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�

November 1, 2002

Abstract

An asteroidal triple (AT) is a set of vertices such that each pair of vertices is joined by a path

that avoids the neighborhood of the third. Every AT-free graph contains a dominating pair,

a pair of vertices such that for every path between them, every vertex of the graph is within

distance one of the path. We say that a graph is a hereditary dominating pair (HDP) graph if

each of its connected induced subgraphs contains a dominating pair. In this paper we introduce

the notion of frame HDP graphs in order to capture the structure of HDP graphs that contain

asteroidal triples. We also determine the maximum diameter of frame HDP graphs.

Keywords: hereditary dominating pair graphs, AT-free graphs, dominating pairs

1 Introduction

An asteroidal triple (AT) is an independent set of vertices such that each pair of vertices is joined by

a path that avoids the neighborhood of the third. Lekkerkerker and Boland[8] introduced the class of

AT-free graphs, graphs without asteroidal triples, in their study of interval graphs and showed that a

graph is interval if and only if it is chordal and AT-free. Thus, the AT-free property seems to impose
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a “linear” structure that a chordal graph must have in order to be interval. AT-free graphs contain

such families as cocomparability, trapezoid, permutation, interval, families that all exhibit some

form of linearity. The hope of finding structural properties that capture such linearity led Corneil,

Olariu, and Stewart [1] to study the structure of AT-free graphs. One of their most interesting results

is that every connected AT-free graph has a dominating pair, a pair of vertices such that for every

path between them, every vertex of the graph is either on the path, or is at distance one from it. We

say that a graph is hereditary dominating pair (HDP) if all of its connected induced subgraphs have

dominating pairs. Clearly, AT-free graphs are HDP. However, there are graphs that are HDP, but

have asteroidal triples, such as, for example, ��� .
In this paper we study the structure of HDP graphs and determine whether various properties

of AT-free generalize to HDP graphs. We assume that all graphs are finite with no loops or mul-

tiple edges and use the standard graph-theoretic terminology compatible with [11]. A path is not

necessarily induced and standard definitions of the path length and the path size are used to denote

the number of edges and the number of vertices respectively. In addition, we say that a vertex �
intercepts a path � if � is adjacent to at least one vertex of � ; otherwise, � misses � . For a graph
�

and a pair of vertices ���
	 of
�

, ������
	�� represents the set of vertices that intercept all ���
	 -paths.

Note that �����
	�� is a dominating pair of
��� ��������� if and only if �������	�� � � .

As mentioned above, Corneil, Olariu, and Stewart [1] provided a common generalization of

interval, permutation, trapezoid, and cocomparability graphs in the sense that the linearity of their

structure is demonstrated by the existence of a dominating pair in every connected AT-free graph.

They also showed the following interesting Polar Theorem for AT-free graphs.

Theorem 1 [1] Let
�

be a connected AT-free graph with diameter at least four. There exist nonempty,

disjoint sets � and � of vertices of
�

such that �����
	�� is a dominating pair if and only if � �!� and

	"�#� .

Later, Deogun and Kratsch [3] studied weak dominating pair graphs, graphs that contain domi-

nating pairs, but their subgraphs do not necessarily have dominating pairs, and proved the following

Polar Theorem.

Theorem 2 [3] Let
�$� �%�&�'��� be any weak dominating pair graph with diameter at least five.
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Then there are disjoint sets � ��� and ��� � such that for all ���
	 � � : �����
	�� is a dominating

pair of
�

if and only if �!�!� and 	"� � .

Later we will present a similar type of polarity result for HDP graphs.

Consider the following operations on graphs. A graph
�

is a join of graphs
���

and
���

, if it

consists of the disjoint union of graphs
���

and
���

plus the edges �
	 ��� 	 � � � �� �
���"� � � ��� ��� . If
���

is a complete graph on � vertices, a graph
�

is obtained by
���

-bonding of graphs
���

and
���

if vertices of a
��

of
��

are identified with the vertices of a
���

of
���

. We say that a graph
���

is

obtained by substituting a vertex 	 of a graph
�

by a graph � , if the neighborhood in
����� � of

each vertex of � is equal to the neighborhood of 	 in
�

. A graph
���

is obtained from graph
�

by

contracting an edge 	 � � � � � � , if � � � ��� ��� � � � � � ����� � and the vertex ! of
���

that is obtained

by identifying vertices 	 and � in
�

has "#�#! � � " �$	 �&%'" ����� � �
	��
�(� .
It is easy to see that HDP graphs are closed under vertex substitution, join, and edge contraction.

They are not closed under complement and
���

-bonding, �*),+ . An example of a non-HDP graph

obtained by
� �

-bonding of two � � s is presented in Figure 1.

Figure 1: A non-HDP graph obtained by
� �

-bonding of two HDP graphs.

In this paper we first explore the structure of HDP graphs. Section 2 describes some impor-

tant structural properties of HDP graphs that contain asteroidal triples. In Section 3 we study frame

HDP graphs, a family of graphs that capture the structure of the paths that establish an AT in an HDP

graph. We determine the position of DP vertices in all frame HDP graphs, prove that the diameter

of a frame HDP graph is always less than or equal to - , and give a Polar Lemma for frame HDP

graphs. Finally, in Section 4 we examine the complexity of HDP and chordal HDP graph recogni-

tion, determine whether various properties of AT-free graphs generalize to HDP graphs, and suggest

directions for future work in this area.
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2 Structure of HDP graphs

Since AT-free graphs are HDP and they have already been extensively studied, we restrict our atten-

tion to the structure of HDP graphs that contain asteroidal triples. We call these graphs HDP � AT

graphs.

Let ������ � be defined as the set of all induced paths between vertices � and 	 in a graph
�

that avoid

the neighborhood of a vertex 
 in
�

. Henceforth, in an HDP � AT graph � with an AT � ���
	 �� � , we

will use ��� � � , ��� � � , and � �� � to denote � �� � � , � �� � � , and � ���� � respectively. In all claims in this section,

� denotes an HDP � AT graph with an AT � ���
	 ��� � , and ��� � � , ��� � � , and � �� � denote arbitrary induced

paths that establish the AT � ���
	 �� � in � .

Definition 1 Let � ���
	 �� � be an AT of an HDP graph � , and let ��� � � , and ��� � � be defined as above.

An AT vertex � is called path-disjoint with respect to 	 �� if for all paths � ����� � � and for all paths
� ����� � � , ��� � � � � � . An AT vertex � is called non-path-disjoint if there exist paths � ����� � �
and

� ��� � � � such that ��� �! � ���
� � � , where ��"� � � .

Note that if � is a non-path-disjoint vertex of an AT � ���
	 �� � of an HDP graph
�

, there may

exist vertices � � � "� � � with the corresponding paths � � � ����� � � and
��� � ����� � � , such that � � � � ��� ���

� ���
� � � � . Also, there may exist paths � � �#��� � � and
��� �#��� � � such that � � � ����� � � � .

Claim 1 Let � be a non-path-disjoint vertex of � with respect to 	 , � , and let �$� � � , ��� � � , � �� � be

induced paths establishing the AT. If any � � � ��� � � � �%� � � , where � � "� � , then � � � is an edge in � .

Proof: Assume � � � is not an edge in � , where � � is the first vertex on �&� � � in the � to 	 direction

such that � � � �%� � � . Let � � be the subgraph of � induced on �'� � � % ���)( � � , where �%�)( � � is the subpath

of �%� � � between � and � � . Denote by �%� � �)( the subpath of �&� � � between � and � � , and by �%�)( � � the

subpath of �%� � � between � � and 	 . Note that *,+.- �%�&� � �)( ��) + by assumption, */+.- �%�&�)( � � ��) + , since

��� � � avoids the neighborhood of 	 , and *,+0- ���'�)( � � � ) + , since �%� � � avoids the neighborhood of � .
Since � is HDP, � � has a DP. Denote by �,1 �32 � a DP of � � . 1 and 2 cannot both be in � � � � ,

since the path between them induced on � � � � misses � , by definition of � � � � . They cannot both be

in � � ( � � , since the path between them induced on � � ( � � misses 	 , by definition of � � ( � � . If one of

1 �32 is in � � � � ( and the other one is in � � ( � � , then any path between them induced on � � � � ( % � � ( � �
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misses 	 ; this is because 	 cannot be adjacent to a vertex in � � � �)( , since �%� � �)( and �%�)( � � are subpaths

of an induced path �&� � � and *,+.- �%�%�)( � � � ) + , and also 	 cannot be adjacent to a vertex in � �)( � � , since

���)( � � is a subpath of �&� � � which avoids the neighborhood of 	 . Similarly, if one of 1 �32 is in � �)( � �
and the other one is in �&� ( � � , then any path between them induced on ��� ( � � %�%� ( � � misses � , since �
cannot be adjacent to a vertex in ��� ( � � because �%� � � is an induced path, �&� � � ( and �%� ( � � are subpaths

of ��� � � , and */+.- �%�%� � � ( � ) + , and similarly � cannot be adjacent to a vertex in � � ( � � because �&� � � is

an induced path, �&� � �)( and �%�)( � � are subpaths of �%� � � , and *,+.- ����� � �)( � ) + . Thus, � � does not have a

DP contradicting � being HDP.
�

The following follows immediately from Claim 1.

Corollary 1 If
�

is an HDP graph, then there does not exist an AT � ���
	 �� � in
�

with paths � � � � ,
��� � � , and � �� � establishing the AT � ���
	 �� � , such that all three paths have a common vertex ! .

The following theorem is the main result of this section.

Theorem 3 If
�

is an
��� �#�!� � graph, then for any AT in

�
at least two of its AT vertices are

path-disjoint.

To prove this theorem, we first prove the following two claims.

We say that � is a frame HDP graph if for a fixed AT � ���
	 �� � of � , all vertices of � belong

to a path in ��� � � %���� � � %�� �� � . We say that this fixed AT � ���
	 �� � is the defining AT of � . Note that

a frame HDP graph may have other ATs as well. We study this subclass of HDP graphs because

they capture the difficulty of HDP graphs without containing all the tedious, easier to handle cases

as well.

Claim 2 Let �%� � � , �%� � � , � �� � be induced paths of � establishing the AT, such that � � � ��� � � � ��� � � ,
and � � "� � . Let � � � � � � be disconnected, and let � denote the connected component of � � � � � �
that contains 	 and � . Then, for every DP �,1 �32 � of � , one of 1 , 2 is in � � � and the other is in

� . Furthermore, if � is a frame HDP graph, then � � � � � ����� � � .
Proof: Let

�� be the subgraph of � induced on � � � � % � � � � % � ��� � % � 1 �32 ��%�� , where � is the

set of vertices of � that induces a path between 1 and ��� � � % �%� � � % � �� � and a path between 2 and

��� � � %!��� � � % � �� � ( � can be empty). Clearly, � 1 �32 � is a DP of
�� as well.
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Suppose both 1 �32 � � � �� . Since
�� is an induced subgraph of � , any path � from 1 to

2 in � � �� is also in � . Every vertex � of � is non-adjacent to a vertex in � � � � � � � � � � , for

the following reasons. Let � � � � � � � � � � � � . Since � ����� � � �� , we know that ���
��� � � % ��� � � % � �� � % � ��� ��� � � � � ��� � . If � � � 	 �� � , then � ���� � in � , since � ���
	 �� � is an

AT of � . If � � �%� � � � � ����� � �
	 � , or � � ��� � � � � ���
� � �� � , then � ���� � in � , since �&� � � and

��� � � are induced paths. If � � � ��� � � � 	 �� � , then � ���� � in � , since all vertices on the path � ��� �
must miss � because paths �&� � � , �%� � � , � �� � establish the AT � ���
	 �� � . � cannot be equal to � , since

� � � and � � � � � � � � � � � � . If � � ��� � and � � ��� then the connected component of

� � � � � � that contains 	 and � also contains � contradicting our assumption. Thus, every vertex of

� misses � . Assume now that � does not belong to � � � � � � � � � � , i.e., � � � . Since � � � � � �
is disconnected, there must exist a vertex � � such that � � "� � , � � � � � � , and � � does not belong

to the connected component of � � � � � � that contains 	 and � . If this is the case, then � � � �
	 ��� �
is also an AT, so the above discussion for � holds for � � as well, and therefore � � � �� � for every

�"��� . Therefore, every vertex of � misses a vertex in � � � � � � � � � � , contradicting � 1 �32 � being

a DP of � . Therefore, at least one of 1 �32 must be in � � � .

Now, suppose 1 �32 ��� � � . There has to exist a path � between 1 and 2 such that � ��� � �
for the following reason. Assume to the contrary, i.e., let 1 and 2 belong to different connected

components � � and � � of � � � . Therefore, any path � between 1 and 2 must contain a vertex

� � � . But this means that at least one of 1 �32 belongs to � contradicting our assumption. Now,

any path from 1 to 2 in � � � misses both 	 and � contradicting �,1 �32 � being a DP of H. Therefore,

not both 1 and 2 are in � � � .

It is proven that at least one DP vertex must be in � � � , but not both of them are in � � � .

Thus, one of 1 � 2 is in � � � and the other is in � . An example is presented in Figure 2.

We now prove that if � is a frame HDP graph, then � � � � � ���
� � � . Let � be a frame HDP

graph. Assume that there exists a vertex � in � � � , such that � "� ��"� � � . Let � � � �� � . Since

� is connected, � � � � . But now � � �
	 �� � is an AT of � with � � � �� � contradicting Claim 1.

Therefore, � � � � � . Now, either � � � � , or � �	�� � . If � � � � , then � belongs to a path in

��� � � that is not an induced path, which contradicts the definition of ��� � � . If � ���� � , then � does

not belong to any path in � � � � %���� � � %�� �� � , which again contradicts the definition of a frame HDP

graph.
�
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Figure 2: An illustration of Claim 2.

Claim 3 If � is non-path-disjoint with respect to 	 �� , and 	 is non-path-disjoint with respect to �����
in a graph � with an AT � ���
	 �� � , then � is not an HDP graph.

Proof: Let � be non-path-disjoint with respect to 	 �� , and 	 be non-path-disjoint with respect

to ���� in � , and let � � � ��� � � � �%� � � and 	 � � � � � � � � �� � , � "� � � and 	 "� 	 � , for some paths

��� � � � � � � � � ��� � � , �%� � � ����� � � , and � �� � ��� �� � . Assume that �%� � � "� � � � � . Consider the subgraph

� � of � induced on �&� � � % ��� � � %� �� � . Note that the � � �
	 -path induced on �&� � � is of length at least

+ , since �%� � � is induced and 	 misses �&� � � . Similarly, the � � ��� -path induced on �&� � � and the 	 � �� -
path induced on � �� � are both of length at least + . Since � is HDP, � � has a DP. Denote by �,1 �32 �
a DP of � � . Where are 1 and 2 positioned in � � ? As we have seen in the second paragraph of the

proof of Claim 1, 1 and 2 cannot both be on ��� � � , cannot both be on �&� � � , and cannot both be on

� ��� � . If one of 1 and 2 is an internal vertex of � � � � and the other one is an internal vertex of � � � � ,
then we have the following. Without loss of generality let 1 be an internal vertex of � � � � , and let

2 be an internal vertex of � � � � . Note that both 1 and 2 are different from � � , since otherwise they

would both be on �&� � � , or they would both be on �&� � � . If 1 	 � � , then the 1 � 2 -path induced on

� 1 �% � ��� � % �%� � � misses � contradicting �,1 �32 � being a DP of � � . If 1 	��� � , then the 1 �32 -path

induced on �&� � � %���� � � misses 	 contradicting �,1 �32 � being a DP of � � . Thus, one of 1 and 2 cannot

be an internal vertex of �'� � � while the other one is an internal vertex of ��� � � . Similarly, one of 1
and 2 cannot be an internal vertex of �'� � � while the other one is an internal vertex of � �� � , and also

one of 1 and 2 cannot be an internal vertex of ��� � � while the other one is an internal vertex of � �� � .
Therefore, � � does not have a DP contradicting � being HDP. Thus, we must have � � � � � � � � � .
An illustration is presented in Figure 3.

We now prove that if there exists � � � �%� � � � ��� � � , � � "� � , and there exists 	 � � ��� � � � � �� � ,
7
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Figure 3: An illustration for Claim 3.

	 � "� 	 , for some paths � � � � � � � � � , � � � � � � � � � , and � �� � � � �� � , then � is not an HDP graph.

Assume to the contrary. Thus, � is HDP. By Claim 1, � � � and 	 	 � are edges in � . First note that

� � "� 	 � . This is because if � � � 	 � , then 	 intercepts path �&� � � in � contradicting the fact that

� ���
	 �� � is an AT in � .

Let
�� be the subgraph of � induced on �'� � � %"��� � � %"� �� � . �� is a frame HDP graph. Let �,1 �32 �

be a DP of
�� . By Claim 2,

�� � � � � � ����� � � contains a DP vertex, without loss of generality say

1 � �� � � � , where � � is the connected component of
�� � � � � � that contains 	 and � . By the same

reasoning, 2 � �� � � � � � 	 �
	 � � , where � � is the connected component of
�� � � 	 � � that contains �

and � . Consider the path joining 1 and 2 that is induced on � 1 �32 � %�� � ( � � ( , where �%� ( � � ( is a subpath

of �%� � � between � � and 	 � . This path misses � , since � ���
	 ��� � is an AT, contradicting �,1 �32 � being a

DP of
�� .
�

Since Claim 3 shows that an AT of an HDP graph cannot have two non-path-disjoint vertices,

Theorem 3 follows directly from it. From the definition of frame HDP graphs and this theorem, we

can conclude that there exist only two types of frame HDP graphs: those with no non-path-disjoint

vertices, and those with exactly one non-path-disjoint vertex in their defining ATs. This motivates

the following definitions.

Definition 2 A frame HDP graph is called a � 2,2,2 � graph if its defining AT � ���
	 ��� � has no non-

path-disjoint AT vertices. A frame HDP graph is called a � 1,2,2 � graph if its defining AT � ���
	 ��� �
has exactly one non-path-disjoint AT vertex.

Henceforth we will assume that in a � � � + � + � graph with the defining AT � ���
	 �� � , vertex � is

non-path-disjoint. The following section examines the structure of frame HDP graphs. We now
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state the last result of this section which is used to prove some structural properties of frame HDP

graphs.

Claim 4 Let � 1 � 2 � be a DP of an AT � HDP graph � . 1 and 2 cannot both belong to paths in � � � � ,
cannot both belong to paths in � � � � , and cannot both belong to paths in � ��� � .

Proof: Without loss of generality assume that 1 and 2 both belong to ��� � � . Since the subgraph in-

duced on the vertices in � � � � is connected, there is a path between them that misses � , contradicting

�,1 �32 � being a DP.
�

3 Frame HDP graphs

In this section we first establish results common to �
+ � + � + � and � � � + � + � graphs. Then we describe

some structure of �
+ � + � + � and � � � + � + � graphs which leads to the description of the position of DP

vertices in frame HDP graphs. Finally, we determine the diameter of frame HDP graphs and give

the Polar Lemma for frame HDP graphs.

The following definitions and notation are used throughout this section to describe frame HDP

graphs more easily. We call a path of size bigger than � a long path. Also, in a � � � + � + � graph with

an AT � ���
	 �� � and a non-path-disjoint AT vertex � , we define ��� � � � ��� � � to be the set of paths

� ����� � � such that there exists some path
� ��� � � � and � � ��� � � � . For a fixed � � � "#��� � , we

let � � (� � � ��� � � � denote the set of paths � � � � � � such that there exists some path
� ��� � � � and

� � � � � ���
� � � . � � � � and � � (� � � are defined similarly. We denote by � �)( � � the set of subpaths of

paths in � � (� � � between � � and 	 , and we define � �)( � � similarly.

A �
+ � + � + � graph is called two-long-sided if it has long paths � � � � � ��� � � and ��� � � � ��� � � ; a

� � � + � + � graph is called two-long-sided if it has long paths ���)( � � ��� �)( � � and ���)( � � ��� �)( � � . Simi-

larly, a �
+ � + � + � graph is called one-long-sided if it has a long path � � � � ��� � � � and both � � � � and

� �� � consist of �	� s only; a � � � + � + � graph is called one-long-sided if it has a long path � � ( � � �
� � ( � �
and both � � ( � � and � �� � consist of �	� s only. A frame HDP graph is called long sided if it is either

one-long-sided, or two-long-sided. Finally, a �
+ � + � + � graph is called no-long-sided if � � � � � � � � �
and � �� � consist of � � s only; a � � � + � + � graph is called no-long-sided if � �)( � � ��� �)( � � and � ��� � con-

sist of � � s only.

9



Lemma 1 Let � 1 � 2 � be a DP of a frame HDP graph � .

(1) If � is a two-long-sided �
+ � + � + � graph with long paths ��� � � �#��� � � and �%� � � � ��� � � , then it is

not the case that one DP vertex of � is an internal vertex of �$� � � and the other one is equal to � .
By symmetry, it is not the case that one DP vertex of � is an internal vertex of � � � � and the other

one is equal to 	 .
(2) If � is a two-long-sided �
+ � + � + � graph, then 1 and 2 cannot both belong to the union of the

internal vertices of �&� � � and �%� � � , where �%� � � and ��� � � are long paths in ��� � � and ��� � � respectively.

(3) If � is a � � � + � + � graph, then 1 and 2 cannot both belong to the union of the vertices of ���)( � �
and ���)( � � , where ���)( � � and ���)( � � are paths in � �)( � � and � �)( � � respectively.

Proof: Assume to the contrary.

(1) Without loss of generality assume that 1 � � and 2 � ��� � � � � ���
	 � . Since � �%� � � ��� � , 2 cannot

be adjacent to both � and 	 . If 2�� �� � , then the path from 1 to 2 induced on � �� � % � �� � does not hit

� contradicting �,1 �32 � being a DP, where � ��� � is the subpath of �%� � � between 	 and 2 . If 2&	 �� � ,

then the path from 1 to 2 induced on �'� � � % ��� � � does not hit 	 contradicting � 1 �32 � being a DP,

where �%� � � is the subpath of �&� � � between � and 2 .

(2) Without loss of generality let 1 be an internal vertex of � � � � and let 2 be an internal vertex of

��� � � . Note that 1 cannot be adjacent to both � and 	 , and that 2 cannot be adjacent to both � and

� , since � � � � � ��� � and � � � � � ��� � . If 1 	 � � and 2 � � � , then the path from 1 to 2 induced on

� 1 	(� % � ��� � % � 2 � � does not hit � contradicting �,1 �32 � being a DP of � , where � �� � is any path in

� �� � . If one of these two edges 1 	 and 2 � does not exist, i.e. without loss of generality if 1 	 �� � ,

then the path from 1 to 2 induced on ��� � ��% ��� � � does not hit 	 contradicting �,1 �32 � being a DP,

where ��� � � is the subpath of �&� � � between 1 and � , and �&� � � is the subpath of �&� � � between � and

2 . Therefore, 1 and 2 do not both belong to the union of the internal vertices of � � � � and �%� � � .
(3) Without loss of generality let 1 � � �)( � � and 2 � ���)( � � . Clearly, either 2 � � � , or 2 � ���)( � � � � � � � .
If 2 � � � (and 1 � ��� ( � � ), then both 1 and 2 belong to � � � � contradicting Claim 4. If 2 � � � ( � � �
� � � � , then we have the following cases:

(i) if 1 � � � , then both 1 and 2 belong to � � � � contradicting Claim 4.

(ii) if 1 �����)( � � � � � � � , then the path between 1 and 2 induced on ��� � � %� �� � %� � � � does not hit � ,
where ��� � � is the path between 1 and 	 induced on � �)( � � , � �3� � is the path between � and 2 induced
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on ���)( � � , and � �� � is any path in � �� � ; note that no vertex on � � � � and no vertex of � �3� � is adjacent

to � , since ���)( � � and ���)( � � are induced paths.
�

Claim 5 All paths in � �� � of a two-long-sided �
+ � + � + � graph are � � s.

Proof: Assume to the contrary. Thus, there exists � ��� � ��� ��� � such that � � ��� � ��� � . So, � � � � � � � � ,
� � � � � � � � , � � �� � � � � for some � � � � � � � � � and � � � � �#� � � � . Let

�� be the subgraph of � induced

on � � � � %!� � � � % � �� � . Let � 1 �32 � be any DP of
�� . Where could 1 and 2 be positioned?

By Lemma 1 (2), 1 and 2 do not both belong to the union of the internal vertices of � � � � , � � � � ,
and � �� � . Therefore, one of 1 �32 must be in � ���
	 �� � . Without loss of generality let 1 � � . Then

by Claim 4, 2 �� �&� � � % ��� � � . Therefore, 2 � � �� � � � 	 �� � .
2 cannot be adjacent to both 	 and � , since � � �� � ��� � . Without loss of generality assume that

2 � �� � . Now the path between 1 and 2 induced on � �� � % ��� � � does not hit � contradicting �,1 �32 �
being a DP, where � �� � is the subpath of � �� � between 	 and 2 . Thus,

�� does not have a DP con-

tradicting � being HDP.
�

In the following claim, let � be a � � � + � + � graph with an AT � ���
	 �� � , a non-path-disjoint vertex

� , and a vertex � � � ��� � � � �%� � � , � "� � � , for some �%� � � ����� � � and �%� � � ����� � � . Let �%�)( � � be the

subpath of �%� � � between � � and 	 , �%�)( � � the subpath of �&� � � between � � and � , and let � �� � be any

path in � �� � .

Claim 6 In a � � � + � + � graph � , for any �"� �&� ( � � � � � � � and any 	 � �%� ( � � � � � � � , � 	 �� � .

Proof: Assume to the contrary. Take a subgraph
�

� of � induced on �&� � � %���� � � . Note that
�

� also

has an AT because the path �'� � � avoids the neighborhood of � , �'� � � avoids the neighborhood of 	 ,
and the path from 	 to � induced on � ��� � % � � 	 � %� � � � , where � ��� � is the subpath of �&� � � between 	
and � , and � � � � is the subpath of �&� � � between 	 and � , avoids the neighborhood of � . (Note that no

vertex in �%�)( � � % ���)( � � � � � � � is adjacent to � since all paths in � � � � % ��� � � are induced.) But now,

vertices � , 	 , and � in
�

� are all non-path-disjoint contradicting Theorem 3.
�

The following claim is used in the proof of Claim 8, the analogue of Claim 5 for � � � + � + � graphs.

Let � be an HDP � AT graph with an AT � ���
	 ��� � and a non-path-disjoint vertex � . Let � � � �%� � � �
��� � � �
� "� � � for some induced paths �&� � � �#��� � � and ��� � � � ��� � � . If � � � � � � is disconnected into
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a connected component containing 	 and � and not containing � , and some other connected com-

ponents, then we say that � is 1-disjoint with respect to � . Let � denote the connected component

of � � � � � � containing 	 and � . Then it is easy to see that the following holds for � .

Claim 7 Let � 1 �32 � be a DP of � . If 1��� � , then 2 �� �'� � � % ��� � � for any path �%� � � � ��� � � , and

any path �%� � � ����� � � .

Claim 8 All paths in � �� � of a � � � + � + � graph � are � � s.

Proof: Assume to the contrary. Let � �� � be a path in � �� � that is of length bigger than + . Let
��

be the subgraph of � induced on �'� � � % �%� � � % � �� � , for some �%� � � ����� � � and ��� � � ����� � � such that

��� � � � �%� � � � � ���
� � � . Clearly,
�� is 1-disjoint with respect to � . Let �,1 �32 � be a DP of

�� . One of

1 �32 must be in � ����� � � , since otherwise the path between them induced on � � �� � � � ���
� � � would

miss � . (Note that no vertices in � � ��!� � � ���
� � � are adjacent to � , since
�� is 1-disjoint with respect

to � .) By Claim 7, 2 � � �� � � � 	 �� � in
�� . Since by assumption � �� � is not a � � , 2 is not adjacent to

at least one of 	 �� . Without loss of generality let 2&	 �� � . But now, the path induced on � � � � % � � � � ,
where � � � � is the subpath of � �� � between 2 and � , is an 1 �32 -path missing 	 contradicting � 1 � 2 �
being a DP of

�� .
�

The following claim will be used to prove Claim 10 below, which explains the relationship be-

tween long paths in a two-long-sided �
+ � + � + � graph.

Claim 9 In a two-long-sided �
+ � + � + � graph � , a vertex of distance
� ) + from � on � � � � �#� � � � ,

cannot be adjacent to a vertex of distance � ) + from � on � � � � ��� � � � .

Proof: Assume to the contrary. Denote by 	 a vertex of distance
�

from � on � � � � , for
� ) + , and

by � a vertex of distance � from � on �'� � � , for � ) + , with 	 � � � . Note that 	 "� 	 , because

otherwise 	 could not be adjacent to any vertex on ��� � � , since 	 is an AT vertex. Similarly, �#"� � .
Consider the subgraph

�� of � induced on �&� � � % �%� � � . Since 	 � � � ,
�� has an AT � ���
	 ��� � with

AT vertices 	 and � non-path-disjoint, contradicting Theorem 3.
�

Claim 10 For all paths � � � ��� � � � that are long paths of a two-long-sided �
+ � + � + � graph � , and

for all � � � � � � ��������� and for all � � � � � � ���
��� � , where ��� � "#��� �'�!� and ��� � " ��� � � � ,

� � � � �����
� � � , or � � � ������
� � � .
12



Proof: Assume to the contrary. Let �'� � � be any long path in ��� � � , and let � � be the neighbor of

� on �%� � � . Let � � � � � � ���
��� � , � � � � � � ���
��� � be such that � � �� � �����
� � � and � � �� � �����
� � � .
Note that � � � � �� � and � � � � �� � since � is a �
+ � + � + � graph; that is, if � � � � � � , then � would

not be path-disjoint. Let
�� be the subgraph of � induced on � % � % �'� � � .

Consider the graph
�� . � � � �
� � �� � is an AT of

�� for the following reasons. The path from � �
to � � induced on ����� � � % ����� � � misses � , where ���	� � � is the path between � � and 	 induced on � ,

and ����� � � is the path between � � and 	 induced on
�

; this is true by the definition of ��� � � . The path

between � and � � induced on �%� � � % ��� � ��� misses � � , where �%� � �	� is the path between � � and � induced

on � ; this is true because � � �� � �����
� � � , � � � � �� � (since � is �
+ � + � + � ), and also, by Claim 9, � �
is not adjacent to any non-neighbor of � on ��� � � . Similarly, the path between � and � � induced on

��� � � % ��� � ��� misses � � , where �%� � ��� is the path between � � and � induced on
�

. Therefore, � � � �
� � �� �
is an AT of

�� and � � �� � , contradicting Claim 1.
�

Other claims similar to the above claim hold for � � � + � + � graphs as well [10].

From the above we can see that frame HDP graphs have a rich and interesting structure. This

structure enables us to determine the position of dominating pair vertices in all frame HDP graphs,

as described in the following two theorems.

Theorem 4 Let

 � � 
 � � 
 � be the sets of mid-points of � � s of ��� � � � � ��� � and ��� � � respectively of a

�
+ � + � + � graph � . Note that either or both of

 �

and

 � could be empty. DP vertices of � satisfy

the following. Either:

(a) one DP vertex is in "�� �� and the other one is in

 �

, or

(b) one DP vertex is in "�� 	� and the other one is in

 �

, or

(c) one DP vertex is in "�� �� and the other one is in

 � .

Each of these three types of DPs can occur.

Proof: Let �,1 �32 � be a DP of � . First assume that � is a two-long-sided �
+ � + � + � graph with all

paths in � � � � and all paths in � � � � being long. Let � � � � be any path in � � � � , let � � � � be any path in

��� � � , and let � �� � be any path in � ��� � of � .

By Claim 4, 1 and 2 cannot both belong to �'� � � , cannot both belong to �'� � � , and cannot both

belong to � �� � . By Lemma 1 (2), 1 and 2 cannot belong to the union of the internal vertices of � � � �
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and ��� � � . Let � ��� �%� � � � "#��� � . It is not the case that one of 1 �32 (say 1 ) is the internal vertex of

� ��� � and the other one (namely 2 ) belongs to ��� � � � � ���
� � �
	 � since the path from 1 to 2 induced

on � 1 	 ��% � �� � does not hit � contradicting �,1 �32 � being a DP, where � �� � is the subpath of �&� � �
between 2 and 	 . Similarly, it is not the case that one of 1 � 2 is in � �� � � � 	 �� � and the other one

belongs to �%� � � � � ���
� � � �� � , where � � � � �%� � � � " ��� � . By Lemma 1 (1), it is not the case that one

of 1 �32 is equal to � and the other one belongs to ��� � � � � ���
	 � . Similarly, it is not the case that one

of 1 and 2 is equal to 	 and the other one belongs to ��� � � � � ���� � . Therefore, the only possible

position for � 1 � 2 � is that one of them is in "�� �� and the other one is in

 �

.

Next we assume that � is two-long-sided with a short path in a long side. Without loss of gen-

erality, let ��� � � contain a short path. Following the above argument, we conclude that the only two

options for positions of 1 and 2 are that one of them is in "�� �� and the other one is in

 �

, or that

one of them is in " � �� and the other one is in

 � . Similar arguments prove the theorem for one-

long-sided and no-long-sided �
+ � + � + � graphs.

Examples showing that each of these three types of DPs can occur are given in Figure 4.
�

� �

� ���

��� ��� �

�

� ���

�

�� ���

�	� ���

��
 ���

Figure 4: Examples of positions of dominating pairs of �
+ � + � + � graphs. 1 and 2 are DP vertices.

In a � � � + � + � graph, denote by
�
� � � � the set of all induced paths between � and 	 that avoid "#�,� �

and do not share vertices with paths in � � � � . Define
�
� � � � similarly. We use the following simple

observation in the proof the next theorem.

Observation 1 For any HDP graph
�

and any of its DPs � 1 �32 � , if � is an induced connected

subgraph of
�

containing 1 and 2 , then �,1 �32 � is a DP of � .

Proof: Assume that � 1 �32 � is not a DP of � . Then, since � is connected, there exists a path �
from 1 to 2 in � that misses a vertex ! ��� . However, � also belongs to

�
and misses ! in G,

contradicting � 1 � 2 � being a DP of
�

.
�
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Theorem 5 Let

 � � 
 � � 
 � be the sets of mid-points of � � s of

�
� � � � �3� �� � and

�
� � � � respectively of a

� � � + � + � graph � . Note that either or both of

 �

and

 � could be empty. DP vertices of � satisfy

the following. Either:

(a) one DP vertex is in "�� �� and the other one is in

 �

, or

(b) one DP vertex is in "�� 	� and the other one is in

 �

, or

(c) one DP vertex is in "�� �� and the other one is in

 � .

Each of these three types of DPs can occur.

Proof: Denote by �,1 �32 � a DP of � . By Claim 4, 1 and 2 cannot both belong to ��� � � , cannot

both belong to � � � � , and cannot both belong to � �� � . By Lemma 1 (3), 1 and 2 cannot both belong

to the union of vertices of � � ( � � and ��� ( � � , where ��� ( � � and ��� ( � � are any paths in � � ( � � and � � ( � �
respectively.

If
�
� � � � "��� and

�
� � � � has a long path, then it is not the case that one of 1 �32 (say 1 ) is equal

to � and the other one (namely 2 ) is an internal vertex of a long path
�
� � � � � �

� � � � . To see this

consider the subgraph
�� of � induced on

�
��� � � % ��� � � % � ��� � , for any path ��� � � � � � � � and any

� ��� � ��� �� � (such paths ��� � � and � �� � exist by definition of � ). Now,
�� is a connected two-long-

sided �
+ � + � + � graph with an AT � ���
	 ��� � containing 1 �32 , and thus, by Observation 1, Lemma 1

(1) is contradicted. It is easy to see that
�� is a �
+ � + � + � graph, since no internal vertex of

�
��� � � can

be adjacent to an internal vertex of � � � � (otherwise we would have a contradiction with definitions

of
�
� � � � and � � � � , or

�� would not be HDP).

If
�
� � � � "��� and it has a long path, then it is not the case that one of 1 �32 (say 1 ) is an internal

vertex of some long path
�
� � � � � �

� � � � and the other one (namely 2 ) is an internal vertex of some

path ��� � � � � � � � for the following reason. Similar to the above, take the subgraph
�� of � induced

on
�
��� � � %���� � � % � �� � , for any � �� � � � ��� � . Now,

�� is a connected two-long-sided �
+ � + � + � graph

containing 1 �32 , and thus, by Observation 1, Lemma 1 (2) is contradicted.

If both
�
� � � � "��� and

�
� � � � "��� , and if both have long paths, then it is not the case that one of

1 �32 (say 1 ) is an internal vertex of some long path
�
� � � � � �� � � � and the other one (namely 2 ) is an

internal vertex of some long path
�
� � � � � �� � � � for the following reason. Similar to the above, take

the subgraph
�� of � induced on

�
��� � � % �� � � � % � ��� � , for any � �� � ��� �� � . Now,

�� is a connected two-

long-sided (2,2,2) graph containing 1 �32 , and thus, by Observation 1, Lemma 1 (2) is contradicted.
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Similar to the proof of Theorem 4, it is not the case that one of 1 � 2 is in

 �

and the other one

is in non-neighborhood of � on a long path in ��� � � , or in ��� � � , it is not the case that one of 1 � 2 is in

 �

and the other one is in non-neighborhood of 	 on a long path in ��� � � , and it is not the case that

one of 1 �32 is in

 � and the other one is in non-neighborhood of � on a long path in ��� � � .

The only options for DP vertices 1 � 2 are that either one of them is in "�� �  and the other one is

in

 �

, or that one of them is in " � �� and the other one is in

 � , or that one of them is in " � 	� and

the other one is in

 �

.

Examples showing that each of these three types of DPs can occur are given in Figure 5.
�

� ���� ��� � � ��� �� ���

� ���

���

�

� �

�

� � � �
� 
 ��� ���

Figure 5: Examples of positions of dominating pairs of � � � + � + � graphs. 1 and 2 are DP vertices.

Also, if we fix the position of DP vertices in a frame HDP graph, their position determines the

structure of the graph [10]. For example, it is easy to see that in a no-long-sided �
+ � + � + � graph

with an AT � ���
	 ��� � , a DP � 1 � 2 � , and sets

 � � � � � � � + � � � of mid-vertices of ��� � � �3��� � � and � �� �

respectively, if 1 � 
 � and 2 � 
 �
, where

� "� � and
� �#� � � � � + � � � , then every vertex in


��
, for

� � � � � + � � � � � � �$�(� , must either be adjacent to 1 or to 2 .

We now turn to proving that the diameter of a frame HDP graph is less than or equal to - . To

prove this, we first establish the following two claims and two lemmas.

Claim 11 In a two-long-sided �
+ � + � + � graph � , all vertices of distance
� ) � from � on �$� � � , if

they exist, must be adjacent to all vertices in



, where



is the set of mid-vertices of all paths in

� �� � of � . By symmetry, the same holds for the vertices of distance
�

from � on �$� � � .

Proof: Assume to the contrary. Thus, there exists a vertex 	 of distance
�

from � on � � � � , where
� ) � , that is not adjacent to a vertex � � 


. Note that 	 is not adjacent to � � , where � � is the

neighbor of � on �%� � � , and �%� � � is a long path in � � � � , which exists since � is a two-long-sided
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�
+ � + � + � graph. Let � �� � ��� �� � be the path that contains � . Consider the subgraph
�� of � induced

on ��� � � % ��� � � % � �� � . Denote by � 1 �32 � a DP of
�� . From Theorem 4, one of � 1 �32 � is in " � �� and

the other one is in



in
�� .

It is not the case that one of 1 and 2 is equal to � and the other one belongs to � ���
� � � , since

otherwise the path between them induced on � � � � % ��� � � would miss 	 . Similarly, it is not the case

that one of 1 and 2 is equal to � and the other one belongs to � � � � � " ��� � for the following reason.

Assume to the contrary. Thus, without loss of generality assume that 1 � � and 2 � �$� � � � " ��� � .
Since 2�� � � , the path from 1 to 2 induced on � � � � % �'� � � % � � 2 � misses 	 . Thus,

�� does not

have a DP contradicting � being HDP.
�

Claim 12 In a � � � + � + � graph � , every non-neighbor of � � in a long path in � � ( � � must be universal

to



. By symmetry, the same holds for � �)( � � .

Proof: Assume to the contrary. Thus, there exists a non-neighbor � of � � on a long path �&� ( � � �
� � ( � � that is not adjacent to a vertex � � 


. Let
�� be the subgraph of � induced on �'� ( � � %�� � � %

� ��� � % �%� ( � � , where �%� ( � � is any path in � � ( � � , and � � � �� � . Let �,1 �32 � be a DP of
�� . Since

�� is

1-disjoint with respect to � , by Claim 2, one DP vertex of
�� is in

�� � � and the other one is in � ,

where � is the connected component of
�� � � � � � containing 	 �� . Without loss of generality assume

1 � �� � � � � ���
� � � (note that since
�� is a frame HDP graph, by Claim 2,

�� � � � � ���
� � � ).
Then, by Claims 7 and 8, 2 is the midpoint of � �� � in

�� , i.e., 2 � � . Since �� �&�)( � � � � � � �
	 � , by

Claim 6 and the assumption that � � � �� � , � is not adjacent to any vertex in ���)( � � . Now, the path

from 1 to 2 induced on � 2 � � %"�&�)( � � % � � � does not hit � contradicting �,1 �32 � being a DP of
�� .
�

Lemma 2 Let
�

be a �
+ � + � + � graph. Then
� � ��� � � ��� - .

Proof: By Claim 5, � �� � consist of � � s only. Let � � ��� �
� � ���	�	���
��
 be a path in ��� � � %#��� � � ,
where ��� � � .

By Claim 11, all vertices � � , for
� ) � are adjacent to all mid-vertices � of paths in � �� � . Hence,

� ��� � ���!���� for all � � of � . This implies
� ��� � �
� � ��� - for � � �
� � in � .

Now consider any other path
� � � �� �
� � � �	�	�	���
� � � in ��� � � % ��� � � , where � �� � � . All that remains

to be shown is that
� ��� � ��� �� ��� - for all � � �
� �� contained in � � � correspondingly. By Claim 11,
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� ��� � �
� �� � � - for
� ) � , � ) + , as well as for

� ) + , � ) � . Since � � � � �� � � , � ��� � �
� �� � � - ,
� ��� �� �
� � �� - for all � , and

� ��� � ��� � � ��� + . Consequently,
� � ��� � � ��� - . �

An example of a �
+ � + � + � graph with diameter - is presented in Figure 6.

x

y zm

x’

x’’

x’

x’’’ x’’’

x’’

1

1

1

2

2

2

Figure 6: An example of a �
+ � + � + � graph with diameter - and diametral points � and 	 .

Lemma 3 Let
�

be a � � � + � + � graph. Then
� � ��� � � ��� - .

Proof: Similar to the proof of Lemma 2, using Claim 8 and Claim 12.
�

An example of a � � � + � + � graph with diameter - is presented in Figure 7.

y zm

1

1

2

2

x’

x’’

x’’’

x’’

x’’’

x

Figure 7: An example of a � � � + � + � graph with diameter - and the diametral points � and 	 .

Theorem 6 The diameter of a frame HDP graph is less than or equal to - .

Proof: Follows directly from Lemmas 2 and 3.
�

Deogun and Kratsch’s Polar Theorem holds only for weak dominating pair graphs with diameter

at least - [3]. Since we have shown that the diameter of a frame HDP graph is always less than

or equal to - , their Polar Theorem works only for those frame HDP graphs with diameter - . The

following holds for all frame HDP graphs.
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Lemma 4 (Polar Lemma) Let
�

be a frame HDP graph of diameter at least � , and let
�

be the

set of all dominating pairs of
�

with � � being the set of all vertices of
�

. There exists a partition

of � � into sets � and
�

such that ��� ��� � � �
implies � � � and � � � .

Proof: Let � ���
	 �� � be an AT of
�

. Denote by

 �

the set of mid-vertices of all � � s in � �� � , by

 �

the set of mid-vertices of all � � s in ��� � � , and by

 � the set of mid-vertices of all � � s in ��� � � . The

only way the above partition would not be possible is if � �,� �	 �
� � 	 �
 �
� �,
 �������� �
. This can never

happen in frame HDP graphs of diameter at least � for the following reasons. From Theorems 4

and 5 we know that in frame HDP graphs for each DP either one DP vertex is in "�� �� and the other

one is in

 �

, or one is in " � 	� and the other one is in

 �

, or one is in "�� �� and the other one is in

 � . Assume that � � � �	 �
� �,	 �
 ��� �,
 ���� ��� �

. Without loss of generality let � � " � �� and 	�� 
 �
.

By Theorems 4 and 5 since �,	 �
 � � �
and since 	 � 
 �

, we know that 
 must be in "�� �� . But now

we see that �,
 ���� � �
and 
 �� both belong to "�� �� contradicting Theorems 4 and 5; note that "�� ��

does not dominate since
� � ��� � � � ) � . �

The other direction of Lemma 4 does not hold for frame HDP graphs of diameter smaller than

- . An example is presented in Figure 8, where
� � � �������!�
� ��	 � ! � �
� �#! � � �#��� , � � � � ��	(� , ���

� ��� ! � � , and ��	 �
� � �� �
.

P

Qx

w2

zy
m

Figure 8: A counter example for the reverse of Lemma 4.

4 Further Results and Future Directions

We now describe some open problems in this area, and also study whether various properties of

AT-free graphs generalize to HDP graphs.

Notice that HDP graph recognition is in coNP. It is easy to find a short proof that a graph
� �

������� � is not HDP by showing that a particular induced subgraph has the property that for every
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pair of vertices 	��
� , there is some other vertex ! and a 	��
� -path missing ! . The complexity of

HDP graph recognition is one of the topics for future research; possibly it is coNP-complete.

Deogun and Kratsch [3] characterized chordal HDP graphs in the following way.

Theorem 7 [3] A chordal graph
�

is HDP if and only if it does not contain the graphs
� �

and
��� �,- ) � � as induced subgraphs (see Fig. 9).

A1 Bn

1 2 3 n+1

Figure 9: Forbidden induced subgraphs for chordal HDP graphs.

We use this characterization to find a polynomial time algorithm for recognizing chordal HDP

graphs.

Theorem 8 Chordal HDP graphs can be recognized in polynomial time.

Proof: A polynomial time algorithm for recognizing chordal HDP graphs first determines if a

graph
� � ������� � is chordal by using Rose, Tarjan, and Lueker’s linear time algorithm [4]. If

�
is chordal, then the algorithm checks in time � � � � ����� if

�
contains a subgraph

���
from Theorem

7. If
�

does not contain a subgraph
���

, then the algorithm determines in polynomial time, whether
�

contains a subgraph
� � , for

� ) � . This is done as follows. First all ATs of
�

are determined.

Then for each AT and each ordering � ���
	 �� � of the AT vertices a set � � "#��� � � � " ��	�� %�" � � � � is

determined. For each � � � a set � � " ��� � � � "�� �� % � " ��	��0� " � � � � � is defined. Now, it is checked

whether 	 and � are in the same connected component of the graph induced by � %�� 	 �� � in
�

and,

if this is the case, a corresponding 	 �� -path � is determined. It follows by the construction, that

the graph induced by � ��� �
� forms an induced subgraph
� � of

�
. Reversely, if

�
contains a

� � , it

follows immediately that the algorithm will find it. If the algorithm exhausts all ATs � ���
	 �� � and

all AT vertices failing to find a
�	�

, then
�

is a chordal HDP graph. An example illustrating this

Algorithm is presented in Figure 10.
�
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Figure 10: An example illustrating the
� � � - ),� � recognition algorithm.

4.1 AT-free results that do not extend to HDPs

In addition to proving the existence of a dominating pair and characterizing AT-free graphs, Corneil,

Olariu, and Stewart [1] showed how to augment an arbitrary AT-free graph to obtain a new AT-free

graph. They called a vertex pendant if it is of degree one, and they said that a vertex � of an AT-

free graph
�

pokable if the graph
� �

obtained from
�

by adding a pendant vertex adjacent to � is

AT-free. They referred to a dominating pair �,1 �32 � as pokable if both 1 and 2 are pokable vertices,

and they proved that every connected AT-free graph contains a pokable dominating pair, and that

every connected AT-free graph which is not a clique contains a nonadjacent pokable dominating

pair. They used this result to prove the Composition Theorem for AT-free graphs, which says that for

any two AT-free graphs
���

and
���

with pokable dominating pairs ��� � �
	 � � and ��� � �
	 � � respectively,

the graph
�

constructed from
���

and
���

by identifying vertices � � and � � is AT-free. Unfortunately,

this is not true for HDP graphs. Figure 11 gives an example of an HDP graph with no pokable DPs.

Part (a) of the figure shows a graph
�

with its DP vertices 1 and 2 , and parts (b) and (c) show that

the addition of a pendant vertex 	 to 1 makes
�

non-HDP, since the deletion of vertices 2 �
�����
� � �
� �
from

� % �
	 � yields a non-HDP graph, and that the addition of a pendant vertex ! to 2 makes
�

non-HDP, since the deletion of vertices 1 �
� � ��� � from
� % �
!�� yields a non-HDP graph.

Notice that even when pokable DP vertices of HDP graphs exist, such as degree + vertices of

� -suns, their identification does not yield an HDP graph (see Figure 12). Thus, our intuition is that

the structure of frame HDP graphs is very close to that of HDP graphs. However, this remains a

major open question.

Recently, Corneil, Olariu, and Stewart discovered a linear time algorithm for finding dominating
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Figure 11: A counter example to pokability of DP vertices of an HDP graph.
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Figure 12: A counter example to the Composition Conjecture of HDP graphs; by removing vertices
� � + and � from

�
we get a � � � + � + � graph with an AT � � �	 ��
 � , a non-path disjoint vertex � , and � �

is not an edge, contradicting Claim 1.

pairs in AT-free graphs [2]. Their algorithm is based on two sweeps of the lexicographic breadth-

first search (LBFS) algorithm: let 	 be the last vertex of an arbitrary LBFS, and let � be the last

vertex of any LBFS starting at 	 ; then ��	 �� � is a pokable DP of
�

. In addition, they described how

to use this algorithm to find in linear time all dominating pairs in a connected AT-free graph with

diameter greater than or equal to three, even though there may be � � � � �
�
� dominating pairs. To

see why this algorithm does not work for HDP graphs, first recall Gallai’s definition of a knotting

graph of
�

[5].

Definition 3 For a given graph
� � ������� � , the corresponding knotting graph is

� � �  � �%��� �'��� � ,
where ��� and ��� are defined as follows. For each vertex � of

�
, there are copies � � �
� � �	� � � �
� ��� in
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� � , where
� � is the number of connected components of " ����� , the complement of the graph in-

duced by " ����� . For each edge � ! of � there is an edge � � ! � in � � , where ! is contained in the
� ���

connected component of " ����� and � is contained in the � ��� connected component of "#�#! � .

Using this definition, Köhler characterized a dominating pair of a graph
�

as a pair of vertices

�,� �	 � of
�

such that each common neighbor � of � and 	 in
�

has two different copies in the knotting

Graph
� � �  that are adjacent to a copy of � and 	 , correspondingly [7]. We use this characterization

to first prove that there exists an infinite family of HDP graphs with all of their DPs adjacent, and

then to show that there exists an infinite family of HDP graphs with a non-adjacent DP for which

the 2-sweep LBFS algorithm does not find DP vertices. To prove this we define a graph
����

in the

following way. Consider a circular order of the vertices of
� �

. A graph that consists of a
� �

and

an independent set � of - vertices each of which is adjacent to - � + consecutive vertices of the
� �

and no two vertices of � are adjacent to the same - � + consecutive vertices of
� �

, is called a
� ��

graph, where - ) � . Examples of a
� ��

graphs for - � � � - are given in Figure 13. Notice that
� �
� is HDP and that its only DPs are �,1 �32 � and � �1 � �2&� , which are both adjacent DPs. Also, notice

that
� �
� is not HDP.

~

α

βα

β
~

Figure 13:
� �
� and

� �
� graphs.

Claim 13
� ��

graphs, for - ) � , are HDP and all of their DPs are adjacent.

Proof: Consider the circular order of the
� �

vertices in
� ��

. Every two non-consecutive vertices

on the cycle of
� �

in
� ��

are DP vertices, and these are all the DP vertices of
� ��

. This is because

the knotting Graph
� � � ��  consists of a

� �
and an independent set of vertices (an example for

- ��� is presented in Figure 14), and therefore, by Köhler’s [7] characterization of DPs, these are

all the DP vertices of
�	��

.
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Now we prove that
�	��

graphs, for - )�� are HDP, i.e., that all connected induced subgraphs of
� ��

are HDP. Since the only DP vertices of
� ��

are the non-consecutive vertices of the clique cycle,

if these vertices are present in an induced subgraph � of
� ��

, they are DP vertices of � . Therefore,

we only need to prove that induced subgraphs of
� ��

that contain either
�

vertices of the clique, or

� vertex of the clique, or + consecutive vertices of the clique cycle, are HDP. Clearly,
���� � � �

is an

independent set and therefore an HDP. If an induced subgraph � of
� ��

contains only one vertex

of the clique, then � is a star
� � � ��� � , which is HDP. If an induced subgraph � of

� ��
contains two

consecutive vertices of the clique cycle, then � is equal to one of the following graphs:

(a) paths � � ��� � ��� � ,
(b) a set of � to - � � triangles with a common edge,

(c) a set of � to -�� � triangles with a common edge and one extra vertex adjacent to a vertex of the

common edge,

(d) a set of � to - � � triangles with a common edge and two extra vertices, one adjacent to one

vertex of the common edge and the other vertex adjacent to the other vertex of the common edge.

All of the graphs (a)-(d) are AT-free and therefore HDP. Therefore, every
� ��

, for - ) � , is HDP.
�

Figure 14: The knotting graph
� � � ��  .

Claim 14 There exists an infinite family of HDP graphs with a non-adjacent DP for which the 2-

sweep LBFS algorithm does not find DP vertices.

Proof: Consider graph
� ��

, - ) � , with an extra vertex 	 universal to all vertices of � , and call

such a graph
����

. Denote by � � + � � �	� � � ��- the vertices on the cycle of
� �

in
����

, and by � �	 ��
 �	���	�
vertices of the independent set � of

����
. Using the knotting graph technique, we determine that all

DPs of
� ��

consist of the vertex 	 and a vertex of the cycle of
� �

, i.e., all DPs of
� ��

are �$	���� �
�
�#	�� + �
� �#	�� � �
���	�	��� �#	��-�� .
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To prove that
� ��

, - ) � , are HDP, we need to prove that all connected induced subgraphs of
� ��

have DPs. Since �#	�� � �
� �$	�� + ��� �#	�� � �
�	�	��� � �$	���-�� are all DPs of
� ��

, it is enough to consider only

connected induced subgraphs of
� ��

that do not contain these DPs. That is, we need to determine

that the subgraphs
� �� � �
	 � , � �� � � � � + �	� � � ��-�� , and

� �� � � � � + �	� � � ��- � 	 � of
� ��

are HDP. Clearly,
� �� � �
	 � � � �� , and therefore they are HDP, by Claim 13.

� �� � � � � + �	� � � �-&� is a star
� � � � and

therefore is HDP. Also,
� �� � � � � + �	� � � �- � 	 � � � which is an independent set and therefore is HDP.

Therefore, all
� ��

, - )�� , are HDP.

Clearly, every LBFS that starts at a vertex � � � and first visits the neighbors of � that are

the clique vertices, i.e., in � � � + ��� � � �-�� , ends at a vertex in � which cannot be a DP vertex of
� ��

.

Therefore, a 2-sweep LBFS cannot be used to find DPs of
� ��

, for - ) � . That is, there exists an

infinite family of HDP graphs that have a non-adjacent DP for which the 2-sweep LBFS algorithm

does not find DP vertices.
�

Note that for a graph
�

that is either a
� ��

, or a
� ��

, - )�� , and for a DP � 1 �32 � of
�

, "�� 1  %
"�� 2  � � � � � . Since for these graphs the 2-sweep LBFS algorithm did not find DPs, the question

is whether the 2-sweep LBFS algorithm finds DPs for HDP graphs for which " � 1  %�"�� 2  "� � � � � ,
for all DPs � 1 �32 � . However, it can be seen that adding a clone ! of the vertex 	 in

� ��
, - ) � ,

creates an infinite family of HDP graphs for which all DPs are non-adjacent, "�� 1  %�"�� 2  "� � � � �
for all DPs � 1 �32 � , and still the 2-sweep LBFS does not find DPs.

4.2 A hierarchy above permutation graphs

It was mentioned before that HDP graphs are not closed under complements. An example is � �
which is not HDP, but whose complement is AT-free, and therefore HDP. This motivates the defi-

nition of coHDP graphs, the complements of HDP graphs. Notice that HDP � coHDP "� � , since

both � � and � � are HDP, and therefore, � � � � � � � � coHDP. Remember that permutation graphs

are those graphs which are at the same time comparability and cocomparability [9] and that � � is

not a permutation graph. Also, if we call coAT-free the complements of AT-free graphs, we know

that AT-free graphs strictly contain cocomparability graphs [6], coAT-free graphs strictly contain

comparability graphs, and � � belongs to AT-free � coAT-free, while ��� does not. Clearly, AT-free

� HDP and coAT-free � coHDP, and we have seen that ���!� HDP � coHDP. Thus, it might be
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interesting to look into the hierarchy of graph classes in the intersections AT-free � coAT-free, and

HDP � coHDP (see Figure 15).

coHDP HDP

coAT-free AT-free

comparability cocomparability

permutation

( ��� )

( ��� )

HDP � coHDP

AT-free � coAT-free

Figure 15: A hierarchy of graph classes around HDP and coHDP graphs.
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