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Abstract

We propose a non-linear generative model for human motion data that uses an
undirected model with binary latent variables and real-valued “visible” variables
that represent joint angles. The latent and visible variables at each time step re-
ceive directed connections from the visible variables at the last few time-steps.
Such an architecture makes on-line inference efficient and allows us to use a sim-
ple approximate learning procedure. After training, the model finds a single set
of parameters that simultaneously capture several different kinds of motion. We
demonstrate the power of our approach by synthesizing various motion sequences
and by performing on-line filling in of data lost during motion capture.
Website: http://www.cs.toronto.edu/∼gwtaylor/publications/nips2006mhmublv/

1 Introduction

Recent advances in motion capture technology have fueled interest in the analysis and synthesis
of complex human motion for animation and tracking. Models based on the physics of masses
and springs have produced some impressive results by using sophisticated “energy-based” learning
methods[1] to estimate physical parameters from motion capture data[2]. But if we want to generate
realistic human motion, we need to model all the complexities of the real dynamics and this is so
difficult to do analytically that learning is likely to be essential. The simplest way to generate new
motion sequences based on data is to concatenate parts of training sequences [3]. Another method is
to transform motion in the training data to new sequences by learning to adjusting its style or other
characteristics[4, 5, 6]. In this paper we focus on model driven analysis and synthesis but avoid the
complexities involved in imposing physics-based constraints, relying instead on a “pure” learning
approach in which all the knowledge in the model comes from the data.

Data from modern motion capture systems is high-dimensional and contains complex non-linear
relationships between the components of the observation vector, which usually represent joint angles
with respect to some skeletal structure. Hidden Markov models cannot model such data efficiently
because they rely on a single, discreteK-state multinomial to represent the history of the time series.
To modelN bits of information about the past history they require2N hidden states. To avoid this
exponential explosion, we need a model with distributed (i.e. componential) hidden state that has a
representational capacity which is linear in the number of components. Linear dynamical systems
satisfy this requirement, but they cannot model the complexnon-linear dynamics created by the
non-linear properties of muscles, contact forces of the foot on the ground and myriad other factors.



2 An energy-based model for vectors of real-values

In general, using distributed binary representations for hidden state in directed models of time series
makes inference difficult. If, however, we use a Restricted Boltzmann Machine (RBM) to model
the probability distribution of the observation vector at each time frame, the posterior over latent
variables factorizes completely, making inference easy. Typically, RBMs use binary logistic units
for both the visible data and hidden variables, but in our application the data (comprised of joint
angles) is continuous. We thus use a modified RBM in which the “visible units” are linear, real-
valued variables that have Gaussian noise[7, 8]. The graphical model has a layer of visible unitsv
and a layer of hidden unitsh; there are undirected connections between layers but no connections
within a layer. For any setting of the hidden units, the distribution of each visible unit is defined by
a parabolic log likelihood function that makes extreme values very improbable:1
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whereσi is the standard deviation of the Gaussian noise for visible unit i. (In practice, we rescale our
data to have zero mean and unit variance. We have found that fixing σi at1 makes the learning work
well even though we would expect a good model to predict the data with much higher precision).

The main advantage of using this undirected, “energy-based” model rather than a directed “belief
net” is that inference is very easy because the hidden units become conditionally independent when
the states of the visible units are observed. The conditional distributions (assumingσi = 1) are:
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wheref(·) is the logistic function,N (µ, V ) is a Gaussian,bj andci are the “biases” of hidden unit
j and visible uniti respectively, andwij is the symmetric weight between them.

Maximum likelihood learning is slow in an RBM but learning still works well if we approximately
follow the gradient of another function called the contrastive divergence[9]. The learning rule is:

∆wij ∝ 〈vihj〉data− 〈vihj〉recon, (4)

where the first expectation (over hidden unit activations) is with respect to the data distribution and
the second expectation is with respect to the distribution of “reconstructed” data. The reconstructions
are generated by starting a Markov chain at the data distribution, updating all the hidden units in
parallel by sampling (Eq. 2) and then updating all the visible units in parallel by sampling (Eq. 3).
For both expectations, the states of the hidden units are conditional on the states of the visible units,
notvice versa. The learning rule for the hidden biases is just a simplified version of Eq. 4:

∆bj ∝ 〈hj〉data− 〈hj〉recon. (5)

2.1 The conditional RBM model

The RBM we have described above models static frames of data,but does not incorporate any tem-
poral information. We can model temporal dependencies by treating the visible variables in the
previous time slice as additional fixed inputs [10]. Fortunately, this does not complicate inference.
We add two types of directed connections (Figure 2): autoregressive connections from the pastn
configurations (time steps) of the visible units to the current visible configuration, and connections
from the pastm visibles to the current hidden configuration. The addition of these directed con-
nections turns the RBM into a conditional RBM (CRBM). In our experiments, we have chosen
n = m = 3. These are, however, tunable parameters and need not be the same for both types of
directed connections. To simplify discussion, we will assumen = m and refer ton as the order of
the model.

1For any setting of the parameters, the gradient of the quadratic log likelihood will always overwhelm the
gradient due to the weighted input from the binary hidden units provided the valuevi of a visible unit is far
enough from its bias,ci.



Figure 1: In a trained model, probabilities of each feature being “on” conditional on the data at the
visible units. Shown is a 100-hidden unit model, and a sequence which contains (in order) walking,
sitting/standing (three times), walking, crouching, and running. Rows represent features, columns
represent sequential frames.
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Figure 2: Architecture of
our model (in our experi-
ments, we use three previous
time steps)

Inference in the CRBM is no more difficult than in the standard
RBM. Given the data at timet, t − 1, . . . , t − n, the hidden units
at timet are conditionally independent. We can still use contrastive
divergence for training the CRBM. The only change is that when we
update the visible and hidden units, we implement the directed con-
nections by treating data from previous time steps as a dynamically
changing bias. The contrastive divergence learning rule for hidden
biases is given in Eq. 5 and the equivalent learning rule for the tem-
poral connections that determine the dynamically changinghidden
unit biases is:
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wherea
(t−q)
ki is the weight from visible unitk at timet− q to visible

unit i.

The autoregressive weights can model short-term temporal structure
very well, leaving the hidden units to model longer-term, higher level
structure. During training, the states of the hidden units are deter-
mined by both the input they receive from the observed data and the
input they receive from the previous time slices. The learning rule
for W remains the same as a standard RBM, but has a different ef-
fect because the states of the hidden units are now influencedby the
previous visible units. We do not attempt to model the firstn frames
of each sequence.

While learning a model of motion, we do not need to proceed sequentially through the training data
sequences. The updates are only conditional on the pastn time steps, not the entire sequence. As
long as we isolate “chunks” of frames (the size depending on the order of the directed connections),
these can be mixed and formed into mini-batches. To speed up the learning, we assemble these
chunks of frames into “balanced” mini-batches of size100.

We randomly assign chunks to different mini-batches so thatthe chunks in each mini-batch are
as uncorrelated as possible. To save computer memory, time frames are not actually replicated in
mini-batches; we simply use indexing to simulate the “chunking” of frames.



2.2 Approximations

Our training procedure relies on several approximations, most of which are chosen based on ex-
perience training similar networks. While training the CRBM, we replacedvi in Eq. 4 and Eq. 7
by its expected value and we also used the expected value ofvi when computing the probability
of activation of the hidden units. However, to compute the one-step reconstructions of the data, we
used stochastically chosen binary values of the hidden units. This prevents the hidden activities from
transmitting an unbounded amount of information from the data to the reconstruction [11].

While updating the directed visible-to-hidden connections (Eq. 6) and the symmetric undirected
connections (Eq. 4) we used the stochastically chosen binary values of the hidden units in the first
term (under the data), but replacedhj by its expected value in the second term (under the reconstruc-
tion). We took this approach because the reconstruction of the data depends on the binary choices
made when selecting hidden state. Thus when we infer the hiddens from the reconstructed data,
the probabilities are highly correlated with the binary hidden states inferred from the data. On the
other hand, we stop after one reconstruction, so the binary choice of hiddens from the reconstruction
doesn’t correlate with any other terms, and there is no pointincluding this extra noise.

Lastly, we note that the fine-tuning procedure as a whole is making a crude approximation in addition
to the one made by contrastive divergence. The inference step, conditional on past visible states,
is approximate because it ignores the future (it does not do smoothing). Because of the directed
connections, exact inference within the model should include both a forward and backward pass
through each sequence (we currently perform only a forward pass). We have avoided a backward
pass because missing values create problems in undirected models, so it is hard to perform learning
efficiently using the full posterior. Compared with an HMM, the lack of smoothing is a loss, but this
is more than offset by the exponential gain in representational power.

3 Data gathering and preprocessing

We used data from the CMU Graphics Lab Motion Capture Database as well as from [12] (see
acknowledgments). The processed data consists of 3D joint angles derived from 30 (CMU) or 17
(MIT) markers plus a root (coccyx, near the base of the back) orientation and displacement. For
both datasets, the original data was captured at 120Hz; we have downsampled it to 30Hz.

Six of the joint angle dimensions in the original CMU data hadconstant values, so they were elim-
inated. Each of the remaining joint angles had between one and three degrees of freedom. All of
the joint angles and the root orientation were converted from Euler angles to the “exponential map”
parameterization [13]. This was done to avoid “gimbal lock”and discontinuities. (The MIT data
was already expressed in exponential map form and did not need to be converted.)

We treated the root specially because it encodes a transformation with respect to a fixed global
coordinate system. In order to respect physics, we wanted our final representation to be invariant
to ground-plane translation and to rotation about the gravitational vertical. We represented each
ground-plane translation by an incremental “forwards” vector and an incremental “sideways” vector
relative to the direction the person was currently facing, but we represented height non-incrementally
by the distance above the ground plane. We represented orientation around the gravitational vertical
by the incremental change, but we represented the other two rotational degrees of freedom by the
absolute pitch and roll relative to the direction the personwas currently facing.

The final dimensionality of our data vectors was 62 (for the CMU data) and 49 (for the MIT data).
Note that we eliminated exponential map dimensions that were constant zero (corresponding to
joints with a single degree of freedom). As mentioned in Sec.2, each component of the data was
normalized to have zero mean and unit variance.

One advantage of our model is the fact that the data does not need to be heavily preprocessed or
dimensionality reduced. Brand and Hertzmann [4] apply PCA to reduce noise and dimensionality.
The autoregressive connections in our model can be thought of as doing a kind of “whitening” of the
data. Urtasun et al. [6] manually segment data into cycles and sample at regular time intervals using
quaternion spherical interpolation. Dimensionality reduction becomes problematic when a wider
range of motions is to be modeled.



4 Experiments

After training our model using the updates described above,we can demonstrate in several ways
what it has learned about the structure of human motion. Perhaps the most direct demonstration,
which exploits the fact that it is a probability density model of sequences, is to use the model to
generatede-novo a number of synthetic motion sequences. Video files of these sequences are avail-
able on the website mentioned in the abstract; these motionshave not been retouched by hand in
any motion editing software. Note that we also do not have to keep a reservoir of training data
sequences around for generation - we only need the weights ofthe model and a few valid frames for
initialization.

Causal generation from a learned model can be done on-line with no smoothing, just like the learning
procedure. The visible units at the last few time steps determine the effective biases of the visible
and hidden units at the current time step. We always keep the previous visible states fixed and
perform alternating Gibbs sampling to obtain a joint samplefrom the conditional RBM. This picks
new hidden and visible states that are compatible with each other and with the recent (visible)
history. Generation requires initialization withn time steps of the visible units, which implicitly
determine the “mode” of motion in which the synthetic sequence will start. We used randomly
drawn consecutive frames from the training data as an initial configuration.

4.1 Generation of walking and running sequences from a single model

In our first demonstration, we train a single model on data containing both walking and running
motions; we then use the learned model to generate both typesof motion, depending on how it is
initialized. We trained2 on 23 sequences of walking and 10 sequences of jogging (from subject 35
in the CMU database). After downsampling to 30Hz, the training data consisted of 2813 frames.

Figure 3: After training, the same
model can generate walking (top)
and running (bottom) motion (see
videos on the website). Each skele-
ton is 4 frames apart.

Figure 3 shows a walking sequence and a running sequence generated by the same model, using al-
ternating Gibbs sampling (with the probability of hidden units being “on” conditional on the current
and previous three visible vectors). Since the training data does not contain any transitions between
walking and running (andvice-versa), the model will continue to generate walking or running mo-
tions depending on where it is initialized.

4.2 Learning transitions between various styles

In our second demonstration, we show that our model is capable of learning not only several homo-
geneous motion styles but also the transitions between them, when the training data itself contains

2A 200 hidden-unit CRBM was trained for 4000 passes through the training data, using a third-order model
(for directed connections). Weight updates were made aftereach mini-batch of size 100. The order of the
sequences was randomly permuted such that walking and running sequences were distributed throughout the
training data.



examples of such transitions. We trained on 9 sequences (from the MIT database, fileJog1 M) con-
taining long examples of running and jogging, as well as a fewtransitions between the two styles.
After downsampling to 30Hz, this provided us with 2515 frames. Training was done as before, ex-
cept that after the model was trained, an identical 200 hidden-unit model was trained on top of the
first model (see Sec. 5). The resulting two-level model was used to generate data. A video available
on the website demonstrates our model’s ability to stochastically transition between various motion
styles during a single generated sequence.

4.3 Introducing transitions using noise

In our third demonstration, we show how transitions betweenmotion styles can be generated even
when such transitions are absent in the data. We use the same model and data as described in Sec.
4.1, where we have learned on separate sequences of walking and running. To generate, we use the
same sampling procedure as before, except that at each time we stochastically choose the hidden
states (given the current and previous three visible vectors) we add a small amount of Gaussian
noise to the hidden state biases. This encourages the model to explore more of the hidden state
space without deviating too far the current motion. Applying this “noisy” sampling approach, we
see that the generated motion occasionally transitions between learned styles. These transitions
appear natural (see the video on the website).

4.4 Filling in missing data

Due to the nature of the motion capture process, which can be adversely affected by lighting and
environmental effects, as well as noise during recording, motion capture data often contains missing
or unusable data. Some markers may disappear (“dropout”) for long periods of time due to sen-
sor failure or occlusion. The majority of motion editing software packages contain interpolation
methods to fill in missing data, but this leaves the data unnaturally smooth. These methods also
rely on the starting and end points of the missing data, so if amarker goes missing until the end
of a sequence, naı̈ve interpolation will not work. Such methods often only use the past and future
data from the single missing marker to fill in that marker’s missing values, but since joint angles are
highly correlated, substantial information about the placement of one marker could be gained from
the others. Our trained model has the ability to easily fill insuch missing data, regardless of where
the dropouts occur in a sequence. Due to its approximate inference method which does not rely on
a backward pass through the sequence, it also has the abilityto fill in such missing data on-line.
Filling in missing data with our model is very similar to generation. We simply clamp the known
data to the visible units, initialize the missing data to something reasonable (for example, the value
at the previous frame), and alternate between stochastically updating the hidden and visible units,
with the known visible states held fixed.

To demonstrate filling in, we trained a model exactly as described in Sec. 4.1 except that one walking
and one running sequence were left out of the training data tobe used as test data. For each of these
walking and running test sequences, we erased two differentsets of joint angles, starting halfway
through the test sequence. These sets were the joints in (1) the left leg, and (2) the entire upper
body. As seen in the video files on the website, the quality of the filled-in data is excellent and is
hardly distinguishable from the original ground truth of the test sequence. Figure 4 demonstrates the
model’s ability to predict the three angles of rotation of the left hip.

For the walking sequence (of length 124 frames), we comparedour model’s performance to nearest
neighbor interpolation, a simple method where for each frame, the values on known dimensions are
compared to each example in the training set to find the closest match (measured by Euclidean dis-
tance in the normalized angle space). The unknown dimensions are then filled in using the matched
example. As reconstruction from our model is stochastic, werepeated the experiment 100 times and
report the mean. For the missing leg, mean squared reconstruction error per joint using our model
was8.78, measured in normalized joint angle space, and summed over the 62 frames of interest.
Using nearest neighbor interpolation, the error was greater: 11.68. For the missing upper body,
mean squared reconstruction error per joint using our modelwas20.52. Using nearest neighbor
interpolation, again the error was greater:22.20.
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Figure 4: The model successfully fills in missing data using only the previous values of the joint
angles (through the temporal connections) and the current angles of other joints (through the RBM
connections). Shown are two of the three angles of rotation for the left hip joint (the plot of the third
is similar to the first). The original data is shown on a solid line, the model’s prediction is shown
on a dashed line, and the results of nearest neighbor interpolation are shown on a dotted line (see a
video on the website).

5 Higher level models
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Figure 5: Higher-
level models

Once we have trained the model, we can add layers like in a DeepBelief
Network [14]. The previous layer CRBM is kept, and the sequence of hidden
state vectors, while driven by the data, is treated as a new kind of “fully
observed” data. The next level CRBM has the same architecture as the first
(though we can alter the number of its units) and is trained inthe exact same
way. Upper levels of the network can then model higher-orderstructure.
This greedy procedure is justified using a variational bound[14]. A two-
level model is shown in Figure 5.

We can also consider two special cases of the higher-level model. If we
keep only the visible layer, and itsn-th order directed connections, we have
a standard AR(n) model with Gaussian noise. If we take the two-hidden
layer model and delete the first-level autoregressive connections, as well as
both sets of visible-to-hidden directed connections, we have a simplified
model that can be trained in 2 stages: first learning a static (iid) model of
pairs or triples of time frames, then using the inferred hidden states to train
a “fully-observed” sigmoid belief net that captures the temporal structure of
the hidden states.

6 Discussion

We have introduced a generative model for human motion basedon the idea that local constraints
and global dynamics can be learned efficiently by a conditional Restricted Boltzmann Machine.
Once trained, our models are able to efficiently capture complex non-linearities in the data without
sophisticated pre-processing or dimensionality reduction. The model has been designed with human
motion in mind, but should lend itself well to other high-dimensional time series.

In relatively low-dimensional or unstructured data (for example if we were to model a single isolated
joint) a single-layer model might be expected to have difficulty since such cyclic time series contain
several subsequences which are locally very similar but occur in different phases of the overall
cycle. It would be possible to preserve the global phase information by using a much higher order
model, but for higher dimensional data such as full body motion capture this is unnecessary because
the whole configuration of joint angles and angular velocities never has any phase ambiguity. So
the single-layer version of our model actually performs much better on higher-dimensional data.



Models with more hidden layers are able to implicitly model longer-term temporal information, and
thus will mitigate this effect.

We have demonstrated that our model can effectively learn different styles of motion, as well as
the transitions between these styles. This differentiatesour approach from PCA-based approaches
which only accurately model cyclic motion, and additionally must build separate models for each
type of motion. The ability of the model to transition smoothly, however, is dependent on having
sufficient examples of such transitions in the training data. We plan to train on larger datasets en-
compassing such transitions between various styles of motion. If we augment the data with some
static skeletal and identity parameters (in essence mapping a person’s unique identity to a set of fea-
tures), we should be able to use the same generative model formany different people, and generalize
individual characteristics from one type of motion to another. Finally, our model is not limited to a
single source of data. In the future, we hope to integrate low-level vision data captured at the same
time as motion; we could then learn the correlations betweenthe vision stream and the joint angles.
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