#### LEARNING DISTRIBUTED REPRESENTATIONS FOR STATISTICAL LANGUAGE MODELLING

# **Overview**

- 1. Discrete data and distributed representations
- 2. Language modelling
  - Factored RBM language model
  - Log-bilinear language model
  - Hierarchical log-bilinear language model

#### **Discrete data**

- Discrete data: datapoints with discrete-valued attributes
- When such datapoints are high-dimensional, regression / classification / density estimation is hard:
  - Amounts to estimating entries of an exponentially large table
    - Attributes correspond to table dimensions
    - Attribute values correspond to indices for the dimensions
  - Data sparsity: little or no data available for most entries
  - No a priori smoothness constraint on table entries
  - No general way to generalize to new table entries

# **Distributed representations**

- Observation: making a model less local often improves generalization.
  - In a continuous space: average over datapoints near the point of interest.
  - In a discrete space: not clear what to average over.
    - What does "near" mean?
    - No general concept of distance / neighbourhood.
- Working with smooth functions over continuous spaces results in automatic smoothing.
  - Similar inputs produce similar outputs
- Idea: map discrete attributes to real-valued vectors and learn a smooth function that maps the vectors to the desired output values.
  - Learn the attribute mapping *jointly* with the function.
  - Automatic generalization!

# **Statistical language modelling**

- Goal: Model the joint distribution of words in a sentence.
- Such a model can be used to
  - predict the next word given several preceding ones
  - arrange bags of words into sentences
  - assign probabilities to documents
- Applications: speech recognition, machine translation, information retrieval.
- Most statistical language models are based on the Markov assumption:
  - The distribution of the next word depends on only *n* words that immediately precede it.
  - This assumption is clearly wrong but useful it makes the task much more tractable.

## *n*-gram models

- *n*-gram models are simply conditional probability tables for  $P(w_n|w_{1:n-1})$ .
  - $-w_n$  is the word to be predicted (the *next* word)
  - -words  $w_{1:n-1} = w_1, ..., w_{n-1}$  are called the *context*
- *n*-gram models are estimated by counting the number of occurrences of each possible word *n*-tuple and normalizing.
  - smoothing the estimates is essential for good performance
  - many different smoothing methods exist
- *n*-gram models are the most widely used statistical language models due to their simplicity and excellent performance.
- Curse of dimensionality: the number of model parameters is exponential in *n*.

# Neural language models

- Several neural probabilistic language models based on distributed representations have been proposed.
- Common approach:
  - Represent each word with a real-valued feature vector
  - Represent the context by the sequence of the context word feature vectors
  - Train a neural network to output the distribution for the next word from the context representation
  - Learn word feature vectors jointly with other neural net parameters
- Neural language models can outperform *n*-gram language models, especially when little training data is available.
- Main drawback: very long training and testing times.

# **Conditional RBM language model**

- Use a restricted Boltzmann machine to model  $P(w_n|w_{1:n-1})$ 
  - Capture the interaction between  $w_n$  and  $w_{1:n-1}$  through a vector of latent variables.
  - Represent words using low-dimensional real-valued vectors. *R<sub>w</sub>* is the feature vector for word *w*.
- Energy function:

$$E(w_n, h; w_{1:n-1}) = -\sum_{i=1}^n R_{w_i} W_i h$$

- -h is the vector of latent variables
- $W_i$  is the interaction matrix between the feature vector for  $w_i$  and the latent variables.
- Normalization is done only over  $w_n$ .
- Both inference and prediction take time linear in the number of latent variables.

# Log-bilinear model

- The log-bilinear (LBL) model is perhaps the simplest neural language model.
- Given the context  $w_{1:n-1}$ , the LBL model first predicts the representation for the next word  $w_n$  by linearly combining the representations of the context words:

$$\hat{r} = \sum_{i=1}^{n-1} C_i r_{w_i}$$

 $-r_w$  is the real-valued vector representing word w

• Then the distribution for the next word is computed based on the similarity between the predicted representation and the representations of all words in the vocabulary:

$$P(w_n = w | w_{1:n-1}) = \frac{\exp(\hat{r}^T r_w)}{\sum_j \exp(\hat{r}^T r_j)}.$$

## **Faster models through structured vocabulary**

- Computing the probability of the given next word requires considering all *N* words in the vocabulary.
  - Need to consider all words because the word space is unstructured.
- Idea: Organize words in the vocabulary into a binary tree and exploit its structure to speed up normalization (Morin and Bengio, 2005).
  - Construct a binary tree over words
    - words are associated with leaf nodes
    - one word per leaf
  - Replace the *N*-way decision by a sequence of  $O(\log N)$  binary decisions for predicting the next word.

- Can achieve an exponential speedup if the tree is balanced!

#### **Tree-based factorization**



- To define a distribution over leaf nodes:
  - Specify the probability of taking the left branch at each non-leaf node.
  - The probability of a leaf node is the product of probabilities of the left/right decisions that lead from the root node to the leaf node.

# **Constructing trees over words**

- The approach of Morin and Bengio:
  - Start with the WordNet IS-A hierarchy (which is a DAG)
  - Manually select one parent node per word
  - Use clustering to make the resulting tree binary
  - Use the Neural Probabilistic Language Model for making the left/right decisions
- Drawbacks:
  - Tree construction process uses expert knowledge
  - The resulting model does not work as well as its non-hierarchical counterpart
- Our approach:
  - Construct the word tree from data alone (no experts needed)
  - Allow each word to occur more than once in the tree
  - Use the simplified log-bilinear language model for making the left/right decisions

# **Hierarchical log-bilinear model**

- Let *d* be the binary code that encodes the sequence of left-right decisions in the tree that lead to word *w*.
- Each non-leaf node in the tree is given a feature vector.
  - Used for discriminating the words in the left subtree from those in the right subtree.
- The probability of taking the left branch at *i*<sup>th</sup> node in the sequence is

$$P(d_i = 1 | q_i, w_{1:n-1}) = \sigma(\hat{r}^T q_i),$$

-  $\hat{r}$  is computed as in the LBL model -  $q_i$  is the feature vector for the node

• The probability of *w* being the next word is

$$P(w_n = w | w_{1:n-1}) = \prod_i P(d_i | q_i, w_{1:n-1}).$$

#### **Data-driven tree construction**

- We would like to cluster words based on the distribution of contexts in which they occur.
- This distribution is hard to estimate and work with due to the high dimensionality of the space of contexts.
  - same difficulties as with estimating *n*-gram models
- To avoid this problem, we represent contexts using distributed representations and cluster words based on their *expected* predicted representation.
- Constructing a tree over words:
  - 1. Train a model using a (balanced) random tree over words.
  - 2. Extract the word representations from the trained model.
  - 3. Perform hierarchical clustering on the extracted representations.

# **Hierarchical clustering**

- Hierarchical top-down clustering of feature vectors:
  - At each level, fit a mixture of two Gaussians with spherical covariances using EM to the current group of word representations.
  - Assign words to mixture components based on the component responsibilities.
- We considered several splitting rules:
  - BALANCED: Sort the responsibilities and make the split to ensure a balanced tree.
  - ADAPTIVE: Assign the word to the component with the greater responsibility.
  - ADAPTIVE( $\epsilon$ ): Assign the word to a component if its responsibility for the word is at least 0.5- $\epsilon$ .

#### **Dataset and evaluation**

• APNews dataset:

- collection of Associated Press news stories (16 million words)

- Preprocessing (Bengio et al.):
  - convert all words to lower case
  - map all rare words and proper nouns to special symbols
  - just under 18000 words in the vocabulary
- Models were compared based on the perplexity they assigned to the test set.
- Perplexity is the geometric average of  $\frac{1}{P(w_n|w_{1:n-1})}$ .

## **Model evaluation (I)**

#### • Preliminary comparison:

- 10M training set, 0.5M validation set, 0.5M test set
- Feature-based models have 100D feature vectors.
- FRBMs have 1000 hidden units.
- KN*n* is a Kneser-Ney back-off *n*-gram model.

| Model         | Context | Model test | Mixture test |
|---------------|---------|------------|--------------|
| type          | size    | perplexity | perplexity   |
| FRBM          | 2       | 169.4      | 110.6        |
| Temporal FRBM | 2       | 127.3      | 95.6         |
| Log-bilinear  | 2       | 132.9      | 102.2        |
| Log-bilinear  | 5       | 124.7      | 96.5         |
| Back-off GT3  | 2       | 135.3      | _            |
| Back-off KN3  | 2       | 124.3      | _            |
| Back-off GT6  | 5       | 124.4      | _            |
| Back-off KN6  | 5       | 116.2      | _            |

## **Model evaluation (II)**

#### • Final comparison:

- 14M training set, 1M validation set, 1M test set
- (H)LBL used 100D feature vectors and a context size of 5.
- KN*n* is an interpolated Kneser-Ney *n*-gram model.

| Model | Tree generating          | Test     | Mixture  | Fitted mix. | Minutes   |
|-------|--------------------------|----------|----------|-------------|-----------|
| type  | algorithm                | perplex. | perplex. | perplexity  | per epoch |
| HLBL  | RANDOM                   | 151.2    | 107.2    | 106.0       | 4         |
| HLBL  | BALANCED                 | 131.3    | 99.9     | 99.7        | 4         |
| HLBL  | ADAPTIVE                 | 127.0    | 98.3     | 98.2        | 4         |
| HLBL  | ADAPTIVE(0.25)           | 124.4    | 97.5     | 97.4        | 6         |
| HLBL  | ADAPTIVE(0.4)            | 123.3    | 97.2     | 97.1        | 7         |
| HLBL  | ADAPTIVE(0.4) $\times$ 2 | 115.7    | 95.3     | 95.3        | 16        |
| HLBL  | ADAPTIVE(0.4) $\times$ 4 | 112.1    | 94.4     | 94.3        | 32        |
| LBL   | —                        | 117.0    | 94.0     | 94.0        | 6420      |
| KN2   | —                        | 174.2    | _        | _           | —         |
| KN3   | —                        | 125.6    | —        | _           | —         |
| KN6   | —                        | 119.2    | _        | _           | _         |

#### The effect of the context size



The HLBL models were based on the ADAPTIVE(0.4) × 4 tree.
KNn is an interpolated modified Kneser-Ney n-gram model.

#### The END

# Log-prob contributions: 5-gram vs. LBL (I)



Number of predictions ( $P(w_n|w_{1:n-1})$ ) on the test set as a function of the their magnitude. Bin *i* (for i = 1, ..., 7) contains predictions between  $10^{-i}$  and  $10^{-i+1}$ . Bin 8 contains predictions smaller than  $10^{-7}$ .

# Log-prob contributions: 5-gram vs. LBL (II)



Contribution to the negative log-probability of the test set as a function of the prediction magnitude. Bin *i* (for i = 1, ..., 7) contains predictions between  $10^{-i}$  and  $10^{-i+1}$ . Bin 8 contains predictions smaller than  $10^{-7}$ .

# t-SNE embedding of LBL feature vectors (I)



A fragment of a t-SNE embedding of the feature vectors (learned by an LBL model) of the most frequent 1000 words.

## t-SNE embedding of LBL feature vectors (II)



# A fragment of a t-SNE embedding of the feature vectors (learned by an LBL model) of the least frequent 1000 words.

# t-SNE embedding of HLBL feature vectors (I)



A fragment of a t-SNE embedding of the feature vectors (learned by an HLBL model) of the most frequent 1000 words.

# t-SNE embedding of HLBL feature vectors (II)



A fragment of a t-SNE embedding of the feature vectors (learned by an HLBL model) of the least frequent 1000 words.