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Overview

1. Discrete data and distributed representations

2. Language modelling
• Factored RBM language model
• Log-bilinear language model
•Hierarchical log-bilinear language model
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Discrete data

•Discrete data: datapoints with discrete-valued attributes

•When such datapoints are high-dimensional, regression /
classification / density estimation is hard:

–Amounts to estimating entries of an exponentially large
table
- Attributes correspond to table dimensions
- Attribute values correspond to indices for the dimensions

–Data sparsity: little or no data available for most entries

–No a priori smoothness constraint on table entries

–No general way to generalize to new table entries
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Distributed representations

•Observation: making a model less local often improves
generalization.
– In a continuous space: average over datapoints near the point
of interest.

– In a discrete space: not clear what to average over.
- What does “near” mean?
- No general concept of distance / neighbourhood.

•Working with smooth functions over continuous spaces
results in automatic smoothing.
– Similar inputs produce similar outputs

• Idea: map discrete attributes to real-valued vectors and
learn a smooth function that maps the vectors to the
desired output values.
– Learn the attribute mapping jointly with the function.
–Automatic generalization!
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Statistical language modelling

•Goal: Model the joint distribution of words in a sentence.

• Such a model can be used to
– predict the next word given several preceding ones
– arrange bags of words into sentences
– assign probabilities to documents

•Applications: speech recognition, machine translation,
information retrieval.

•Most statistical language models are based on the Markov
assumption:
– The distribution of the next word depends on only n words that
immediately precede it.

– This assumption is clearly wrong but useful – it makes the task
much more tractable.
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n-gram models

• n-gram models are simply conditional probability tables
for P (wn|w1:n−1).
–wn is the word to be predicted (the nextword)
–words w1:n−1 = w1, ..., wn−1 are called the context

• n-gram models are estimated by counting the number of
occurrences of each possible word n-tuple and
normalizing.
– smoothing the estimates is essential for good performance
–many different smoothing methods exist

• n-gram models are the most widely used statistical
language models due to their simplicity and excellent
performance.

•Curse of dimensionality: the number of model parameters
is exponential in n.
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Neural language models

• Several neural probabilistic language models based on
distributed representations have been proposed.

•Common approach:
– Represent each word with a real-valued feature vector
– Represent the context by the sequence of the context word
feature vectors

– Train a neural network to output the distribution for the next
word from the context representation

– Learn word feature vectors jointly with other neural net
parameters

•Neural language models can outperform n-gram language
models, especially when little training data is available.

•Main drawback: very long training and testing times.
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Conditional RBM language model

•Use a restricted Boltzmann machine to model P (wn|w1:n−1)

–Capture the interaction between wn and w1:n−1 through a vector
of latent variables.

– Represent words using low-dimensional real-valued vectors.
- Rw is the feature vector for word w.

• Energy function:

E(wn, h; w1:n−1) = −
n∑

i=1

Rwi
Wih

– h is the vector of latent variables
–Wi is the interaction matrix between the feature vector for wi

and the latent variables.
–Normalization is done only over wn.

• Both inference and prediction take time linear in the
number of latent variables.
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Log-bilinear model

• The log-bilinear (LBL) model is perhaps the simplest
neural language model.

•Given the context w1:n−1, the LBL model first predicts the
representation for the next word wn by linearly combining
the representations of the context words:

r̂ =

n−1∑

i=1

Cirwi

– rw is the real-valued vector representing word w

• Then the distribution for the next word is computed based
on the similarity between the predicted representation and
the representations of all words in the vocabulary:

P (wn = w|w1:n−1) =
exp(r̂Trw)∑
j exp(r̂Trj)

.
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Faster models through structured vocabulary

•Computing the probability of the given next word
requires considering all N words in the vocabulary.
–Need to consider all words because the word space is
unstructured.

• Idea: Organize words in the vocabulary into a binary tree
and exploit its structure to speed up normalization (Morin
and Bengio, 2005).

–Construct a binary tree over words
- words are associated with leaf nodes
- one word per leaf

– Replace the N -way decision by a sequence of O(log N ) binary
decisions for predicting the next word.
- Can achieve an exponential speedup if the tree is balanced!
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Tree-based factorization

• To define a distribution over leaf nodes:
– Specify the probability of taking the left branch at each non-leaf
node.

– The probability of a leaf node is the product of probabilities of
the left/right decisions that lead from the root node to the leaf
node.
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Constructing trees over words

• The approach of Morin and Bengio:
– Start with the WordNet IS-A hierarchy (which is a DAG)
–Manually select one parent node per word
–Use clustering to make the resulting tree binary
–Use the Neural Probabilistic Language Model for making the
left/right decisions

•Drawbacks:
– Tree construction process uses expert knowledge
– The resulting model does not work as well as its
non-hierarchical counterpart

•Our approach:
–Construct the word tree from data alone (no experts needed)
–Allow each word to occur more than once in the tree
–Use the simplified log-bilinear language model for making the
left/right decisions
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Hierarchical log-bilinear model

• Let d be the binary code that encodes the sequence of
left-right decisions in the tree that lead to word w.

• Each non-leaf node in the tree is given a feature vector.
–Used for discriminating the words in the left subtree from those
in the right subtree.

• The probability of taking the left branch at ith node in the
sequence is

P (di = 1|qi, w1:n−1) = σ(r̂Tqi),
– r̂ is computed as in the LBL model
– qi is the feature vector for the node

• The probability of w being the next word is

P (wn = w|w1:n−1) =
∏

i

P (di|qi, w1:n−1).
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Data-driven tree construction

•We would like to cluster words based on the distribution
of contexts in which they occur.

• This distribution is hard to estimate and work with due to
the high dimensionality of the space of contexts.

– same difficulties as with estimating n-gram models

• To avoid this problem, we represent contexts using
distributed representations and cluster words based on
their expected predicted representation.

•Constructing a tree over words:
1. Train a model using a (balanced) random tree over words.
2. Extract the word representations from the trained model.
3. Perform hierarchical clustering on the extracted
representations.
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Hierarchical clustering

•Hierarchical top-down clustering of feature vectors:
–At each level, fit a mixture of two Gaussians with spherical
covariances using EM to the current group of word
representations.

–Assign words to mixture components based on the component
responsibilities.

•We considered several splitting rules:
– BALANCED: Sort the responsibilities and make the split to
ensure a balanced tree.

–ADAPTIVE: Assign the word to the component with the
greater responsibility.

–ADAPTIVE(ǫ): Assign the word to a component if its
responsibility for the word is at least 0.5-ǫ.

15



Dataset and evaluation

•APNews dataset:
– collection of Associated Press news stories (16 million words)

• Preprocessing (Bengio et al.):
– convert all words to lower case
–map all rare words and proper nouns to special symbols
– just under 18000 words in the vocabulary

•Models were compared based on the perplexity they
assigned to the test set.

• Perplexity is the geometric average of 1
P (wn|w1:n−1).
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Model evaluation (I)

• Preliminary comparison:
– 10M training set, 0.5M validation set, 0.5M test set
– Feature-based models have 100D feature vectors.
– FRBMs have 1000 hidden units.
– KNn is a Kneser-Ney back-off n-gram model.

Model Context Model test Mixture test
type size perplexity perplexity

FRBM 2 169.4 110.6
Temporal FRBM 2 127.3 95.6
Log-bilinear 2 132.9 102.2
Log-bilinear 5 124.7 96.5
Back-off GT3 2 135.3 –
Back-off KN3 2 124.3 –
Back-off GT6 5 124.4 –
Back-off KN6 5 116.2 –
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Model evaluation (II)

• Final comparison:
– 14M training set, 1M validation set, 1M test set
– (H)LBL used 100D feature vectors and a context size of 5.
– KNn is an interpolated Kneser-Ney n-gram model.

Model Tree generating Test Mixture Fitted mix. Minutes
type algorithm perplex. perplex. perplexity per epoch

HLBL RANDOM 151.2 107.2 106.0 4
HLBL BALANCED 131.3 99.9 99.7 4
HLBL ADAPTIVE 127.0 98.3 98.2 4
HLBL ADAPTIVE(0.25) 124.4 97.5 97.4 6
HLBL ADAPTIVE(0.4) 123.3 97.2 97.1 7
HLBL ADAPTIVE(0.4) × 2 115.7 95.3 95.3 16
HLBL ADAPTIVE(0.4) × 4 112.1 94.4 94.3 32
LBL – 117.0 94.0 94.0 6420
KN2 – 174.2 – – –
KN3 – 125.6 – – –
KN6 – 119.2 – – –
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The effect of the context size
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• The HLBL models were based on the ADAPTIVE(0.4) × 4 tree.

•KNn is an interpolated modified Kneser-Ney n-gram model.
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THE END
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Log-prob contributions: 5-gram vs. LBL (I)
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Number of predictions (P (wn|w1:n−1)) on the test set as a function of
the their magnitude. Bin i (for i = 1, ..., 7) contains predictions
between 10−i and 10−i+1. Bin 8 contains predictions smaller than
10−7.
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Log-prob contributions: 5-gram vs. LBL (II)
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Contribution to the negative log-probability of the test set as a
function of the prediction magnitude. Bin i (for i = 1, ..., 7) contains
predictions between 10−i and 10−i+1. Bin 8 contains predictions
smaller than 10−7.
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t-SNE embedding of LBL feature vectors (I)
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A fragment of a t-SNE embedding of the feature vectors (learned by
an LBL model) of the most frequent 1000 words.
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t-SNE embedding of LBL feature vectors (II)
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A fragment of a t-SNE embedding of the feature vectors (learned by
an LBL model) of the least frequent 1000 words.
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t-SNE embedding of HLBL feature vectors (I)
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A fragment of a t-SNE embedding of the feature vectors (learned by
an HLBL model) of the most frequent 1000 words.

25



t-SNE embedding of HLBL feature vectors (II)
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A fragment of a t-SNE embedding of the feature vectors (learned by
an HLBL model) of the least frequent 1000 words.
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