
CSC 120 (R Section)— Lab Exercise 11

This is a non-credit exercise, which you do not hand in.
You may work on your own or together with another student, as you please.

In this lab, you will warm up with general practice writing a simple function.

Then, you will modify the set of functions that take an object-oriented approach to drawing
things used as an example in the Week 10 lectures, changing the way that boxes are
represented, and then adding a new class of object.

Practice writing a simple function.

Write a function called multiply_above_diagonal that takes as its only argument a square
matrix (you don’t have to check this), and returns a single number that is the product of
all the elements in the matrix that are above the diagonal (ie, all those in positions where
the column index is greater than the row index). Note that the product of zero factors is
defined to be one.

Here is the correct output for two test cases:

> Y <- matrix (1:16, nrow=4, ncol=4)

> Y

[,1] [,2] [,3] [,4]

[1,] 1 5 9 13

[2,] 2 6 10 14

[3,] 3 7 11 15

[4,] 4 8 12 16

> multiply_above_diagonal(Y)

[1] 1228500

> multiply_above_diagonal(matrix(5,nrow=1,ncol=1))

[1] 1

Extending the example from Week 11’s lecture.

Next, you should extend the example of object-oriented programming in the Week 10 lecture
slides, by changing the representation of box objects, and adding a new “plus” object.

The functions from the lecture slides are available at

http://www.cs.utoronto.ca/~radford/csc120/drawfuns.r

and the script that was used (in slightly different form) to produce the results in the lecture
slides is at

http://www.cs.utoronto.ca/~radford/csc120/drawscript.r

As a first exercise, modify the functions for the “box” class to represent a box by a list
whose elements are the same as the arguments of the new_box function. This may require



changing new_box, draw.box, rescale.box, and translate.box. But it should not require
any change to the R code that uses boxes, in the script file.

As a second exercise, try to add a new “plus” object, which looks like a plus sign. You
should write a new_plus function that creates an object of class "plus", given the x and
y coordinates of the centre of the plus (where the two lines cross) and how far the ends
of the plus extend away from the centre (the same for the horizontal and vertical lines).
You should also write a draw.plus function to provide a draw method. You should then
be able to try drawing plusses. Once you have this working, you can write rescale.plus

and translate.plus methods for objects of this class, and try them out. You should also
be able to call the smaller function from the lecture with a plus object as its argument.

Finally, you can try to implement a new generic function for these objects, called rotate90,
that rotates an object by 90 degrees counterclockwise. You may find it convenient to define a
default method for this generic function (which would need to be called rotate90.default).
For which classes of objects could you just let the default method be used? For which will
you need to write a special method for rotate90?


