LEARNING DISTRIBUTED REPRESENTATIONS FOR STATISTICAL LANGUAGE MODELLING

Overview

1. Discrete data and distributed representations
2. Language modelling

- Factored RBM language model
- Log-bilinear language model
- Hierarchical log-bilinear language model

Discrete data

- Discrete data: datapoints with discrete-valued attributes
- When such datapoints are high-dimensional, regression / classification / density estimation is hard:
- Amounts to estimating entries of an exponentially large table
- Attributes correspond to table dimensions
- Attribute values correspond to indices for the dimensions
- Data sparsity: little or no data available for most entries
- No a priori smoothness constraint on table entries
- No general way to generalize to new table entries

Distributed representations

- Observation: making a model less local often improves generalization.
- In a continuous space: average over datapoints near the point of interest.
- In a discrete space: not clear what to average over.
- What does "near" mean?
- No general concept of distance / neighbourhood.
- Working with smooth functions over continuous spaces results in automatic smoothing.
-Similar inputs produce similar outputs
- Idea: map discrete attributes to real-valued vectors and learn a smooth function that maps the vectors to the desired output values.
- Learn the attribute mapping jointly with the function.
- Automatic generalization!

Statistical language modelling

- Goal: Model the joint distribution of words in a sentence.
- Such a model can be used to
- predict the next word given several preceding ones
- arrange bags of words into sentences
- assign probabilities to documents
- Applications: speech recognition, machine translation, information retrieval.
- Most statistical language models are based on the Markov assumption:
- The distribution of the next word depends on only n words that immediately precede it.
- This assumption is clearly wrong but useful - it makes the task much more tractable.

n-gram models

- n-gram models are simply conditional probability tables for $P\left(w_{n} \mid w_{1: n-1}\right)$.
$-w_{n}$ is the word to be predicted (the next word)
- words $w_{1: n-1}=w_{1}, \ldots, w_{n-1}$ are called the context
- n-gram models are estimated by counting the number of occurrences of each possible word n-tuple and normalizing.
- smoothing the estimates is essential for good performance
- many different smoothing methods exist
- n-gram models are the most widely used statistical language models due to their simplicity and excellent performance.
- Curse of dimensionality: the number of model parameters is exponential in n.

Neural language models

- Several neural probabilistic language models based on distributed representations have been proposed.
- Common approach:
- Represent each word with a real-valued feature vector
- Represent the context by the sequence of the context word feature vectors
- Train a neural network to output the distribution for the next word from the context representation
- Learn word feature vectors jointly with other neural net parameters
- Neural language models can outperform n-gram language models, especially when little training data is available.
- Main drawback: very long training and testing times.

Conditional RBM language model

- Use a restricted Boltzmann machine to model $P\left(w_{n} \mid w_{1: n-1}\right)$
- Capture the interaction between w_{n} and $w_{1: n-1}$ through a vector of latent variables.
- Represent words using low-dimensional real-valued vectors.
- R_{w} is the feature vector for word w.
- Energy function:

$$
E\left(w_{n}, h ; w_{1: n-1}\right)=-\sum_{i=1}^{n} R_{w_{i}} W_{i} h
$$

- h is the vector of latent variables
- W_{i} is the interaction matrix between the feature vector for w_{i} and the latent variables.
- Normalization is done only over w_{n}.
- Both inference and prediction take time linear in the number of latent variables.

Log-bilinear model

- The log-bilinear (LBL) model is perhaps the simplest neural language model.
- Given the context $w_{1: n-1}$, the LBL model first predicts the representation for the next word w_{n} by linearly combining the representations of the context words:

$$
\hat{r}=\sum_{i=1}^{n-1} C_{i} r_{w_{i}}
$$

$-r_{w}$ is the real-valued vector representing word w

- Then the distribution for the next word is computed based on the similarity between the predicted representation and the representations of all words in the vocabulary:

$$
P\left(w_{n}=w \mid w_{1: n-1}\right)=\frac{\exp \left(\hat{r}^{T} r_{w}\right)}{\sum_{j} \exp \left(\hat{r}^{T} r_{j}\right)} .
$$

Faster models through structured vocabulary

- Computing the probability of the given next word requires considering all N words in the vocabulary.
- Need to consider all words because the word space is unstructured.
- Idea: Organize words in the vocabulary into a binary tree and exploit its structure to speed up normalization (Morin and Bengio, 2005).
- Construct a binary tree over words
- words are associated with leaf nodes
- one word per leaf
- Replace the N-way decision by a sequence of $O(\log N)$ binary decisions for predicting the next word.
- Can achieve an exponential speedup if the tree is balanced!

Tree-based factorization

- To define a distribution over leaf nodes:
-Specify the probability of taking the left branch at each non-leaf node.
- The probability of a leaf node is the product of probabilities of the left/right decisions that lead from the root node to the leaf node.

Constructing trees over words

- The approach of Morin and Bengio:
- Start with the WordNet IS-A hierarchy (which is a DAG)
- Manually select one parent node per word
- Use clustering to make the resulting tree binary
- Use the Neural Probabilistic Language Model for making the left/right decisions
- Drawbacks:
- Tree construction process uses expert knowledge
- The resulting model does not work as well as its non-hierarchical counterpart
- Our approach:
- Construct the word tree from data alone (no experts needed)
- Allow each word to occur more than once in the tree
- Use the simplified log-bilinear language model for making the left/right decisions

Hierarchical log-bilinear model

- Let d be the binary code that encodes the sequence of left-right decisions in the tree that lead to word w.
- Each non-leaf node in the tree is given a feature vector.
- Used for discriminating the words in the left subtree from those in the right subtree.
- The probability of taking the left branch at $i^{\text {th }}$ node in the sequence is

$$
P\left(d_{i}=1 \mid q_{i}, w_{1: n-1}\right)=\sigma\left(\hat{r}^{T} q_{i}\right),
$$

$-\hat{r}$ is computed as in the LBL model
$-q_{i}$ is the feature vector for the node

- The probability of w being the next word is

$$
P\left(w_{n}=w \mid w_{1: n-1}\right)=\prod_{i} P\left(d_{i} \mid q_{i}, w_{1: n-1}\right) .
$$

Data-driven tree construction

- We would like to cluster words based on the distribution of contexts in which they occur.
- This distribution is hard to estimate and work with due to the high dimensionality of the space of contexts.
- same difficulties as with estimating n-gram models
- To avoid this problem, we represent contexts using distributed representations and cluster words based on their expected predicted representation.
- Constructing a tree over words:

1. Train a model using a (balanced) random tree over words.
2. Extract the word representations from the trained model.
3. Perform hierarchical clustering on the extracted representations.

Hierarchical clustering

- Hierarchical top-down clustering of feature vectors:
- At each level, fit a mixture of two Gaussians with spherical covariances using EM to the current group of word representations.
- Assign words to mixture components based on the component responsibilities.
- We considered several splitting rules:
- BALANCED: Sort the responsibilities and make the split to ensure a balanced tree.
- ADAPTIVE: Assign the word to the component with the greater responsibility.
- ADAPTIVE (ϵ) : Assign the word to a component if its responsibility for the word is at least $0.5-\epsilon$.

Dataset and evaluation

- APNews dataset:
- collection of Associated Press news stories (16 million words)
- Preprocessing (Bengio et al.):
- convert all words to lower case
- map all rare words and proper nouns to special symbols
- just under 18000 words in the vocabulary
- Models were compared based on the perplexity they assigned to the test set.
- Perplexity is the geometric average of $\frac{1}{P\left(w_{n} \mid w_{1: n-1}\right)}$.

Model evaluation (I)

- Preliminary comparison:
-10 M training set, 0.5 M validation set, 0.5 M test set
- Feature-based models have 100D feature vectors.
- FRBMs have 1000 hidden units.
- KN n is a Kneser-Ney back-off n-gram model.

Model type	Context size	Model test perplexity	Mixture test perplexity
FRBM	2	169.4	110.6
Temporal FRBM	2	127.3	95.6
Log-bilinear	2	132.9	102.2
Log-bilinear	5	124.7	96.5
Back-off GT3	2	135.3	-
Back-off KN3	2	124.3	-
Back-off GT6	5	124.4	-
Back-off KN6	5	116.2	-

Model evaluation (II)

- Final comparison:
- 14M training set, 1 M validation set, 1 M test set
- (H)LBL used 100D feature vectors and a context size of 5.
- $\mathrm{KN} n$ is an interpolated Kneser-Ney n-gram model.

Model type	Tree generating algorithm	Test perplex.	Mixture perplex.	Fitted mix. perplexity	Minutes per epoch
HLBL	RANDOM	151.2	107.2	106.0	4
HLBL	BALANCED	131.3	99.9	99.7	4
HLBL	ADAPTIVE	127.0	98.3	98.2	4
HLBL	ADAPTIVE(0.25)	124.4	97.5	97.4	6
HLBL	ADAPTIVE(0.4)	123.3	97.2	97.1	7
HLBL	ADAPTIVE(0.4) $\times 2$	115.7	95.3	95.3	16
HLBL	ADAPTIVE(0.4) $\times 4$	112.1	94.4	94.3	32
LBL	-	117.0	94.0	94.0	6420
KN2	-	174.2	-	-	-
KN3	-	125.6	-	-	-
KN6	-	119.2	-	-	-

The effect of the context size

- The HLBL models were based on the ADAPTIVE(0.4) $\times 4$ tree.
- KN n is an interpolated modified Kneser-Ney n-gram model.

The End

Log-prob contributions: 5-gram vs. LBL (I)

Number of predictions $\left(P\left(w_{n} \mid w_{1: n-1}\right)\right)$ on the test set as a function of the their magnitude. Bin i (for $i=1, \ldots, 7$) contains predictions between 10^{-i} and 10^{-i+1}. Bin 8 contains predictions smaller than 10^{-7}.

Log-prob contributions: 5-gram vs. LBL (II)

Contribution to the negative log-probability of the test set as a function of the prediction magnitude. Bin i (for $i=1, \ldots, 7$) contains predictions between 10^{-i} and 10^{-i+1}. Bin 8 contains predictions smaller than 10^{-7}.

t-SNE embedding of LBL feature vectors (I)

A fragment of a t-SNE embedding of the feature vectors (learned by an LBL model) of the most frequent 1000 words.

t-SNE embedding of LBL feature vectors (II)

A fragment of a t-SNE embedding of the feature vectors (learned by an LBL model) of the least frequent 1000 words.

t-SNE embedding of HLBL feature vectors (I)

A fragment of a t-SNE embedding of the feature vectors (learned by an HLBL model) of the most frequent 1000 words.

t-SNE embedding of HLBL feature vectors (II)

A fragment of a t-SNE embedding of the feature vectors (learned by an HLBL model) of the least frequent 1000 words.

