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Abstract

Probe interval graphs are used as a generalization of interval graphs in physical mapping of DNA.�������	��

�
is a probe interval graph (PIG) with respect to a partition

���������
of
�

if vertices of
�

correspond to intervals on a real line and two vertices are adjacent if and only if their corresponding

intervals intersect and at least one of them is in
�

; vertices belonging to
�

are called probes and vertices

belonging to
�

are called non-probes. One common approach to studying the structure of a new family

of graphs is to determine if there is a concise family of forbidden induced subgraphs. It has been shown

that there are two forbidden induced subgraphs that characterize tree PIGs. In this paper we show

that having a concise forbidden induced subgraph characterization does not extend to � -tree PIGs; in

particular we show that there are at least sixty-two minimal forbidden induced subgraphs for � -tree

PIGs.

Keywords: probe interval graphs, � -trees, forbidden induced subgraph characterization

1 Introduction

The probe interval graph model was introduced and used in the human genome project as a more powerful

and flexible tool than an interval graph model for the assembly of contigs in the physical mapping of DNA

[17] [16] [18]. Small fragments of DNA, called clones, are taken from multiple copies of the same genome,

and the problem is to reconstruct the arrangement of these clones. In other words, physical mapping of

DNA has the goal of reconstructing relative positions of clones along the original DNA. This problem of

finding whether pairs of clones overlap in a long DNA strand can be modeled by an interval graph if we

are interested in overlap information between each pair of clones; vertices represent clones and two vertices

are adjacent if and only if the clones overlap. In the probe interval graph model, we can use any subset of
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clones, called probes, and test for overlap information between a pair of clones if and only if at least one

clone is a probe. This allows flexibility, since not all DNA fragments need to be known at the time of the

construction of a probe interval graph, as is the case in an interval graph model. Thus, the probe interval

graph model can be used in real time applications with growing data sets by generating incremental DNA

maps which provide useful information for each further step. We now give a formal definition of this model.

A graph ���������
	�� is an intersection graph of a collection of sets if the vertices of � represent those

sets and two distinct vertices are adjacent in � if and only if their corresponding sets have a non-empty

intersection. An interval graph is an intersection graph of a family of intervals on a real line. �
�������
	�� is

a probe interval graph (PIG) with respect to a partition �����
��� of � if vertices of � correspond to intervals

on a real line and two vertices are adjacent if and only if their corresponding intervals intersect and at least

one of them is in � ; vertices belonging to � are called probes and vertices belonging to � are called

non-probes.

There has been a lot of interest in probe interval graphs lately. They have been shown to be weakly

triangulated, and thus perfect [12]. The hierarchy of graph classes in the neighborhood of probe interval

graphs has been described, and also a new class generalizing chordal graphs to probe chordal graphs has

been introduced in analogy to the generalization of interval graphs to probe interval graphs [2, 1, 7, 6]. There

exist two recognition problems for PIGs. The first recognition problem asks about recognizing, finding and

representing possible layouts of the intervals of a probe interval graph with a given partition of its vertices;

we refer to this problem as the GP recognition problem (stands for Given Partition). The second recognition

problem for PIGs asks if a given graph is a PIG without knowing a partition of its vertices; we refer to this

problem as the non-GP recognition problem. Polynomial time algorithms for the GP recognition problem

have recently appeared; in particular, an ��������� algorithm [8] and an ���������� �!#"$�%� algorithm [10] have

been developed, where � is the number of vertices and � is the number of edges of a graph. An application

of an algorithm for constructing a probe interval model occurred in recognizing circular arc graphs [9]. The

non-GP recognition problem is unresolved and is attracting considerable attention.

In studying the structure of a new family of graphs a common approach is to determine when the graphs

can be characterized by a succinct set of forbidden induced subgraphs. We use the term FISC to refer to

the forbidden induced subgraph characterization for a family of graphs. In the case of PIGs, as will be seen

in the next section, Sheng [15] has taken the first step in this direction by studying FISCs for acyclic PIGs,

with or without a given vertex partition. In particular, Sheng solved the non-GP recognition problem for tree

PIGs by showing that tree PIGs can be characterized by two forbidden induced subgraphs. This result gives

hope that there is a succinct FISC for chordal PIGs, or even PIGs themselves. As a first step in this direction,

it is expected that & -trees, a natural generalization of trees defined in the next section, will have a succinct

FISC. Surprisingly, this is not the case. In this paper we show that the FISC for & -tree PIGs contains at least
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sixty-two graphs. Thus, it is very unlikely that there is a concise FISC for PIGs, or even chordal PIGs.

2 Preliminaries

All graphs in this paper are simple. We denote a graph by �
�������
	�� , where � is the vertex set of � and 	
is the edge set of � . We also denote � of � by � ��� � and 	 of � by 	 ��� � . For a subset

�
of � , we denote

by � � � � the subgraph of � induced by the vertices of
�

, and write � � � ��� � . The standard definitions of

path length and path size are used, representing the number of edges and the number of vertices on the path.

The distance between vertices � and � in � , denoted by � ��� ��� � , is the number of edges on a shortest �%��� -

path. A graph consisting of a path �
	 of size � and a vertex �
�� � ����	 � which is universal to � ����	 � is called

a � -fan. If ��� is a complete graph on � vertices, a graph � is obtained by ��� -bonding of graphs ��� and � �
if vertices of a ��� of ��� are identified with the vertices of a ��� of � � . The set � ��� � ����� � ��� ��� � 	! 
is the neighborhood of vertex � , and �#" �%$���� ��� �'&(���) is the closed neighborhood of � . An asteroidal

triple (AT) is an independent set of three vertices in � such that there exists a path between each pair of

vertices that avoids the neighborhood of the third vertex. A graph without an AT is called AT-free. Vertices

of an AT are called AT-vertices. We say that a collection of sets ��* �,+ �.-/ is an asteroidal collection (AC)

if for all � � * , for all 0 � + , and for all 1 � - , ��� ��0 �,12 is an asteroidal triple. Each of the sets * , + ,

and - is called an asteroidal set (AS). We defined probe interval graphs in the previous section. An interval

representation, 3 �4�53�62� � � �� , of a PIG � � �����
	87�� is a set of intervals of a real line demonstrating

that � is a PIG; clearly, the intersection graph 9 � �����
	/: � of an interval representation 3 of a PIG � is

an interval graph, and 	;7=< 	8: . We now give a recursive definition of a � -tree � : a complete graph on �
vertices, ��	 , is a � -tree; if � is a � -tree, then so is �/> formed from � by adding a new vertex adjacent to all

vertices in a ��	 in � . Thus, a tree is a ? -tree.

As mentioned previously, Sheng has taken the first step in giving a FISC for a restricted family of PIGs,

namely trees. In particular, she proved the following [15].

Theorem 1 [15] Let @ � �����
� �
	�� be a tree with �A< � and � ���CB � . @ is a PIG with respect to

� if and only if @���� � is an independent set and @ has no induced subgraph isomorphic to graph ��D ��E��
? � & �GFGFGF �IH in Figure 1, with darkened vertices in � and circled vertices in � or � .

Theorem 2 [15] Let @ � ��� �
	 � be a tree. Then @ is a PIG if and only if @ has no induced subgraph

isomorphic to graph �KJ or �;L in Figure 1.

Lemma 1 [15] At least one AT-vertex of an AT in a PIG must be a non-probe.
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Figure 1: Forbidden induced subgraphs for tree PIGs, with the darkened vertices being probes and circled
vertices being either probes or non-probes.

In order to provide the foundation for our search for a FISC for & -tree PIGs, we now present some

general structure results of PIGs.

3 Some Structure of PIGs

An immediate consequence of Lemma 1 is the following simple corollary:

Corollary 1 At least one AS of an AC of a PIG � must contain all non-probes. Thus, at least one AS of a

PIG must be an independent set.

Proof: Otherwise, there exist probe vertices � � * , 0 � + , and 1 � - such that ���%��0 �,1  is an all probe

AT contradicting Lemma 1. �

Claim 1 Let ���%��0 �,1  be an AT of a PIG � . Then in an interval representation of � , no interval corre-

sponding to a vertex in ��� ��0 �,12 properly contains an interval corresponding to another vertex in ��� ��0 �,12 .

Proof: Denote by 3�� �,3�� , and 3�� intervals corresponding to � ��0 � and 1 respectively in an interval represen-

tation of � . Without loss of generality, let 3 � <C3 � . If either � or 0 are probes, then by the definition of a

PIG, they must be adjacent, contradicting ��� ��0 �,12 being an independent set. Thus, the interesting case is

when � ��0 � � . Let �%��0 � � . Since � � � , every neighbor of � in � must be a probe. Thus, the neighbor

of � on every �%�,1 -path in � must be a probe. Since by the definition of a PIG, the interval corresponding

to the neighbor of � on every � �,1 -path must overlap 3�� , and since every neighbor of � in � is a probe,

and since 3 � < 3 � , every neighbor in � of � is adjacent in � to 0 , and thus 0 hits every � �,1 -path in �
contradicting ��� ��0 �,12 being an AT in � . �

Claim 2 If ���%��0 �,1  is an all non-probe AT of a PIG � , with intervals 3 � � " � � ��� � $ , 3 � � " 0 � ��0 � $ , and

3�� � " 1 ���,1 � $ corresponding to �%��0 , and 1 in an interval representation 3 of � , and if one of these intervals,

say 3 D ��E � ���%��0 �,12 , is properly contained in the interval " � �� ,$ , where � is the minimum of the left-most

vertices and  is the maximum of the right-most vertices of the other two intervals, then there exists a non-

probe internal vertex � of a � �I� -path such that 3 D"! 3 6 , where � �I� � ��� ��0 �,12 B ��E� � �$#� � .
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Proof: Without loss of generality assume that 3�� � " �)���,1 � $ . Since the same argument applies to all

arrangements of 3�� �,3��$� and 3�� on the real line, we will consider only one of them, namely let 3 � � 3�� #���
and let 3 � not overlap 3�� . Since by Claim 1 no interval in �53 � �,3��$�,3��  properly contains another, without

loss of generality let � ���=02���
� � � 0 � . First, let 0 � � 1 � , and consider an �%�,1 -path � ��� � in � that avoids

� ��0 � . Since � �,1 � � , the neighbor of � in � and the neighbor of 1 in � on � ��� � must both be probe and

thus their corresponding intervals cannot overlap 3 � . Since the union of the corresponding intervals in 3
of the vertices of � ��� � overlaps 3�� , and since � ��� � avoids � ��0 � in � , there must exist a non-probe internal

vertex � of � ��� � such that 3 6	� 3 � . Similarly, if 1 � �
0 � , then there must exist a non-probe internal vertex �
on an � �,1 -path such that 3�6 � 3�� . �

We now give a structural result on a � �
� partition in a PIG with an AT.

Claim 3 In every AT of a PIG �
� ��� �
	K7�� there must exist a non-probe AT vertex � such that there exists

a path between the other two AT-vertices that avoids � ��� � and has a non-probe internal vertex.

Proof: Let 3 � �53G62� � � �! be an interval representation of � . Let 9 � �����
	/: � be the intersection

graph of 3 . Let ��� ��0 �,12 be an AT of � and without loss of generality let 1 � � . Since 9 is an interval

graph, 9 does not have any ATs, so ��� ��0 �,12 is not an AT of 9 , and thus we have the following two cases

to consider regarding ��� ��0 �,12 in 9 : (1) � 0 � 	K: ; (2) � 0 �� 	8: and for every � ��0 -path � ��� � there exists a

vertex � � � ��� ��� � � such that � 1 � 	8: .

(1) First we consider the case when �%0 � 	 : . Since �%0 �� 	 7 , this means that �%��0 � � , and 3 � � 3 � #�
� .
Remember also that 1 � � by assumption. Thus, by Claim 1, no interval of a vertex in ��� ��0 �,12 properly

contains an interval of another vertex in ��� ��0 �,12 .
Let 3���� " � � ��� � $ , 3�� � " 02� ��0 � $ , 3�� � " 1 ���,1 � $ , and since 3�� � 3�� #��� and one does not properly contain

the other, without loss of generality assume that ����� 02��� � � �=0 � . We now have two cases regarding the

position of 3 � with respect to 3 � .

 First assume that 3 � does not overlap 3�� . If 0 � �
1 � , consider an � �,1 -path � ��� � in � that avoids � ��0 � .

Here 3�� ! " � ���,1 � $ , and thus by Claim 2, there exists a non-probe internal vertex on � ��� � , as required.

If 1 � � 02� , then 3�� ! " 1 ����0 � $ , and thus by Claim 2, there exists a non-probe internal vertex � of a

0 �,1 -path such that 3�� ! 3 6 , as required.


 If 3 � overlaps 3 � (remember that � ��0 �,1 � � , so by Claim 1, 3 � #! 3 � and 3 � #! 3 � ), then we have

three possible cases:

– if 02����1 ����0 � � 1 � , then 3�� ! " � ���,1 � $ and thus, by Claim 2, there must exist a non-probe

internal vertex � on an �%�,1 -path such that 3 6 � 3�� , as required.
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– if 1 � �C02� � 1 � � � � (this implies that 1����C�)� , since 3�� #! 3�� ), then 3�� ! " 1 ����0 � $ and thus,

by Claim 2, there must exist a non-probe internal vertex � on an 0 �,1 -path such that 3 6 � 3�� , as

required.

– if 3�� � 3�� ! 3�� , then �)� � 1 � � 02�	� � � � 1 � � 0 � ; this is because 3 � #! 3�� and 3�� #! 3�� by

Claim 1. Now 3 � ! " �)� ��0 � $ and thus, by Claim 2, there must exist a non-probe internal vertex �
on an �%��0 -path such that 3�6 � 3�� , as required.

(2) Now consider the case when � 0 �� 	 : and � 1 � 	 : for some � � � ��� ��� � � .

 If � �� ���%��0% , then since � 1 �� 	;7 , both � and 1 are non-probes, and 3 �

� 3�� #� � . Thus, an internal

vertex � of � ��� � is a non-probe, as required.


 If � � ��� ��0  , without loss of generality let ��� � , then since � 1 �� 	/7 , 3�� � 3�� #� � and � �,1 � � .

Since �%0 �� 	8: , 3�� � 3�� � � ; 0 could be a probe or a non-probe. Without loss of generality let

�)� � � � � 02� � 0 � . By Claim 1, 3 � #! 3�� and 3�� #! 3�� . Thus we have only two cases to consider:

1 � � � ��� 1 � � � � and �)� � 1 � � � � � 1 � . If 1 ���C�)� � 1 � � � � , then 3�� ! " 1 ����0 � $ and thus,

by Claim 2, there exists an internal non-probe vertex � on a 0 �,1 -path such that 3 � ! 3 6 , as required.

Similarly, if � � � 1 � ��� � � 1 � , then 3�� ! " � ����0 � $ and thus, by Claim 2, there exists an internal

non-probe vertex � on a � ��0 -path such that 356 � 3�� , as required. �

The following is a straightforward corollary of Claim 3.

Corollary 2 There exists only one ��� �
��� -partition of vertices of a
�
-sun up to isomorphism.

z

b a

yux

Figure 2: The only �����
��� -partition of a
�
-sun up to isomorphism.

Proof: Consider a
�
-sun � labeled as in Figure 2 with the AT-vertices �%��0 �,1 . By Lemma 1, at least

one of �%��0 , and 1 is a non-probe. Without loss of generality, let 1 � � . Thus, � � 1 ��� � � �� 5 < � . If

� � � , then � � � , so all internal vertices of all paths between AT-vertices are probes contradicting Claim

3. Thus, � � � , and similarly, 0 � � . By Claim 3, � � � . �
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4 � -tree Probe Interval Graphs

We define a 2-path recursively in the following way.


 A triangle, ��� , is a 2-path of length one; denote the triangle by ��� .

 ��� �
� .

 If � is a 2-path of length � � ��� ? � with the triangle sequence ���	� � FGFGF
� 	 , a new length � � � ? � 2-path

is obtained by adding to � a vertex � and edges ���%� and � � � , where � �,� � is an edge of ��	 B�� 	
� � ; the

new triangle induced on ��� ��� � ��� �  is denoted by ��	�� � .

An example of a & -path is presented in Figure 3. We say that the triangles � D and � D � � , ?��
E�� ���#? , of

a & -path � are consecutive triangles of A, and that two triangles are adjacent if they share an edge. Triangles

�.� and � 	 of a length � & -path are called end triangles. A vertex � of degree & of an end triangle � � or � 	 of a

& -path � ���.� FGFGF
� 	 is called an end vertex of � ; if ��� & , we denote by � � the degree & vertex of � � , and by

� 	 the degree & vertex of �,	 . An edge � of an end triangle containing an end vertex is called an end edge. An

edge of a & -path � that is not shared between & triangles of � and is not an end edge of � is called a side

edge of � . A non-end, non-side edge of a & -path � is called an internal edge of � . Clearly, the length of a

& -path � , denoted by  ��� � , is the number of triangles in it. Denote by � D a & -path of length E . The distance

between two triangles is the number of edges shared between pairs of consecutive triangles on the shortest

2-path between them.
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Figure 3: A & -path of length ? ? with examples of: end triangles �5� and �.��� , end vertices � � and � ��� , end
edges � � ��� � ��� � � and � J , side edges � � and � � , and an internal edge E�� .

Observation 1 There exists one � � , one � � , two non-isomorphic �;J s, three non-isomorphic �"! s, and six

non-isomorphic �;L s.

Proof: By inspection, there are two ways of identifying an edge of an �#� with an edge of an ��� to obtain

an � J , three ways of identifying an edge of an � J with an edge of an � � to obtain an � ! , and six ways of

identifying an edge of an ��! with an edge of an ��� to obtain an �8L . They are all presented in Figure 4. �
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Figure 4: � � , � � , non-isomorphic � J s, non-isomorphic � ! s, and non-isomorphic � L s.

By identifying a side edge of an ��! with an end edge of the � � in all possible ways so that the resulting

& -tree still has a longest & -path of length H , we obtain the two non-isomorphic & -trees presented in Figure 5.

We call graphs
� � and

�
� presented in Figure 5 weak 2-stars.

S1 S2

�

�




���


��

�


� �

�


 �

�
�

�� �� ��� �

Figure 5: Weak & -stars.

Claim 4 No weak & -star is a PIG.

Proof: Assume a weak & -star is a PIG. Consider ACs ��* �,+ �.-/ of
� � and

�
� from Figure 5, where

* � ��� ��� �  , +�� ��0 ��0 �  , and -�� �51 �,1 �  . None of the ASs * �,+ , and - of
� � and

�
� is an independent

set contradicting Corollary 1. �
Consider a & -path � of length at least

�
of a & -tree @ and denote by � � � � a side edge of � . For a vertex

� �� � ��� � of @ such that ���2� ����� �
� 	 � @ � we say that the triangle � � �,� � is an additional triangle at distance

? from � and that � is an additional vertex at distance ? from � ; the number of edges on a shortest & -path

between the triangle � � � � � and a triangle of � is ? . Now consider a & -path � with an additional triangle

��� �,� � at distance ? from � in a & -tree @ . For a vertex � �� ����� � & ���  of @ such that � � ���%� D � 	 � @ � for

exactly one E � ��? � &  , we say that the triangle �%� � D is an additional triangle at distance & from � and that

� is an additional vertex at distance & from � ; the number of edges on a shortest & -path between the triangle

�%� � D and a triangle of � is & . Similarly we can define additional triangles at distance
�

or more from � .
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We will use the phrase an additional triangle with respect to � to refer to an additional triangle at distance

E��C? from � . When it is clear from the context which � is being considered, we will omit reference to � .

Claim 5 Let @ be a & -tree PIG and let � be a longest & -path of @ . @ contains no additional triangles at

distance & from � .

Proof: Assume to the contrary. Let �
� � �	� � FGFGF���� , where �.���GFGFGF��	��� are consecutive triangles of � , and

let � be an additional triangle at distance & from � . Let � be at distance & from some � D of � , and let �

be the triangle having an edge in common with � and an edge in common with � D . Since � is longest, we

know that
� � E#� � � & . But now the subgraph of @ induced on the union of the vertices of triangles

� D � � �	� D � ���	� D �	� D � ���	� D � � ��� , and � is a weak & -star contradicting @ being a PIG, by Claim 4. �
From Claim 5 it follows that if additional triangles with respect to a longest & -path � of a & -tree PIG

exist, then they must be at distance ? from � . The next claim determines to which of the � and � vertex

partitions of a & -tree PIG the degree & vertices of the additional triangles belong. Recall that we denote by

� � the degree & vertex of � � , and by ��� the degree & vertex of ��� in a & -path ��� .

Claim 6 Let @ be a & -tree PIG, let �
� � �
� � FGFGF
��� be a longest & -path of @ , and let  ��� � �	� . Let � be an

additional triangle at distance ? from � . Denote by � the degree & vertex of � .

 If � is adjacent to � � (or equivalently, to �
� � � ) and if � � � , then �2� � � ( ��� � � ).


 If � is adjacent to � D for
� �
E � � � & , then � � � .

Proof: Assume to the contrary. First, let � be adjacent to � � and � ��� � � � . Let the vertices in � � � � ��&
� � � � � & � � � � � & � � � J ��&!���  be labeled as in Figure 6 A, which illustrates the only two non-isomorphic � J s
(by Observation 1) with an additional triangle at distance ? that is adjacent to � � (or equivalently to ��� � � ).
Since the subgraph of @ induced on ��� ��� � ��? � & � � �
�2 is a

�
-sun with the AT ��� ���2���
�2 and since � ���2� � � ,

by Corollary 2, we know that ? �
� � � . Since � � � and ��H � 	 � @ � , we must have H � � . But now

��� ��� � �IH  is an all-probe AT in @ contradicting Lemma 1. The proof is the same for the case when � is

adjacent to � � � � .
Now assume that � is adjacent to � D for

� � E ��� � & and � � � . Clearly, � � H . Label the vertices

of ��� � D � � � &�� � � D � � � &�� � � D � & � � � D � � �)&���� � D � � � & ���  as in Figure 6 B, which illustrates the only three

non-isomorphic � ! s (by Observation 1) with an additional triangle at distance ? that is adjacent to their � � s.

Clearly, the subgraph of @ induced on ��? � & � � �
� �IH ���  is a
�
-sun, and since ��� � � �IH  is an AT, if we assume

that � � � , then by Lemma 1, either
� � � , or H � � . Without loss of generality, let

� � � . Then by

Corollary 2, vertex & is also in � . Since & H � ��� � 	 � @ � , H � � � � . But now we have an all probe AT

��� �IH � �  in @ contradicting Lemma 1. �

9
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Figure 6: A. The two
�	�

s with an additional triangle. B. The three
��


s with an additional triangle.

We call a graph obtained by a ��
 -bonding of an end edge of an
���

with the internal edge ����� ��� � � of

an
�	� ������������� � a 2-star. There exist two ways of identifying an end edge of an

���
with the edge ����� ��� � �

of an
� �� from Figure 4 to obtain  -stars ! � and ! � presented in Figure 7, two ways of identifying an end

edge of an
� �

with the edge �"�#� � � � � of an
� � �

from Figure 4 to obtain  -stars ! 
 and ! � presented

in Figure 7, and four ways of identifying an end edge of an
���

with the edge �$�%� �&� � � of each of
� 
� ,� ��

,
� 
�

, and
� ��

from Figure 4 to obtain sixteen more  -stars. In this way we constructed twenty  -stars in

total. However, many of them are isomorphic (we tested these isomorphisms manually, as well as by using

McKay’s Nauti 2.0 software [11]). Thus, the following Claim holds.

Claim 7 There exist ten non-isomorphic  -stars. They are denoted by ! �(' ����� ' !��)
 and presented in Figure

7.

S5S

Y

Z

X

Z
Y

X
Z

Y

X

X

Y Z

X

6 1211 SS109S S8S3S 4S 7S

Y Z

Z

X

Z

X

Z
X

Z
X

X

ZY

Y Y
YY

Figure 7: The ten non-isomorphic  -stars.

Note that !+* presented in Figure 7 contains an induced , � presented in Figure 1, which is a non-PIG

tree, by Theorem 2. Thus, from now on, we exclude ! * from the set of  -stars, since our goal here is to

describe non-PIG  -trees that do not contain non-PIG trees as induced subgraphs.

Claim 8 No  -star is a PIG.

Proof: This is because no AS of the AC -/. '�01'32�4 of any of the  -stars is independent, and thus every

 -star has an all probe AT contradicting Lemma 1. 5
Similar to the definition of additional triangles, we now define triangles that “grow off” an internal edge

of a longest  -path of a  -tree PIG, rather than off a side edge as was the case for additional triangles.

10



Consider a & -path � of length at least & of a & -tree @ and denote by � � � � an internal edge of � . For a

vertex ���� � ��� � of @ such that ��� ������� �
� 	 � @ � we say that the triangle � � �,� � is an extra triangle at

distance ? from � and that � is an extra vertex at distance ? from � ; the number of edges on a shortest

& -path between the triangle ��� ��� � and a triangle of � is one. Now consider a & -path � with an extra triangle

��� �,� � at distance ? from � in a & -tree @ . For a vertex � �� ����� � & ���  of @ such that � � ���%� D � 	 � @ � for

exactly one E � ��? � &  , we say that the triangle �%��� D is an extra triangle at distance & from � and that � is

an extra vertex at distance & from � ; the number of edges on a shortest & -path between the triangle �%��� D and

a triangle of � is two. Similarly we define an extra triangle at distance
�

from � as the triangle � �%� where

� #� ����� � & ���%���  and � � ��� ��� �� , and an extra vertex � at distance
�

from � . We will use the phrase an

extra triangle with respect to � to refer to an extra triangle at distance E � ? from � . When it is clear from

the context what � is being considered, we will omit reference to � .

Claim 9 A & -tree PIG @ does not contain any extra triangles at distance
�

or more from a longest & -path �
of @ .

Proof: Otherwise, @ would contain an induced & -star contradicting it being a PIG, by Claim 8. In

particular, if � is an extra triangle that is at distance
�

from � , and if two shortest & -paths between � and a

triangle of � � � � FGFGF
��� are � � � � D and � � � � D � � , where � D and � D � � are two consecutive triangles of � , then

we know that
� �
E �
E$� ?#� � � & , since otherwise � would not have been a longest & -path of @ (clearly,

� � �
). But now a subgraph of @ induced on the vertices in � � � D � � � & ��� � D � � � & ��� � D � & � � � D � � � &

� � � D � � � &�� � � D � � � &�� � � � & ��� � � &�� � �
� is a & -star, contradicting @ being a PIG, by Claim 8. �
From Claim 9 it follows that if extra triangles with respect to a longest & -path � of a & -tree PIG exist,

then they must be at distance ? or & from � . The next Claim determines the partition to which the degree &
vertices of the distance & extra triangles of � belong. As before, we denote by � � the degree & vertex of � � ,
by ��� the degree & vertex of ��� .

Claim 10 Let @ be a & -tree PIG, let ��� � � � � FGFGF�� � be a longest & -path of @ , and let � � � . Let � be an

extra triangle at distance & from � . Denote by � the degree & vertex of � . If � is at distance & from � � and ���
(or equivalently, from ��� � � and ��� � � ) then:


 if � � � , then �2� � � ( ��� � � );


 if � � � and � � � , then either �2� , or ��� , or both are non-probe.

If � is at distance & from � D and � D � � , for
� � E � � � � ��� � � � , then � � � .

Proof: If � � � and if all three vertices � ��� � and � J are probe, than they form an all probe AT in @
contradicting Lemma 1. Let � � H and let � be at distance & from � � and ��� (or equivalently from �
� � � and

11



��� � � ). Denote by �%� � the vertices of ��� ��! �)B���� ��� � (or vertices of ��� ��� � J#� B�� � � � � � � , if ��� � � and ��� � �
are being considered). Now ��* �,+ �.-/ where * �4��� �G , + �4���  , -�� ��� � �  is an AC, so if � � � ,

since - is not independent, � � must be a non-probe, by Lemma 1.

We now consider the case when � is at distance & from � D and � D � � for
� �
E�� ��� � ��� � � � . Let �)� � �;�

be the vertices of � � � D � � � B�� � � D � , and let � � � � � be the vertices of � � � D � � �%B���� � D � � � . Now ��* �,+ �.-K is an

AC, where * � ���)��� �;�G , + � ��� � � � �  , and -
� ���% , so since * and + are not independent, � must be

a non-probe, by Lemma 1. �
We now describe some structure of & -tree PIGs that is forced by the existence of additional and extra

triangles with respect to their longest & -paths.

Claim 11 Let � > be an additional triangle at distance ? from a longest & -path � ��� � FGFGF
� � of a & -tree PIG

@ , and let � > > be an extra triangle at distance & from � . Let � > be adjacent to the triangle � D and let � > > be at

distance & from � D and � D � � of � for
� �
E�� � � � ��� � � � , let � > be the degree & vertex of ��> , let � > > be the

degree & vertex of � > > , and let � be the vertex in ��D that is not in � > . Then � > > � �� 	 � @ � .

Proof: By Claim 6, � > � � . Thus, � � � , by Corollary 2 applied to the
�
-sun induced on vertices of

� D � � & � D & � D � � &�� > . Also, � > > � � , by Claim 10. Now, since � ���2> > � � , they cannot be adjacent. �

Corollary 3 The twenty-seven & -trees presented in Figure 8 are minimal non-PIGs.

Proof: First we show that none of the graphs in Figure 8 are PIGs. Notice that vertices � and
�

in graphs
� � � � � �� J , and

� �� ! , as well as vertices � and � in graphs
� �� L � � �� � , and

� ���� violate the conditions of Claim

11 and thus these graphs are not PIGs. We reason about graphs
� D� J � � � � ! , and

���� � ��E
� � �
 ���& � as follows.

Assume they are PIGs. By Claim 6, � � � , which implies that � � � by applying Corollary 2 to the
�
-sun induced on vertices ��? � & � � �#� �

� � � ���  in
� D� J � � � � ! and

� �� � . This further implies that all neighbors of

� are in � in these graphs, and thus, if E � � �
 � �
, the graph induced on vertices

��� � �	� � ��� �	� � � �
� �IH �
� � �

in
� D� J ��� � E � and

� � � ! ��� � � � , and vertices � � � � � � � � � � � � � �IH �
� � � �
�  in

� �� � is isomorphic to graph ��!
in Figure 1 with vertex

���
( � � E � � �
 for graphs

� D� J , � � � ! , and
���� � respectively) corresponding to vertex

� of � ! and being a probe, contradicting Theorem 1; similarly, if E
� � �
 � & , then the graph induced on

vertices
�

� �
� ��� & �
� �IH � � � � in

� �� J and
� �� ! , as well as vertices

�

� �
� ��� & �IH � � � � �
� in

� �� � is isomorphic to ��!
with

�

�
� � contradicting Theorem 1. In graphs

� 	� L and
� ���� presented in Figure 8, � ��� � � by Claim 6

and Corollary 2, and thus ��� ��0 �,12 is an all-probe AT contradicting Lemma 1, where � � * , 0 � + , and

1 � - .

It is straightforward to verify that the graphs presented in Figure 8 are non-isomorphic, and that they are

minimal non-PIGs (deletion of any vertex from these graphs yields a PIG). �
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Figure 8: Twenty-seven minimal forbidden induced subgraphs for & -tree PIGs resulting from Claim 11.

Note that all graphs presented in Figure 8 apart from
� � � contain a fan of some small size. We cannot

insert a fan into
� � � in the same way we did in the other graphs in Figure 8 for the following reasons.

If we insert a � -fan next to vertex
� � , then

� 	� � would contain two trees isomorphic to � ! presented in

Figure 1, one induced on vertices H �
� � � � � � � 	 � � 	
� � � � 	
� � (or in the case that � � & , induced on vertices

H �
� � � � � � �

� �
� � � � ), and the other induced on vertices ' ��? ���$� � � � � �
� �IH . The vertex

� 	 in the first copy of

�"! in
� 	� � corresponds to the vertex � of � ! in Figure 1, and so does the vertex � in the second copy of

�"! in
� 	� � . However,

� 	 and � are adjacent in
� 	� � , which contradicts the condition of Theorem 1 that they

both have to be non-probe. No fans larger than the ones indicated in Figure 8 can be inserted into the other

graphs in Figure 8, since otherwise removal of the vertex
��( 	�) ��* would yield a non-PIG contradicting the

minimality of these graphs.

Claim 12 Let � be an extra triangle at distance ? from a longest & -path � ���5� FGFGF���� of a & -tree PIG @ , and

let � be adjacent to � D and � D � � of � , for
� �
E�� � � � ��� � � � . There do not exist in @ two extra triangles

� > � and � > � at distance & from � such that they are adjacent to different edges of � . If E � & or E � � � & ,
then:


 exactly one of � > � and � > � must have its degree & vertex a probe;


 if in addition � � H and the vertices of @ are denoted as in Figure 9 ( @ can be any one of @ ��� @ � � and

@ � in Figure 9), or if � � � and @ � @ � B;�
�  , where @ � is presented in Figure 9, then � > � � � and

� >�
� � .

Proof: Assume to the contrary. Denote by � > � the degree & vertex of � > � and by � >� the degree & vertex of � > � .
First, let

� �
E�� � � � ��� � � � . Now the subgraph
�

of @ induced on the union of the vertices of triangles

� D �	� �	� > � , and � > � is a
�
-sun, but by Claim 10 two of its AT-vertices � > � and � >� are non-probe, contradicting

Corollary 2.

Now let E ��& (or equivalently E � � � & ). Denote a subset of the vertices of @ as in Figure 9 ( @ can

be any one of @�� , @ � , and @ � ). If both � > � and � >� are non-probes, then the
�
-sun

�
induced on the set of

vertices �#& � � �
� ��� > � ��� ����>�  has two non-probe AT-vertices contradicting Corollary 2. If both � > � and � >� are

13



probes, then by Corollary 2 applied to
�

, & � � and thus ? � � ; this contradicts Claim 10 which says that

vertex ? must be a non-probe, since �2>� ��� >�
� � . Thus, one of � > � and � >� must be a probe and the other one

non-probe. Note that if � � H , we must have � > � � � and � >�
� � , since otherwise we would have

� � �
and thus ? � � , contradicting Claim 10 (another way to see this is: if we would have � >�

� � ��� > � � � , then

either ��? ��� > � � �  , or ��? ��� ��� �  , or both would form an all-probe AT contradicting Lemma 1). If � � � , in

the & -tree PIG @�� B � �  � @ �%B � �  presented in Figure 9 we can have � >�
� � ��� > � � � , in which case

� � � ,

by Claim 10. However, if � � � and in @ � B �
�  we have � >�

� � and � > � � � , then @ � B �
�  would contain

an all probe AT ��� > � ��? � �  contradicting Lemma 1; thus we must have � >�
� � and � > � � � in @ � B �

�  . �
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Figure 9: The three (valid) & -tree PIGs with two extra triangles at distance & from a longest & -path � �
�.� FGFGF � ! such that they are adjacent to the same extra triangle.

Corollary 4 The six & -trees presented in Figure 10 are minimal non-PIGs.

Proof: There are six non-isomorphic �/L s, by Observation 1. Using the same notation as in Claim 12,

since the “addition” of � �	��> � , and � > � to each of the six non-isomorphic � L s does not increase the length of

the longest path in the resulting graph, we conclude that the six & -trees presented in Figure 10 are non-

isomorphic. They are non-PIGs, since they violate the conditions of Claim 12. It is easy to see that the

removal of any vertex from
� D , E � ��?�� �GFGFGF � & �2 yields a PIG, that is,

� ��� �GFGFGF � � � J are minimal non-PIGs.
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�
�����

�
����


 � 	 
 � �
 ��� 
 � �
 	�� 
 ���
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Figure 10: Six minimal forbidden induced subgraphs for & -tree PIGs resulting from Claim 12.

Claim 13 Let � > � and � >� be the degree & vertices of two different additional triangles � > � and � > � at distance ?
from a longest & -path ����� � FGFGF���� of a & -tree PIG @ . Let � > � be adjacent to � D and let � > � be adjacent to � � of

� ,
� �
E � ��� � � & , and denote by � > � and � > � the vertices in � � � D � B � � � > � � and � � � �#��B � � � > � � respectively.

Then ��>� ��> � ����>� ��> � �
� 	 � @ � .
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Proof: If to the contrary, � > � � > �
� 	 � @ � , then at least one of � > � ��� > � must be a probe which contradicts the

fact that both of them must be non-probe: � > � � � by Claim 6, and � > �
� � by Corollary 2 since it belongs

to the
�
-sun formed by the union of triangles � � � � �	� � �	� � � � �	� > � , and since � >�

� � , by Claim 6. �

Corollary 5 The eleven & -trees presented in Figure 11 A are minimal non-PIGs.

Proof: It follows directly from Claim 13 that graphs
�
� !#�

� D
� L �

� D
� � ��E

� ��? �GFGFGF#�IH  presented in Figure 11

A are not PIGs, since vertices � � ��� � � � � , and � � in
�
� ! as well as vertices � � ��� � � � , and

� D in graphs
� D
� L and

� D
� � violate the condition described in Claim 13. It is easy to see that these graphs are minimal non-PIGs,

since removal of any vertex from any of them yields a PIG. �
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Figure 11: A. Eleven minimal forbidden induced subgraphs for & -tree PIGs resulting from Claim 13. B.
Five minimal forbidden induced subgraphs for & -tree PIGs resulting from Claim 14.

Similar to the explanation given after the proof of Corollary 3, no fans can be inserted in the graph
�
� !

in Figure 11 A, and no fan larger than a H -fan can be inserted in the other two graphs in the same figure.

Claim 14 Let � > � and � > � be additional triangles at distance one from a longest & -path � � � � FGFGF
� � of a

& -tree @ that are adjacent to triangles � D and � D � � of � respectively,
� �
E �
E � & � � � ? , such that there

exists a vertex � which satisfies ���  �
��� � D � � ��� � D � � � and ���  � � � � > � � � � � � > � � . Then @ is not a PIG.

Proof: Denote by � � the degree & vertex of � > � , by � � the degree & vertex of � > � , by � � the vertex in

� � � D ��B ��� � > � � , and by � � the vertex in ��� � D � � ��B ��� � > � � . Clearly, ��� � �
� 	 � @ � , by definition of � and � .

Assume that @ is a PIG. Since ��> � is adjacent to � D , � � E � � � �
, by Claim 6, �%� � � . Consider the

position of the vertex � � with respect to � .


 If E � &�� � � & , by Claim 6, we conclude that � �
� � . In this case, both � � and � � are non-probe,

because the subgraph of @ induced on � � � D � � � & � � � D � & � � � D � � �
& � � � > � � is a
�
-sun with an AT

vertex �%� being a non-probe, and thus by Corollary 2, �2� � � ; similarly, the subgraph of @ induced

on ��� � D � � �%& ��� � D � � �%&�� � � D � � � &�� � � > � � is a
�
-sun with an AT vertex � � being a non-probe, and thus

by Corollary 2, � �
� � . This contradicts � � and � � being adjacent.
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 If E � & � � � ? and � �
� � , the same argument as above leads to a contradiction. If � �

� � ,

then the following argument leads to a contradiction. We know that � , as a neighbor of � � � � , is

in � . Thus, since � � is also a probe, in the
�
-sun induced on ��� ��� � � � &�� � � � � � � & � � � � � &�� � � > � � ,

by Corollary 2, � � � � , where ��� is the degree & vertex of ��� . Since in the
�
-sun induced on the

vertices of � � � D � � ��& � � � D ��& � � � D � � ��& ��� � > � � we know that � ����� � � � (the proof is above), this

implies that all neighbors of � � must be probe. Consider the neighbor � D � � � � � � D � � � B � � � D � of � � .
Now vertices � � � ��������� D � �  form an all-probe AT in @ contradicting Lemma 1. �

Corollary 6 The five & -trees presented in Figure 11 B are minimal forbidden induced subgraphs for & -tree

PIGs.

Proof: The proof that these graphs
� �
� � and

�
� � are not PIG follows directly from Claim 14. For graphs

� D
� � ��E

� �#& �GFGFGF �
�2 , the proof is similar to the proof of Claim 14: it is easy to see that � ����� � � � by Claim

6 and Corollary 2, and thus all neighbors of � � are probe; also � � � � is a non-probe, by Corollary 2 applied

to the
�
-sun induced on �
������� � ��� � ����� � � � � � ��� D  , since ��� � � , and thus ��� � � �

� � as neighbors of ��� ;
now ����� � � � ��� �G form an all probe AT in

� D
� � ��E

� �#& �GFGFGF �
�2 contradicting Lemma 1.

It is easy to see that the removal of any vertex from any of these graphs makes the resulting graph PIG,

that is, these graphs are minimal non-PIG & -trees. �
Similar to the explanation given after the proof of Corollary 3, no fans can be inserted in the graph

�
� �

in Figure 11 B, and no fan larger than a � -fan can be inserted in the other graph in the same figure.

Combining Theorem 2, Claims 4, 8, and Corollaries 3, 4, 5, and 6, we have the following:

Theorem 3 There exist at least sixty-two graphs in the forbidden induced subgraph characterization for

& -tree PIGs.

5 Conclusions and Future Work

We have shown that the FISC for & -tree PIGs contains at least sixty-two graphs. It is possible that this list

is complete. However, the key point is that this FISC is not concise and thus does not seem to give much

insight into the structure of & -tree PIGs.

It is interesting to notice that thirteen out of fourteen forbidden induced subgraphs for PIGs described

in Theorem 2, Claim 4, and Claim 8 have asteroidal triples of edges, a structure introduced by Müller [13]:

three edges � � , � � , and � � of a graph � form an asteroidal triple of edges (ATE) if for any two of them

there is a path from the vertex set of one to the vertex set of the other that avoids the neighborhood of the

third edge, where a neighborhood of an edge ��� �%� is � ��� � & � ��� � . However, the remaining forty-nine
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forbidden induced subgraphs for PIGs do not have ATEs and it is not clear if other more general structures

occur in these subgraphs. Note that our Corollary 1 is similar to the previously shown result that PIGs

cannot have ATEs [3]. Other related results that have appeared recently include a FISC for tree unit PIGs

[5] and unit interval bigraphs [4]; in unit PIGs all intervals in an interval representation of a PIG are of

the same length, while unit interval bigraphs are bipartite intersection graphs of two distinct families of the

same length intervals with two vertices adjacent if and only if their corresponding intervals overlap and each

interval belongs to a distinct family.

Sheng’s FISC for tree PIGs [15] implies the existence of an efficient algorithm for solving the non-

GP recognition problem for tree PIGs. Using Shamir and Tsur’s subtree isomorphism algorithm [14] to

determine if each of the two trees in the FISC for tree PIGs (the graphs ��J and �KL presented in Figure 1) is

present in a tree @ yields an �����%� algorithm for determining if @ is a PIG, where � is the number of vertices

in @ . The problem of efficient non-GP recognition of & -tree PIGs remains open even if we know a complete

FISC for & -tree PIGs. The more general problems of non-GP recognition of � -tree PIGs for any positive

integer � , chordal PIGs, and PIGs in general remain open as well.
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