an
improved version of HF (see sec. 2.1) where weight
decay was removed towards the end of training.

We found it beneficial to reduce µ to 0.9 (unless µ
is 0, in which case it is unchanged) during the final
1000 parameter updates of the optimization without
reducing the learning rate, as shown in Table 2. It
appears that reducing the momentum coefficient al-
lows for finer convergence to take place whereas oth-
erwise the overly aggressive nature of CM or NAG

would prevent this. This phase shift between opti-
mization that favors fast accelerated motion along the
error surface (the “transient phase”) followed by more
careful optimization-as-estimation phase seems consis-
tent with the picture presented by Darken & Moody
(1993). However, while asymptotically it is the second
phase which must eventually dominate computation
time, in practice it seems that for deeper networks in
particular, the first phase dominates overall computa-
tion time as long as the second phase is cut off before
the remaining potential gains become either insignifi-
cant or entirely dominated by overfitting (or both).

It may be tempting then to use lower values of µ from
the outset, or to reduce it immediately when progress
in reducing the error appears to slow down. However,
in our experiments we found that doing this was detri-
mental in terms of the final errors we could achieve,
and that despite appearing to not make much progress,
or even becoming significantly non-monotonic, the op-
timizers were doing something apparently useful over
these extended periods of time at higher values of µ.

A speculative explanation as to why we see this be-
havior is as follows. While a large value of µ allows
the momentum methods to make useful progress along
slowly-changing directions of low-curvature, this may
not immediately result in a significant reduction in er-
ror, due to the failure of these methods to converge in
the more turbulent high-curvature directions (which
is especially hard when µ is large). Nevertheless, this
progress in low-curvature directions takes the optimiz-
ers to new regions of the parameter space that are
characterized by closer proximity to the optimum (in
the case of a convex objective), or just higher-quality
local minimia (in the case of non-convex optimiza-
tion). Thus, while it is important to adopt a more
careful scheme that allows fine convergence to take
place along the high-curvature directions, this must be
done with care. Reducing µ and moving to this fine
convergence regime too early may make it difficult for
the optimization to make significant progress along the
low-curvature directions, since without the benefit of
momentum-based acceleration, first-order methods are
notoriously bad at this (which is what motivated the
use of second-order methods like HF for deep learn-
ing).



On the importance of initialization and momentum in deep learning

SI scale multiplier 0.25 0.5 1 2 4
error 16 16 0.074 0.083 0.35

Table 3. The table reports the training squared error that
is attained by changing the scale of the initialization.

3.1. Random Initializations

The results in the previous section were obtained with
standard logistic sigmoid neural networks that were
initialized with the sparse initialization technique (SI)
described in Martens (2010). In this scheme, each ran-
dom unit is connected to 15 randomly chosen units in
the previous layer, whose weights are drawn from a
unit Gaussian, and the biases are set to zero. The in-
tuitive justification is that the total amount of input
to each unit will not depend on the size of the previ-
ous layer and hence they will not as easily saturate.
Meanwhile, because the inputs to each unit are not all
randomly weighted blends of the outputs of many 100s
or 1000s of units in the previous layer, they will tend
to be qualitatively more “diverse” in their response
to inputs. When using tanh units, we transform the
weights to simulate sigmoid units by setting the biases
to 0.5 and rescaling the weights by 0.25.

We investigated the performance of the optimization
as a function of the scale constant used in SI (which
defaults to 1 for sigmoid units). We found that SI
works reasonably well if it is rescaled by a factor of
2, but leads to noticeable (but not severe) slow down
when scaled by a factor of 3. When we used the factor
1/2 or 5 we did not achieve sensible results.

4. Recurrent Neural Networks

Echo-State Networks (ESNs) is a family of RNNs with
an unusually simple training method: their hidden-to-
output connections are learned from data, but their re-
current connections are fixed to a random draw from
a specific distribution and are not learned. Despite
their simplicity, ESNs with many hidden units (or
with units with explicit temporal integration, like the
LSTM) have achieved high performance on tasks with
long range dependencies (?). In this section, we inves-
tigate the effectiveness of momentum-based methods
with ESN-inspired initialization at training RNNs with
conventional size and standard (i.e., non-integrating)
neurons. We find that momentum-accelerated SGD
can successfully train such RNNs on various artificial
datasets exhibiting considerable long-range temporal
dependencies. This is unexpected because RNNs were
believed to be almost impossible to successfully train
on such datasets with first-order methods, due to var-
ious difficulties such as vanishing/exploding gradients
(Bengio et al., 1994). While we found that the use
of momentum significantly improved performance and
robustness, we obtained nontrivial results even with
standard SGD, provided that the learning rate was
set low enough.

connection type sparsity scale
in-to-hid (add,mul) dense 0.001·N(0, 1)

in-to-hid (mem) dense 0.1·N(0, 1)
hid-to-hid 15 fan-in spectral radius of 1.1
hid-to-out dense 0.1·N(0, 1)
hid-bias dense 0
out-bias dense average of outputs

Table 4. The RNN initialization used in the experiments.
The scale of the vis-hid connections is problem dependent.

Each task involved optimizing the parameters of a ran-
domly initialized RNN with 100 standard tanh hidden
units (the same model used by Martens & Sutskever
(2011)). The tasks were designed by Hochreiter &
Schmidhuber (1997), and are referred to as training
“problems”. See sec. A.3 of the appendix for details.

4.1. ESN-based Initialization

As argued by Jaeger & Haas (2004), the spectral ra-
dius of the hidden-to-hidden matrix has a profound
effect on the dynamics of the RNN’s hidden state
(with a tanh nonlinearity). When it is smaller than
1, the dynamics will have a tendency to quickly “for-
get” whatever input signal they may have been ex-
posed to. When it is much larger than 1, the dy-
namics become oscillatory and chaotic, allowing it to
generate responses that are varied for different input
histories. While this allows information to be retained
over many time steps, it can also lead to severe explod-
ing gradients that make gradient-based learning much
more difficult. However, when the spectral radius is
only slightly greater than 1, the dynamics remain os-
cillatory and chaotic while the gradient are no longer
exploding (and if they do explode, then only “slightly
so”), so learning may be possible with a spectral ra-
dius of this order. This suggests that a spectral radius
of around 1.1 may be effective.

To achieve robust results, we also found it is essential
to carefully set the initial scale of the input-to-hidden
connections. When training RNNs to solve those tasks
that possess many random and irrelevant distractor in-
puts, we found that having the scale of these connec-
tions set too high at the start led to relevant informa-
tion in the hidden state being too easily “overwritten”
by the many irrelevant signals, which ultimately led
the optimizer to converge towards an extremely poor
local minimum where useful information was never re-
layed over long distances. Conversely, we found that if
this scale was set too low, it led to significantly slower
learning. Having experimented with multiple scales we
found that a Gaussian draw with a standard deviation
of 0.001 achieved a good balance between these con-
cerns. However, unlike the value of 1.1 for the spectral
radius of the dynamics matrix, which worked well on
all tasks, we found that good choices for initial scale
of the input-to-hidden weights depended a lot on the
particular characteristics of the particular task (such



On the importance of initialization and momentum in deep learning

as its dimensionality or the input variance). Indeed,
for tasks that do not have many irrelevant inputs, a
larger scale of the input-to-hidden weights (namely,
0.1) worked better, because the aforementioned dis-
advantage of large input-to-hidden weights does not
apply. See table 4 for a summary of the initializations
used in the experiments. Finally, we found centering
(mean subtraction) of both the inputs and the outputs
to be important to reliably solve all of the training
problems. See the appendix for more details.

4.2. Experimental Results

We conducted experiments to determine the effi-
cacy of our initializations, the effect of momentum,
and to compare NAG with CM. Every learning trial
used the aforementioned initialization, 50,000 param-
eter updates and on minibatches of 100 sequences,
and the following schedule for the momentum co-
efficient µ: µ = 0.9 for the first 1000 parameter,
after which µ = µ0, where µ0 can take the fol-
lowing values {0, 0.9, 0.98, 0.995}. For each µ0, we
use the empirically best learning rate chosen from
{10−3, 10−4, 10−5, 10−6}.

The results are presented in Table 5, which are the av-
erage loss over 4 different random seeds. Instead of re-
porting the loss being minimized (which is the squared
error or cross entropy), we use a more interpretable
zero-one loss, as is standard practice with these prob-
lems. For the bit memorization, we report the frac-
tion of timesteps that are computed incorrectly. And
for the addition and the multiplication problems, we
report the fraction of cases where the RNN the error
in the final output prediction exceeded 0.04.

Our results show that despite the considerable long-
range dependencies present in training data for these
problems, RNNs can be successfully and robustly
trained to solve them, through the use of the initial-
ization discussed in sec. 4.1, momentum of the NAG
type, a large µ0, and a particularly small learning rate
(as compared with feedforward networks). Our results
also suggest that with larger values of µ0 achieve bet-
ter results with NAG but not with CM, possibly due to
NAG’s tolerance of larger µ0’s (as discussed in sec. 2).

Although we were able to achieve surprisingly good
training performance on these problems using a suf-
ficiently strong momentum, the results of Martens &
Sutskever (2011) appear to be moderately better and
more robust. They achieved lower error rates and their
initialization was chosen with less care, although the
initializations are in many ways similar to ours. No-
tably, Martens & Sutskever (2011) were able to solve
these problems without centering, while we had to
use centering to solve the multiplication problem (the
other problems are already centered). This suggests
that the initialization proposed here, together with the
method of Martens & Sutskever (2011), could achieve

even better performance. But the main achievement
of these results is a demonstration of the ability of
momentum methods to cope with long-range tempo-
ral dependency training tasks to a level which seems
sufficient for most practical purposes. Moreover, our
approach seems to be more tolerant of smaller mini-
batches, and is considerably simpler than the partic-
ular version of HF proposed in Martens & Sutskever
(2011), which used a specialized update damping tech-
nique whose benefits seemed mostly limited to training
RNNs to solve these kinds of extreme temporal depen-
dency problems.

5. Momentum and HF

Truncated Newton methods, that include the HF
method of Martens (2010) as a particular example,
work by optimizing a local quadratic model of the
objective via the linear conjugate gradient algorithm
(CG), which is a first-order method. While HF, like
all truncated-Newton methods, takes steps computed
using partially converged calls to CG, it is naturally
accelerated along at least some directions of lower cur-
vature compared to the gradient. It can even be shown
(Martens & Sutskever, 2012) that CG will tend to fa-
vor convergence to the exact solution to the quadratic
sub-problem first along higher curvature directions
(with a bias towards those which are more clustered
together in their curvature-scalars/eigenvalues).

While CG accumulates information as it iterates which
allows it to be optimal in a much stronger sense than
any other first-order method (like NAG), once it is
terminated, this information is lost. Thus, standard
truncated Newton methods can be thought of as per-
sisting information which accelerates convergence (of
the current quadratic) only over the number of itera-
tions CG performs. By contrast, momentum methods
persist information that can inform new updates across
an arbitrary number of iterations.

One key difference between standard truncated New-
ton methods and HF is the use of “hot-started” calls to
CG, which use as their initial solution the one found at
the previous call to CG. While this solution was com-
puted using old gradient and curvature information
from a previous point in parameter space and possi-
bly a different set of training data, it may be well-
converged along certain eigen-directions of the new
quadratic, despite being very poorly converged along
others (perhaps worse than the default initial solution

of ~0). However, to the extent to which the new local
quadratic model resembles the old one, and in partic-
ular in the more difficult to optimize directions of low-
curvature (which will arguably be more likely to per-
sist across nearby locations in parameter space), the
previous solution will be a preferable starting point to
0, and may even allow for gradually increasing levels
of convergence along certain directions which persist



On the importance of initialization and momentum in deep learning

problem biases 0 0.9N 0.98N 0.995N 0.9M 0.98M 0.995M
add T = 80 0.82 0.39 0.02 0.21 0.00025 0.43 0.62 0.036
mul T = 80 0.84 0.48 0.36 0.22 0.0013 0.029 0.025 0.37

mem-5 T = 200 2.5 1.27 1.02 0.96 0.63 1.12 1.09 0.92
mem-20 T = 80 8.0 5.37 2.77 0.0144 0.00005 1.75 0.0017 0.053

Table 5. Each column reports the errors (zero-one losses; sec. 4.2) on different problems for each combination of µ0 and
momentum type (NAG, CM), averaged over 4 different random seeds. The “biases” column lists the error attainable by
learning the output biases and ignoring the hidden state. This is the error of an RNN that failed to “establish communi-
cation” between its inputs and targets. For each µ0, we used the fixed learning rate that gave the best performance.

in the local quadratic models across many updates.

The connection between HF and momentum methods
can be made more concrete by noticing that a single
step of CG is effectively a gradient update taken from
the current point, plus the previous update reapplied,
just as with NAG, and that if CG terminated after just
1 step, HF becomes equivalent to NAG, except that it
uses a special formula based on the curvature matrix
for the learning rate instead of a fixed constant. The
most effective implementations of HF even employ a
“decay” constant (Martens & Sutskever, 2012) which
acts analogously to the momentum constant µ. Thus,
in this sense, the CG initializations used by HF allow
us to view it as a hybrid of NAG and an exact second-
order method, with the number of CG iterations used
to compute each update effectively acting as a dial
between the two extremes.

Inspired by the surprising success of momentum-based
methods for deep learning problems, we experimented
with making HF behave even more like NAG than it al-
ready does. The resulting approach performed surpris-
ingly well (see Table 1). For a more detailed account
of these experiments, see sec. A.6 of the appendix.

If viewed on the basis of each CG step (instead of
each update to parameters θ), HF can be thought of
as a peculiar type of first-order method which approx-
imates the objective as a series of quadratics only so
that it can make use of the powerful first-order CG
method. So apart from any potential benefit to global
convergence from its tendency to prefer certain direc-
tions of movement in parameter space over others, per-
haps the main theoretical benefit to using HF over a
first-order method like NAG is its use of CG, which,
while itself a first-order method, is well known to have
strongly optimal convergence properties for quadrat-
ics, and can take advantage of clustered eigenvalues
to accelerate convergence (see Martens & Sutskever
(2012) for a detailed account of this well-known phe-
nomenon). However, it is known that in the worst
case that CG, when run in batch mode, will converge
asymptotically no faster than NAG (also run in batch
mode) for certain specially designed quadratics with
very evenly distributed eigenvalues/curvatures. Thus
it is worth asking whether the quadratics which arise
during the optimization of neural networks by HF are
such that CG has a distinct advantage in optimizing

them over NAG, or if they are closer to the aforemen-
tioned worst-case examples. To examine this question
we took a quadratic generated during the middle of a
typical run of HF on the curves dataset and compared
the convergence rate of CG, initialized from zero, to
NAG (also initialized from zero). Figure 5 in the ap-
pendix presents the results of this experiment. While
this experiment indicates some potential advantages to
HF, the closeness of the performance of NAG and HF
suggests that these results might be explained by the
solutions leaving the area of trust in the quadratics be-
fore any extra speed kicks in, or more subtly, that the
faithfulness of approximation goes down just enough
as CG iterates to offset the benefit of the acceleration
it provides.

6. Discussion

Martens (2010) and Martens & Sutskever (2011)
demonstrated the effectiveness of the HF method as
a tool for performing optimizations for which previ-
ous attempts to apply simpler first-order methods had
failed. While some recent work (Chapelle & Erhan,
2011; Glorot & Bengio, 2010) suggested that first-order
methods can actually achieve some success on these
kinds of problems when used in conjunction with good
initializations, their results still fell short of those re-
ported for HF. In this paper we have completed this
picture and demonstrated conclusively that a large
part of the remaining performance gap that is not
addressed by using a well-designed random initializa-
tion is in fact addressed by careful use of momentum-
based acceleration (possibly of the Nesterov type). We
showed that careful attention must be paid to the mo-
mentum constant µ, as predicted by the theory for
local and convex optimization.

Momentum-accelerated SGD, despite being a first-
order approach, is capable of accelerating directions
of low-curvature just like an approximate Newton
method such as HF. Our experiments support the idea
that this is important, as we observed that the use of
stronger momentum (as determined by µ) had a dra-
matic effect on optimization performance, particularly
for the RNNs. Moreover, we showed that HF can be
viewed as a first-order method, and as a generalization
of NAG in particular, and that it already derives some
of its benefits through a momentum-like mechanism.



On the importance of initialization and momentum in deep learning

References

Bengio, Y., Simard, P., and Frasconi, P. Learning
long-term dependencies with gradient descent is diffi-
cult. IEEE Transactions on Neural Networks, 5:157–166,
1994.

Bengio, Y., Lamblin, P, Popovici, D., and Larochelle, H.
Greedy layer-wise training of deep networks. In In NIPS.
MIT Press, 2007.

Bottou, L. and LeCun, Y. Large scale online learning. In
Advances in Neural Information Processing Systems 16:
Proceedings of the 2003 Conference, volume 16, pp. 217.
MIT Press, 2004.

Chapelle, O. and Erhan, D. Improved Preconditioner for
Hessian Free Optimization. In NIPS Workshop on Deep
Learning and Unsupervised Feature Learning, 2011.

Cotter, A., Shamir, O., Srebro, N., and Sridharan, K. Bet-
ter mini-batch algorithms via accelerated gradient meth-
ods. arXiv preprint arXiv:1106.4574, 2011.

Dahl, G.E., Yu, D., Deng, L., and Acero, A. Context-
dependent pre-trained deep neural networks for large-
vocabulary speech recognition. Audio, Speech, and Lan-
guage Processing, IEEE Transactions on, 20(1):30–42,
2012.

Darken, C. and Moody, J. Towards faster stochastic gra-
dient search. Advances in neural information processing
systems, pp. 1009–1009, 1993.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of AISTATS 2010, volume 9, pp. 249–256, may
2010.

Graves, A. Sequence transduction with recurrent neural
networks. arXiv preprint arXiv:1211.3711, 2012.

Hinton, G and Salakhutdinov, R. Reducing the dimension-
ality of data with neural networks. Science, 313:504–507,
2006.

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A.,
Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P.,
Sainath, T., et al. Deep neural networks for acoustic
modeling in speech recognition. IEEE Signal Processing
Magazine, 2012.

Hinton, G.E., Osindero, S., and Teh, Y.W. A fast learning
algorithm for deep belief nets. Neural computation, 18
(7):1527–1554, 2006.

Hochreiter, S. and Schmidhuber, J. Long short-term mem-
ory. Neural computation, 9(8):1735–1780, 1997.

Jaeger, H. personal communication, 2012.

Jaeger, H. and Haas, H. Harnessing nonlinearity: Pre-
dicting chaotic systems and saving energy in wireless
communication. Science, 304:78–80, 2004.

Krizhevsky, A., Sutskever, I., and Hinton, G. Imagenet
classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems
25, pp. 1106–1114, 2012.

Lan, G. An optimal method for stochastic composite op-
timization. Mathematical Programming, pp. 1–33, 2010.

LeCun, Y., Bottou, L., Orr, G., and Müller, K. Efficient
backprop. Neural networks: Tricks of the trade, pp. 546–
546, 1998.

Martens, J. Deep learning via Hessian-free optimization.
In Proceedings of the 27th International Conference on
Machine Learning (ICML), 2010.

Martens, J. and Sutskever, I. Learning recurrent neural
networks with hessian-free optimization. In Proceedings
of the 28th International Conference on Machine Learn-
ing (ICML), pp. 1033–1040, 2011.

Martens, J. and Sutskever, I. Training deep and recurrent
networks with hessian-free optimization. Neural Net-
works: Tricks of the Trade, pp. 479–535, 2012.

Mikolov, Tomáš, Sutskever, Ilya, Deoras, Anoop, Le,
Hai-Son, Kombrink, Stefan, and Cernocky, J. Sub-
word language modeling with neural networks. preprint
(http://www. fit. vutbr. cz/imikolov/rnnlm/char. pdf),
2012.

Mohamed, A., Dahl, G.E., and Hinton, G. Acoustic mod-
eling using deep belief networks. Audio, Speech, and
Language Processing, IEEE Transactions on, 20(1):14
–22, Jan. 2012.

Nesterov, Y. A method of solving a convex program-
ming problem with convergence rate O(1/sqr(k)). Soviet
Mathematics Doklady, 27:372–376, 1983.

Nesterov, Y. Introductory lectures on convex optimization:
A basic course, volume 87. Springer, 2003.

Orr, G.B. Dynamics and algorithms for stochastic search.
1996.

Polyak, B.T. Some methods of speeding up the convergence
of iteration methods. USSR Computational Mathematics
and Mathematical Physics, 4(5):1–17, 1964.

Raiko, Tapani, Valpola, Harri, and LeCun, Yann. Deep
learning made easier by linear transformations in percep-
trons. In NIPS 2011 Workshop on Deep Learning and
Unsupervised Feature Learning, Sierra Nevada, Spain,
2011.

Sutskever, I., Martens, J., and Hinton, G. Generating
text with recurrent neural networks. In Proceedings of
the 28th International Conference on Machine Learning,
ICML ’11, pp. 1017–1024, June 2011.

Wiegerinck, W., Komoda, A., and Heskes, T. Stochas-
tic dynamics of learning with momentum in neural net-
works. Journal of Physics A: Mathematical and General,
27(13):4425, 1999.



On the importance of initialization and momentum in deep learning

40 30 20 10 0 10 20 30
40

30

20

10

0

10

20

30

Figure 2. The trajectories of CM, NAG, and SGD are
shown. Although the value of the momentum is identi-
cal for both experiments, CM exhibits oscillations along
the high-curvature directions, while NAG exhibits no such
oscillations. The global minimizer of the objective is at
(0,0). The red curve shows gradient descent with the same
learning rate as NAG and CM, the blue curve shows NAG,
and the green curve shows CM. See section 2 of the paper.

Appendix

A.1 Derivation of Nesterov’s
Accelerated Gradient as a Momentum
Method

Nesterov’s accelerated gradient is an iterative algo-
rithm that was originally derived for non-stochastic
gradients. It is initialized by setting k = 0, a0 = 1,
θ−1 = y0, y0 to an arbitrary parameter setting, z
to an arbitrary parameter setting, and ε−1 = ‖y0 −
z‖/‖∇f(y0)−∇f(z)‖. It then repeatedly updates its
parameters with the following equations:

εt = 2−iεt−1 (6)

(here i is the smallest positive integer for which

f(yt)− f(yt − 2−iεt−1∇f(yt)) ≥ 2−iεt−1
‖∇f(yt)‖2

2
)

θt = yt − εt∇f(yt) (7)

at+1 =

(
1 +

√
4a2t + 1

)
/2 (8)

yt+1 = θt + (at − 1)(θt − θt−1)/at+1 (9)

The above presentation is relatively opaque and could
be difficult to understand, so we will rewrite these
equations in a more intuitive manner.

The learning rate εt is adapted to always be smaller
than the reciprocal of the “observed” Lipshitz coeffi-
cient of ∇f around the trajectory of the optimization.
Alternatively, if the Lipshitz coefficient of the deriva-
tive is known to be equal to L, then setting εt = 1/L

for all t is sufficient to obtain the same theoretical
guarantees. This method for choosing the learning
rate assumes that f is not noisy, and will result in
too-large learning rates if the objective is stochastic.

To understand the sequence at, we note that the
function x →

(
1 +
√

4x2 + 1
)
/2 quickly approaches

x → x + 0.5 from below as x → ∞, so at ≈ (t + 4)/2
for large t, and thus (at−1)/at+1 (from eq. 9) behaves
like 1− 3/(t+ 5).

Finally, if we define

vt ≡ θt − θt−1 (10)

µt ≡ (at − 1)/at+1 (11)

then the combination of eqs. 9 and 11 implies:

yt = θt−1 + µt−1vt−1

which can be used to rewrite eq. 7 as follows:

θt = θt−1 + µt−1vt−1 − εt−1∇f(θt−1 + µt−1vt−1)
(12)

vt = µt−1vt−1 − εt−1∇f(θt−1 + µt−1vt−1) (13)

where eq. 13 is a consequence of eq. 10. Alternatively:

vt = µt−1vt−1 − εt−1∇f(θt−1 + µt−1vt−1) (14)

θt = θt−1 + vt (15)

where µt ≈ 1− 3/(t+ 5). (Nesterov, 1983) shows that
if f is a convex function with an L-Lipshitz contin-
uous derivative, then the above method satisfies the
following:

f(θt)− f(θ∗) ≤ 4L‖θ−1 − θ∗‖2

(t+ 2)2
(16)

To understand the quadratic speedup obtained by the
momentum, consider applying momentum to a linear
function. In this case, the i-th step of the momentum
method will be of distance proportional to i; therefore
N steps could traverse a quadratically longer distance:
1 + 2 + · · ·+N = O(N2).

A.2 Details for Theorem 2.1

We will first formulate and prove a result which es-
tablishes the well known fact that first-order meth-
ods such CM and NAG are invariant to orthonormal
transformations (i.e. rotations) such as U . In partic-
ular, we will will show that the sequence of iterates
obtained by applying NAG and CM to the reparam-
eterized quadratic p, is given by U times sequence of
iterates obtained by applying NAG and CM to the
original quadratic q. Note that the only fact we use
about U at this stage is that it is orthonormal/unitary,
not that it diagonalizes q.



On the importance of initialization and momentum in deep learning

Proposition 6.1. Let {(µi, εi)}∞i=1 be an arbitrary se-
quence of learning rates, let x0, v0 be an arbitrary ini-
tial position and velocity, and let {(xi, vi)}∞i=0 be the
sequence of iterates obtained by CM by optimizing q
starting from x0, v0, with the learning parameters µi, εi
at iteration i.

Next, let y0, w0 be given by Ux0, Uv0, and let
{(yi, wi)}∞i=0 be the sequence of iterates obtained by
CM by optimizing p starting from y0, w0, with the
learning parameters µi, εi at iteration i.

Then the following holds for all i:

yi = Uxi

wi = Uvi

The above also applies when CM is replaced with NAG.

Proof. First, notice that

xi+1 = CMx(µi, q, xi, vi)

vi+1 = CMv(µi, q, xi, vi)

and that

yi+1 = CMx(µi, p, yi, wi)

wi+1 = CMv(µi, p, yi, wi)

The proof is by induction. The claim is immediate
for i = 0. To see that it holds for i + 1 assuming i,
consider:

wi+1 = wi + ε∇yip(yi)

= wi + εU∇xip(yi) (chain rule using yi = Uxi)

= wi + εU∇xiq(U
>yi) (definition of p)

= wi + εU∇xi
q(xi) (xi = U>yi)

= Uvi + εU∇xiq(xi) (by induction)

= U(vi + ε∇xiq(xi))

= Uvi+1

Using the above, we get

yi+1 = yi + wi+1

= Uxi + Uvi+1

= Uxi+1

yi+1 = yi + wi+1 = Uxi + Uvi+1 = Uxi+1

This completes the proof for CM; the proof for NAG
is nearly identical.

Given this result, and reparameterization p of q ac-
cording to its eigencomponents, the results of Theorem
2.1 can thus be

Proof of Theorem 2.1. We first show that for separa-
ble problems, CM (or NAG) is precisely equivalent to
many simultaneous applications of CM (or NAG) to
the one-dimensional problems that correspond to each
problem dimension. We then show that for NAG, the
effective momentum for a one-dimensional problem de-
pends on its curvature. We prove these results for one
step of CM or NAG, although these results generalize
to larger n.

Consider one step of CMv:

CMv(µ, p, y, v) = µv − ε∇p(y)

= (µ[v]1 − ε∇[y]1p(y), . . . , µ[v]n − ε∇[y]np(y))

= (µ[v]1 − ε∇[p]1([y]1), . . . , µ[v]n − ε∇[p]n([y]n))

= (CMv(µ, [p]1, [y]1, [v]1), . . . , CMv(µ, [p]n, [y]n, [v]n))

This shows that one step of CMv on q is precisely
equivalent to n simultaneous applications of CMv to
the one-dimensional quadratics [q]i, all with the same
µ and ε. A similar argument shows a single step of
each of CMx, on NAGx, and NAGv can be obtained
by applying each of them to the n one-dimensional
quadratics [q]i.

Next we show that NAG, applied to a one-dimensional
quadratic with a momentum coefficient µ, is equiva-
lent to CM applied to the same quadratic and with
the same learning rate, but with a momentum co-
efficient µ(1 − ελ). We show this by expanding
NAGv(µ, [p]i, y, v) (where y and v are scalars):

NAGv(µ, [q]i, y, v) = µv − ε∇[p]i(y + µv)

= µv − ε(λi(y + µv) + ci)

= µv − ελiµv − ε(λiy + ci)

= µ(1− ελi)v − ε∇[p]i(y)

= CMv(µ(1− ελi), [p]i, v, y)

Since Eq. 2 is identical to 4, it follows that

NAGx(µ, [p]i, y, v) = CMx(µ(1− ελi), [p]i, y, v)

for all i.

A.3. Autoencoder Problem Details

We experiment with the three autoencoder problems
from Hinton & Salakhutdinov (2006), which are de-
scribed in Table 6.

A.4. RNN Problem Details

We considered 4 of the pathological long term de-
pendency “problems” from Hochreiter & Schmidhu-
ber (1997), which consist of artificial datasets designed
to have various non-trivial long-range dependencies.



On the importance of initialization and momentum in deep learning

0 20 40 60 80

0

20

40

60

80

100

0 20 40 60 80

0

20

40

60

80

100

0 20 40 60 80

0

20

40

60

80

100

Figure 3. In each figure, the vertical axis is time, and the horizontal axis are units. The leftmost figure shows the hidden
state sequences of an RNN on the addition problem with the aforementioned parameter initialization. Note the “gentle”
oscillations of the hidden states. The middle figure shows the hidden state sequence of the same RNN after 1000 parameter
updates. The hidden state sequence is almost indistinguishable, differing by approximately 10−4 for each pixel, so despite
the little progress that has been made, the oscillations are preserved, and thus the parameter setting still have a chance of
solving the problem. The rightmost figure shows an RNN with the same initialization after 1000 parameter updates, where
the output biases were initialized to zero. Notice how the hidden state sequence has many fewer oscillations, although
both parameter settings fail to establish communication between the inputs and the target.

name dim size architecture
Curves 784 20,000 784-400-200-100-50-25-6
Mnist 784 60,000 784-1000-500-250-30
Faces 625 103,500 625-2000-1000-500-30

Table 6. The networks’ architectures and the sizes of the
datasets.

These were the 5-bit memorization task, the 20-bit
memorization task, the addition problem, and the mul-
tiplication problem. These artificial problems were
each designed to be impossible to learn with regular
RNNs using standard optimization methods, owing to
the presence of long-range temporal dependencies of
the target outputs on the early inputs. And in partic-
ular, despite the results of ?, they cannot be learned
with ESNs that have 100 conventional hidden units
(Jaeger, 2012)1.

In the 5-bit memorization problem, the input sequence
consists of 5 bits that are followed by a large number
of blank symbols. The target sequence consists of the
same 5 bits occurring at the end of the sequence, pre-
ceded by blanks. The 20-bit memorization problem is
similar to the 5-bit memorization problem, but the 5-
bits are replaced with ten 5-ary symbols, so that each
sequence contains slightly more than 20 bits of infor-

1Small ESNs that use leaky integration can achieve very
low training errors on these problems, but the leaky inte-
gration is well-suited for the addition and the multiplica-
tion but not the memorization problems.

Figure 4. The memorization and the addition problems.
The goal of the memorization problem is to output the
input bits in the correct order. The goal of the addition
and the multiplication problem is to output the sum (or
the product) of the two marked inputs.

mation. In the addition problem, the input sequence
consists of pairs (x, y) of real numbers presented in se-
quence, where each x is a drawn from U [0, 1] and each
y is a binary “marker” in {0, 1}. The final entry of the
target output sequence is determined as the sum of
the x component for the two pairs whose y component
is 1. The multiplication problem is analogous, and we
follow the precise format used by Martens & Sutskever
(2011). To achieve low error on each of these tasks the
RNN must learn to memorize and transform some in-
formation contained at the beginning of the sequence



On the importance of initialization and momentum in deep learning

within its hidden state, retaining it all of the way to the
end. This is made especially difficult because there are
no easier-to-learn short or medium-term dependencies
that can act as hints to help the learning see the long-
term ones, and because of the noise in the addition
and the multiplication problems.

A.5 The effect of bias centering

In our experiments, we observed that the hidden state
oscillations, which are likely important for relaying in-
formation across long distances, had a tendency to dis-
appear after the early stages of learning (see fig. 3),
causing the optimization to converge to a poor local
optimum. We surmised that this tendency was due
to fact that the smallest modification to the parame-
ters (as measured in the standard norm - the quantity
which steepest descent can be thought of as minimiz-
ing) that allowed the output units to predict the av-
erage target output, involved making the outputs con-
stant by way of making the hidden state constant. By
centering the target outputs, the initial bias is correct
by default, and thus the optimizer is not forced into
making this “poor early choice” that dooms it later
on.

Similarly, we found it necessary to center the inputs
to reliably solve the multiplication problem; the mo-
mentum methods were unable to solve this problem
without input centering. We speculate that the reason
for this is that the inputs associated with the multipli-
cation problem are positive, causing the hidden state
to drift in the direction of the input-to-hidden vector,
which in turn leads to saturation of the hidden state.
When the inputs are centered, the net input to the hid-
den units will initial be closer to zero when averaged
over a reasonable window of time, thus preventing this
issue.

Figure 3 shows how the hidden state sequence evolves
when the output units are not centered. While the
oscillations of the RNN’s hidden state are preserved
if the output bias is initialized to be the mean of the
targets, they disappear if the output bias is set to zero
(in this example, the mean of the targets is 0.5). This
is a consequence of the isotropic nature of stochastic
gradient descent which causes it to minimize the L2

distance of its optimization paths, and of the fact that
the L2-closest parameter setting that outputs the av-
erage of the targets is obtained by slightly adjusting
both the biases and making the hidden states constant,
to utilize the hidden-to-output weights.

A.6 Hybrid HF-Momentum approach

Our hybrid HF-momentum algorithm, is characterized
by the following changes to the original approach out-
lined by Martens (2010): we disposed of the line search

and used a fixed learning rate of 1 which, after some
point chosen by hand, we gradually decayed to zero us-
ing a simple schedule; we gradually increased the value
of the decay constant (similarly to how we increased
µ); and we used smaller minibatches, while computing
the gradient only on the current minibatch (as opposed
to the full dataset - as is commonly done with HF).
Analogously to our experiments with momentum, we
adjusted the settings near the end of optimization (af-
ter the transient phase) to improve fine-grained local
convergence/stochastic estimation. In particular, we
switched back to using a more traditional version of
HF along the lines of the one described by Martens
(2010), which involved using much larger minibatches,
or just computing the gradient on more data/the entire
training set, raising the learning rate back to 1 (or as
high as the larger minibatches permit), etc., and also
decreasing the L2 weight decay to squeeze out some
extra performance.

The results of these experiments were encouraging, al-
though preliminary, and we report them in Table 1,
noting that they are not directly comparable to the
experiments performed with CM and NAG due to the
of use incomparable amounts of computation (fewer
iterations, but with large minibatches).

For each autoencoder training task we ran we hand-
designed a schedule for the learning rate (ε), decay
constant (µ), and minibatch size (s), after a small
amount of trial and error. The details for CURVES
and MNIST are given below.

For CURVES, we first ran HF iterations with 50 CG
steps each, for a total of 250k CG steps, using ε = 1.0,
µ = 0.95 and with gradient and curvature products
computed on minibatches consisting of 1/16th of the
training set. Next, we increased µ to 0.999 and an-
nealed ε according to the schedule 500/(t − 4000).
The error reach 0.0094 by this point, and from here
we tuned the method to achieve fine local conver-
gence, which we achieved primarily through running
the method in full batch mode. We first ran HF for
100k total CG steps with the number of CG steps per
update increased to 200, µ lowered to 0.995, and ε
raised back to 1 (which was stable because we were
running in batch mode) . The error reach 0.087 by
this point. Finally, we lowered the L2 weight decay
from 2e-5 (which was used in (Martens, 2010)) to near
zero and ran 500k total steps more, to arrive at an
error of 0.058.

For MNIST, we first ran HF iterations with 50 CG
steps each, for a total of 25k CG steps, using ε = 1.0,
µ = 0.95 and with gradient and curvature products
computed on minibatches consisting of 1/20th of the
training set. Next, we increased µ to 0.995, ε was an-
nealed according to 250/t, and the method was run for
another 225k CG steps. The error reach 0.81 by this



On the importance of initialization and momentum in deep learning

0 100 200 300 400 500
−0.018

−0.016

−0.014

−0.012

−0.010

−0.008

−0.006

−0.004

−0.002

0.000

NAG
CG

Figure 5. Comparison of NAG and CG on a damped
quadratic objective from the middle of HF. The plot shows
that while CG is considerably more effective than NAG at
opitimizing the kinds of quadratic approximation that oc-
cur during neural network learning, although the difference
is not dramatic. Note that we truncated CG after 120 steps
because this is the number of steps that would be typically
used by HF at this stage of learning.

point. Finally, we focused on achieving fine conver-
gence and started computing the gradient on the full
training set (but still computing the curvature prod-
ucts on minibatches of size 1/20th). With ε set back
to 1, we ran another 125k total CG steps to achieve
a final error of 0.69. The L2 weight decay was set to
1e-5 for the entirety of training.


	Introduction
	Momentum and Nesterov's Accelerated Gradient
	 The Relationship between CM and NAG

	Deep Autoencoders
	Random Initializations

	Recurrent Neural Networks
	ESN-based Initialization
	Experimental Results

	Momentum and HF
	Discussion

