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1 Introduction

Recurrent Neural Networks (RNNs) are connectionist models that operate

in discrete time using feedback connections. An RNN has a set of units, each

taking a real value in each timestep, and a set of weighted connections between

its units. The input units are set by the environment and the output units are

computed using the connection weights and the hidden units.

RNNs have nonlinear dynamics, allowing them to behave in a highly complex

manner. In principle, the states of the hidden units can store information

through time in the form of a distributed representation and this distributed

representation can be used many timesteps later to predict subsequent input

vectors.

RNNs are appealing because of their range of potential applications: they

can be applied to almost any problem with sequential structure, including the

problems that arise naturally in speech, control, and natural language process-

ing. Since RNNs can represent highly complex functions of sequences, these

problems are likely to be solvable with some RNN, so a learning algorithm

that can find this RNN would be very useful in practice.
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Unfortunately, RNNs have proved to be difficult to learn with gradient de-

scent, especially when the sought for RNN must use its units to store events

for more than a few timesteps. Whenever events in the far past are relevant

for predicting the current timestep, the problem is said to exhibit long-term

dependencies. It is known (Bengio et al., 1994; Hochreiter, 1991) that gradient

descent has great difficulty learning weights that make use of long-term de-

pendencies, so the resulting RNNs are typically no more useful than a simple

moving window.

In this paper, we address the problem of learning RNNs that successfully

predict sequences that exhibit long-term dependencies. In particular, we focus

on a serial recall task in which an arbitrary sequence of characters must be

stored for a variable length of time until a cue is presented. After the cue is

presented, the RNN must reproduce the stored sequence. The variable time

delay makes it very hard to solve this problem using delay lines, so the RNN

must learn to convert the arbitrary sequence to a stable distributed pattern

of activity and then convert this stable pattern back into the appropriate

sequence when the recall cue arrives.

Our main contribution is a new family of RNNs, the Temporal-Kernel Recur-

rent Neural Network (TKRNN), in which every unit is an efficient leaky inte-

grator, which makes it easier to “notice” long-term dependencies: we demon-

strate that the TKRNN can learn to use its units to store 35 bits of information

for at least 50 timesteps in an immediate serial recall task (e.g., Botvinick &

Plaut, 2006). The TKRNN learns to represent its input with a stable state

of its hidden units, which is relevant to a line of research that uses the fixed

points of biologically-plausible neural networks to represent useful informa-

tion, such as shape (Amit, 1995) or eye position (Seung, 1996; Camperi &
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Wang, 1998), for extended periods of time. Our experiments show that the

TKRNN’s architecture is suitable for such problems, and that its performance

is comparable to that of the Long Short-Term Memory (LSTM) (Hochreiter

& Schmidhuber, 1997) when applied to the same tasks.

2 Standard Recurrent Neural Networks: Definitions

In this section we formally define the standard RNN (Werbos, 1990; Rumelhart

et al., 1986). The RNN is a neural network that operates in time. At each time

t, the value of the RNN’s input units is given by xt, and the RNN computes

the values of its hidden units (yt) and output units (zt) by the equations

yt = f (Wy→yyt−1 + Wy→xxt) (1)

zt = g (Wz→yyt + Wz→xxt) (2)

where Wz→y is a matrix of size nz × ny of the weights of the connections

between the hidden units y and the output units z. A common choice for the

functions f : R
n → R

n and g : R
n → R

n is the sigmoid and the softmax

functions, which are

f(x)(i) =
1

1 + exp(−x(i))
(3)

g(x)(i) =
exp(x(i))

∑n
j=1 exp(x(j))

(4)

where in these equations x is a generic n-dimensional vector and x(i) is its

i’th coordinate. Other definitions of f and g are also possible. Thus, given a

setting of the RNN’s parameters, these equations completely determine the

values of the RNN’s hidden ({yt}t) and output ({zt}t) units for any sequence

of input vectors {xt}t.
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An RNN can be trained to approximate a highly-complex function on se-

quences using a collection of training input sequences {xt}t and their corre-

sponding desired outputs {vt}t. The problem of learning the RNN’s connec-

tion weights is formulated as a problem of minimizing a cost function C that

measures the RNN’s deviation from perfect behavior:

C =
T
∑

t=1

Ct =
T
∑

t=1

c(zt,vt) (5)

where T is the length of the sequence, and c(zt,vt) is a measure of distance

between the desired output and the actual output (we use the cross-entropy

c(x, z) = −
∑

i z
(i) log x(i)).

3 Temporal-Kernel Recurrent Neural Networks

The backpropagation through time algorithm (BPTT) (Werbos, 1990; Rumel-

hart et al., 1986) can efficiently compute the gradient of the RNNs cost func-

tion (eq. 5), so it may seem that RNNs should be easy to learn. However,

if the RNN must learn to remember events in the far past in order to make

accurate predictions about the present where the relevant events are always

separated by many timesteps, the RNN learned by BPTT will fail to use its

hidden units to store the important relevant information from the past.

A theoretical analysis (Bengio et al., 1994; Hochreiter, 1991) shows that learn-

ing is hard because the past is separated from the present with a large number

of nonlinearities, causing the gradient to get “diluted” and uninformative as

it flows backwards through time. If we allow the gradient to skip timesteps as

it flows backwards, it can influence the past more directly and be less diluted,
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which is easily achieved by adding direct connections between units that are

separated in time: if k is not too large (< k0), we connect yt−k and yt with

connections whose weights are independent of t. By adding these connections,

we essentially obtain the NARX RNN (Lin et al., 2000).

These additional connections allow the NARX RNN to learn long-term reg-

ularities that are k0 times more separated in time than the standard RNN,

which can be substantial when k0 is large. However, NARX RNNs have two

drawbacks. First, NARX RNNs are k0 times slower than RNNs (per iteration),

and second, NARX RNNs have k0 times more parameters than a standard

RNN with the same number of units. This is particularly costly because k0

often needs to be large, so the NARX RNN mitigates the problem of learning

at the expense of being slower and larger.

Our contribution is a new family of RNNs that has many of the advantages

of the NARX RNN without its disadvantages. We introduce the Temporal-

Kernel Recurrent Neural Network (TKRNN), which is an RNN with direct

connections between units in all timesteps (from yt to yt′ for all t′ < t),

which is as efficient as the standard RNN and has almost the same number

of parameters. We also introduce the TKRNN+n, which is an RNN whose

weights are the sum of the weights of n TKRNNs; the TKRNN+n is n times

slower than the TKRNN per forward/backward pass, but it finds considerably

better solutions.

The main idea of the TKRNN is to make each of its units act as a leaky

integrator while keeping the forward and the backward pass efficient. The

equation that governs the TKRNN’s hidden units is
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yt
(i) = f

(

t
∑

k=1

( ny
∑

j=1

(λ(j))
k−1

Wy→y

(j,i)y
(j)
t−k

+
nx
∑

m=1

(λ(m))
k−1

Wx→y

(m,i)x
(m)
t−k

))

(6)

where 0 < λ(j) < 1 is an additional parameter for each unit j that determines

the extent to which the unit can directly influence units in future timesteps,

or, equivalently, the extent to which units are influenced by unit j’s activities

in previous timesteps. 1 An analogous equation defines the output units.

The TKRNN has connections between units in all timesteps which make the

gradient flow through less nonlinearities, but rather than being arbitrary, the

connections’ weights are factored in space and time: the weight of the connec-

tion between unit y
(j)
t and y

(i)
t−k is Wy→y

(j,i)(λ(j))
k−1

, which ensures that the

number of parameters is small and that the forward and the backward passes

can be performed efficiently. Eq. 6 implies that the units’ input is an average

of the units’ past activities weighted by the exponential kernel.

Previous work in which units were similarly connected through time with

a kernel include (Hinton & Brown, 2000; Natarajan et al., 2008), although

they were used in a different context. Notably, the Gamma model (De Vries

& Principe, 1992) is a closely related RNN architecture that uses a related

family of kernels.

The TKRNN’s definition causes the forward and backward passes to be as

efficient as those of a standard RNN: notice that equation 6 can be rewritten

as

1 We slightly abuse notation and treat the variables λ(j) and λ(m) as distinct.
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Fig. 1. This figure illustrates the TKRNN’s connectivity: the more units are sepa-

rated in time, the weaker is their connection.

yt
(i) = f

( ny
∑

j=1

Wy→y

(j,i)
t
∑

k=1

(λ(j))k−1y
(j)
t−k

+
nx
∑

m=1

Wx→y

(m,i)
t
∑

k=1

(λ(m))k−1x
(m)
t−k

)

(7)

so if we define

Sy(j)
t =

t
∑

k=1

(λ(j))k−1y
(j)
t−k (8)

Sx(m)
t =

t
∑

k=1

(λ(m))k−1x
(m)
t−k (9)

where Sy
0 and Sx

0 are the zero vectors, then Sy
t and Sx

t can be easily com-

puted by the equation

Sy(j)
t =y

(j)
t−1 + λ(j)Sy(j)

t−1 (10)

Sx(m)
t =x

(m)
t−1 + λ(m)Sx(m)

t−1 (11)

The variables Sy
t and Sx

t act as leaky integrators in the equations above.

The TKRNN’s backward pass is derived straightforwardly, and is computed

using a similar recursive equation. 2

3.1 Remarks on the TKRNN and the TKRNN+

In this section we comment on the TKRNN’s definition. Consider the exponen-

tial form of eq. 6 (see also fig. 1) which implies that units that are sufficiently

2 Our python implementation of the TKRNN+n and the experiments can be found

in www.cs.utoronto.ca/~ilya/code/TKRNN.tar.
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Fig. 2. The figure on the left shows an exponential kernel and figure on the right

shows the sums of two and three exponential kernels. This illustrates the additional

expressive power obtained from using sums of exponential kernels.

separated in time have a negligible weight on their direct connection, so the

TKRNN effectively connects each unit with only a finite (but large) number

of timesteps directly. This prevents the TKRNN from learning long-term de-

pendencies that are significantly outside the reach of its direct connections

for the same reason an RNN cannot learn dependencies spanning more than

a few timesteps (in sharp contrast to the LSTM; Hochreiter & Schmidhuber,

1997). This is partly alleviated by learning the λ’s which enables the weights

to choose the time-scale to operate on. However, if the initial λ’s are too

small, then the gradient with respect to λ will be negligible, so it is essential

to initialize the λ’s in the right scale. As the λ’s get closer to 1, the units

become capable of directly extracting information from the very far past in

an extremely “coarse” way, so the λ’s should be as small as possible.

To enforce the constraint that 0 < λ(j) < 1, we parameterized λ’s via the

sigmoid function: λ(j) = 1/(1 + exp(−ℓ(j))), and learned the unconstrained ℓ

variables. Note, further, that if we set λ(j) to 0 for every unit, we recover the

standard RNN. Interestingly, the TKRNN’s definition (as well as its backward

pass) is valid when λ(j) is negative, which can make it easier for its units to

detect abrupt changes in the past.

In addition, we can view the TKRNN+ as a TKRNN whose exponential kernel

from unit i to unit j is replaced with a weighted sum of k exponential kernels

of different scales and magnitudes, whose shape is a function of both i and j,

8



unlike the TKRNN where the kernel’s shape is a function of j only. Sums of

exponential kernels are significantly more expressive than a single exponential

kernel (see figure 2), and let the TKRNN+ have both long-term connections

and detailed short-term dynamics.

And finally, the TKRNN’s leaky integrators make it more biologically plausible

than standard RNNs (Shepherd, 1998, chapter 2).

4 Related Work

In this section we mention additional related work on sequence modeling with

RNNs that are designed to cope with long-term dependencies.

The Echo-State Network (ESN) (Jaeger & Haas, 2004) uses a large number of

neurons with random connectivity to compute many “basis functions” of both

the input sequence and its past outputs. The learned output weights combine

these basis functions in the best way to predict the output. During prediction,

the true outputs (which are unknown) are replaced with the predicted outputs,

which are fed to the recurrent units. ESNs work extremely well for predicting

chaotic systems for a large number of timesteps, and their linear version has

been rigorously analyzed (White et al., 2004). The major advantage of the

ESN is that its recurrent weights are not learned, so learning is extremely

fast.

Perhaps surprisingly, standard RNNs trained by the Extended Kalman Fil-

ter (EKF) training procedure (Williams, 1992) are shown to successfully learn

standard RNNs on problems exhibiting long-term dependencies (e.g., Prokhorov

et al., 2002; Feldkamp et al., 2003). However, while the EKF training proce-
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dure is a powerful learning procedure, it is applicable to only modestly-sized

RNNs due to its computational complexity.

The Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997;

Gers et al., 2002, 2000) is an RNN architecture that is capable of learning

problems with significant long-term dependencies by using explicit memory

units. The design of the memory units allows the gradient to freely flow back-

wards in time, possibly for an unlimited duration. The LSTM can solve prob-

lems where important pieces of information are always separated by at least

thousands of timesteps, and was successfully applied to various tasks, includ-

ing an instance of robotic control (Mayer et al., 2006). The LSTM’s ability to

cope with long-term dependencies is also confirmed in our experiments.

5 Experimental Results

The goal of this section is to demonstrate that the TKRNN can learn to predict

sequences that exhibit challenging long-term dependencies. For this purpose,

we chose a difficult serial recall task (e.g., Botvinick & Plaut, 2006) which

is to predict sequences containing two copies of a random 15 characters-long

word (with an alphabet of 5 symbols) that are separated by a gap of at least

50 timesteps. Such sequences can be predicted only if the RNN remembers

the word for a sufficient amount of time, which requires 35 bits of memory.

We show that the TKRNN does well on this problem, and its performance is

comparable to that of the LSTM.

While the paper’s focus is on the serial recall task because of its clear long-

term dependencies, we briefly mention the results of two additional experi-
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ments. We applied the TKRNN to the “Conditioned adaptive behavior” task

(Feldkamp et al., 2003, sec. 3.1), in which the initial segment of a sequence

determines one of two simple functions that have to be computed for many

timesteps; the TKRNN’s performance was comparable to that of the LSTM on

this task. However, the multiple quadratic function prediction task (Prokhorov

et al., 2002), where every sequence is assigned a randomly chosen 2-variable

quadratic function and consists of input-output examples from it, was much

harder for the TKRNN: it failed to solve the task while the LSTM succeeded

(the LSTM results are reported by Younger et al. (2001)). Nevertheless, a

standard RNN was able to solve the multiple quadratic function prediction

task when trained with the extended Kalman filter (EKF) (see Prokhorov

et al., 2002); therefore, the TKRNN should also succeed if trained with the

EKF because the standard RNN is a special case of the TKRNN. 3

5.1 Task and network details

We describe the serial recall task. To generate an example sequence, we choose

a random 15-character word from a 5-character alphabet. It is is followed by

40 spaces and an additional small random number of spaces which prevent the

TKRNN from using direct delay lines. The random number is geometrically

distributed with mean 1.25 4 . The spaces are followed by a special character,

10 spaces, and another presentation of the same random word. The special

character notifies the model of the second occurrence of the word starting 11

time steps later. We truncate the rare sequences whose length exceeds 100 and

use a 1-of-7 encoding to represent each symbol.

3 The online code contains the details of these experiments.
4 The geometric distribution is defined by P (n) = (1−p)pn and its mean is 1/(1−p).
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We used a TKRNN+5 with 100 hidden units and an LSTM with 50 memory

blocks, each of which has two memory cells. We updated the parameters on

every sequence for 106 weight updates; note that 106 is a very small fraction of

515 so there is no danger of overfitting. The TKRNN’s weights and the LSTM’s

weights were initialized with a spherical Gaussian with small variance, while

the TKRNN’s ℓ parameters were independently sampled from a mixture of a

uniform [0, 1] and a uniform [0, 5] distribution. The TKRNN’s learning rates

were 10−5 for its standard weights and 10−7 for the ℓ parameters, while the

LSTM’s learning rate was set to 10−4. A momentum of 0.9 was used for both

models. Both models were trained to maximize the log probability of the next

time step given the previous timesteps.

We report results as follows: for each character in the second occurrence of

x, we determine the most likely character according to the model, and report

the fraction of characters predicted correctly. This way, the TKRNN predicts

79% and the LSTM predicts 81% of the characters correctly.

If, instead, we consider a prediction to be correct if the target answer is among

the two most likely characters according to the model, then the TKRNN

predicts 97% and the LSTM predicts 98% of the characters in the second

occurrence of x correctly.

6 Conclusions

We presented a new family of recurrent neural networks and showed that

their construction makes them suitable for problems that exhibit difficult long

term dependencies. The performance is usually comparable to the LSTM. In
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particular, our results show that leaky integrators are not as susceptible to

the vanishing gradient problem as has generally been supposed and that these

networks, which are biologically more plausible than LSTM, can learn to store

information in the fixed points of the dynamics of their hidden state.
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