LEARNING DISTRIBUTED REPRESENTATIONS
FOR STATISTICAL LANGUAGE MODELLING




Overview

1. Discrete data and distributed representations

2. Language modelling

e Factored RBM language model
e [og-bilinear language model
e Hierarchical log-bilinear language model



Discrete data

e Discrete data: datapoints with discrete-valued attributes

e When such datapoints are high-dimensional, regression /
classification / density estimation is hard:

— Amounts to estimating entries of an exponentially large

table

- Attributes correspond to table dimensions
- Attribute values correspond to indices for the dimensions

—Data sparsity: little or no data available for most entries
—No a priori smoothness constraint on table entries
— No general way to generalize to new table entries



Distributed representations

e Observation: making a model less local often improves
generalization.
—In a continuous space: average over datapoints near the point
of interest.

—In a discrete space: not clear what to average over.

- What does “near” mean?
- No general concept of distance / neighbourhood.

e Working with smooth functions over continuous spaces
results in automatic smoothing.

— Similar inputs produce similar outputs

e Idea: map discrete attributes to real-valued vectors and
learn a smooth function that maps the vectors to the
desired output values.

— Learn the attribute mapping jointly with the function.
— Automatic generalization!



Statistical language modelling

e Goal: Model the joint distribution of words in a sentence.

e Such a model can be used to

— predict the next word given several preceding ones
—arrange bags of words into sentences
— assign probabilities to documents

e Applications: speech recognition, machine translation,
information retrieval.

e Most statistical language models are based on the Markov
assumption:

— The distribution of the next word depends on only n words that
immediately precede it.

— This assumption is clearly wrong but useful — it makes the task
much more tractable.



n-gram models

e n-gram models are simply conditional probability tables
for P(wnlwlzn_l).
— wy, is the word to be predicted (the next word)
—words wy.,—1 = wq, ..., w,_; are called the context

e n-gram models are estimated by counting the number of
occurrences of each possible word n-tuple and
normalizing.

—smoothing the estimates is essential for good performance
- many different smoothing methods exist

e n-gram models are the most widely used statistical
language models due to their simplicity and excellent
performance.

e Curse of dimensionality: the number of model parameters
is exponential in n.



Neural language models

e Several neural probabilistic language models based on
distributed representations have been proposed.

e Common approach:

— Represent each word with a real-valued feature vector

— Represent the context by the sequence of the context word
feature vectors

— Train a neural network to output the distribution for the next
word from the context representation

— Learn word feature vectors jointly with other neural net
parameters

e Neural language models can outperform n-gram language
models, especially when little training data is available.

e Main drawback: very long training and testing times.



Conditional RBM language model

¢ Use a restricted Boltzmann machine to model P(w,|w;.,_1)
— Capture the interaction between w,, and w;.,_; through a vector
of latent variables.
— Represent words using low-dimensional real-valued vectors.
- R, is the feature vector for word w.

e Energy function:
E(w,, b wim_1) ZR Wih

— h is the vector of latent variables

— W; is the interaction matrix between the feature vector for w;
and the latent variables.

—Normalization is done only over w,,.

e Both inference and prediction take time linear in the
number of latent variables.



Log-bilinear model

e The log-bilinear (LBL) model is perhaps the simplest
neural language model.

e Given the context w;.,,_;, the LBL model first predicts the
representation for the next word w, by linearly combining
the representations of the context words:

n—1

— 1, 1S the real-valued vector representing word w

e Then the distribution for the next word is computed based
on the similarity between the predicted representation and
the representations of all words in the vocabulary:
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Faster models through structured vocabulary

e Computing the probability of the given next word
requires considering all N words in the vocabulary.

— Need to consider all words because the word space is
unstructured.

e Idea: Organize words in the vocabulary into a binary tree
and exploit its structure to speed up normalization (Morin

and Bengio, 2005).
— Construct a binary tree over words

- words are associated with leaf nodes
- one word per leaf

— Replace the N-way decision by a sequence of O(log N ) binary
decisions for predicting the next word.

- Can achieve an exponential speedup if the tree is balanced!
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Tree-based factorization

A

e To define a distribution over leaf nodes:
— Specify the probability of taking the left branch at each non-leaf
node.

— The probability of a leaf node is the product of probabilities of
the left/right decisions that lead from the root node to the leat
node.
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Constructing trees over words

e The approach of Morin and Bengio:

— Start with the WordNet IS-A hierarchy (which is a DAG)
— Manually select one parent node per word
— Use clustering to make the resulting tree binary

— Use the Neural Probabilistic Language Model for making the
left/right decisions

e Drawbacks:

— Tree construction process uses expert knowledge

— The resulting model does not work as well as its
non-hierarchical counterpart

e Our approach:

— Construct the word tree from data alone (no experts needed)

— Allow each word to occur more than once in the tree

— Use the simplified log-bilinear language model for making the
left/right decisions
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Hierarchical log-bilinear model

e Let d be the binary code that encodes the sequence of
left-right decisions in the tree that lead to word w.

e Each non-leaf node in the tree is given a feature vector.

— Used for discriminating the words in the left subtree from those
in the right subtree.

e The probability of taking the left branch at " node in the
sequence 18

P(dz — 1‘%7 wl:n—l) — O_(rﬁTQi)?
— 1 is computed as in the LBL model
— ¢; is the feature vector for the node

e The probability of w being the next word is
P(wn — w‘wlzn—l) — H P(dz‘%a wl:n—l)-
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Data-driven tree construction

e We would like to cluster words based on the distribution
of contexts in which they occur.

e This distribution is hard to estimate and work with due to
the high dimensionality of the space of contexts.

—same difficulties as with estimating n-gram models

e To avoid this problem, we represent contexts using
distributed representations and cluster words based on
their expected predicted representation.

e Constructing a tree over words:

1. Train a model using a (balanced) random tree over words.
2. Extract the word representations from the trained model.

3. Perform hierarchical clustering on the extracted
representations.
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Hierarchical clustering

e Hierarchical top-down clustering of feature vectors:

— At each level, fit a mixture of two Gaussians with spherical
covariances using EM to the current group of word
representations.

— Assign words to mixture components based on the component
responsibilities.

e We considered several splitting rules:

- BALANCED: Sort the responsibilities and make the split to
ensure a balanced tree.

— ADAPTIVE: Assign the word to the component with the
greater responsibility.

— ADAPTIVE(e): Assign the word to a component if its
responsibility for the word is at least 0.5-¢.
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Dataset and evaluation

e APNews dataset:
— collection of Associated Press news stories (16 million words)

e Preprocessing (Bengio et al.):

— convert all words to lower case
—map all rare words and proper nouns to special symbols
—just under 18000 words in the vocabulary

e Models were compared based on the perplexity they
assigned to the test set.

1
wp|wy.p—1)"

o Perplexity is the geometric average of
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Model evaluation (I)

e Preliminary comparison:

— 10M training set, 0.5M validation set, 0.5M test set

— Feature-based models have 100D feature vectors.
— FRBMs have 1000 hidden units.
— KNn is a Kneser-Ney back-off n-gram model.

Model Context | Model test | Mixture test
type size | perplexity | perplexity
FRBM 2 169.4 110.6
Temporal FRBM 2 127.3 95.6
Log-bilinear 2 132.9 102.2
Log-bilinear 5 124.7 96.5
Back-off GT3 2 135.3 -
Back-off KN3 2 124.3 -
Back-off GT6 5 124.4 -
Back-off KN6 5 116.2 -
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Model evaluation (II)

e Final comparison:

— 14M training set, 1M validation set, 1M test set
— (H)LBL used 100D feature vectors and a context size of 5.
— KNn is an interpolated Kneser-Ney n-gram model.

Model | Tree generating Test | Mixture | Fitted mix.| Minutes
type |algorithm perplex. | perplex. | perplexity | per epoch
HLBL | RANDOM 151.2, 107.2 106.0 -
HLBL | BALANCED 131.3 99.9 99.7 -
HLBL | ADAPTIVE 127.0 98.3 98.2 =
HLBL | ADAPTIVE(0.25) 124.4 97.5 97 .4 6
HLBL | ADAPTIVE(0.4) 123.3 97.2 97.1 7
HLBL | ADAPTIVE(0.4) x 2|  115.7 95.3 95.3 16
HLBL | ADAPTIVE(0.4) x 4| 1121 94.4 94.3 32
LBL |- 117.0 94.0 94.0 6420
KN2 |- 174.2 — — —
KN3 |- 125.6 — — —
KN6 |- 119.2 — — —
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The effect of the context size
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e The HLBL models were based on the ADAPTIVE(0.4) X 4 tree.
e KNn is an interpolated modified Kneser-Ney n-gram model.
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THE END
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Log-prob contributions: 5-gram vs. LBL (I)
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Log-prob contributions: 5-gram vs. LBL (II)
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Contribution to the negative log-probability of the test set as a
function of the prediction magnitude. Bin ¢ (for ¢ = 1, ..., 7) contains

predictions between 107" and 10~""'. Bin 8 contains predictions
smaller than 10",
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t-SNE embedding of LBL feature vectors (I)
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A fragment of a t-SNE embedding of the feature vectors (learned by
an LBL model) of the most frequent 1000 words.
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t-SNE embedding of LBL feature vectors (I1I)
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A fragment of a t-SNE embedding of the feature vectors (learned by
an LBL model) of the least frequent 1000 words.
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t-SNE embedding of HLBL feature vectors (I)
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A fragment of a t-SNE embedding of the feature vectors (learned by
an HLBL model) of the most frequent 1000 words.
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t-SNE embedding of HLBL feature vectors (II)
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A fragment of a t-SNE embedding of the feature vectors (learned by
an HLBL model) of the least frequent 1000 words.
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