
CSC 120: Computer Science for the Sciences (R section)

Radford M. Neal, University of Toronto, 2016

http://www.cs.utoronto.ca/∼radford/csc120/

Week 8

Operations on Vectors

We’ve seen before that R can do many operations on entire vectors (or matrices),

not just on single numbers. For example, we can add 1 to all elements of a vector:

> u <- c(3,5,1,9)

> v <- u + 1

> v

[1] 4 6 2 10

Instead of the statement v <- u + 1 we could have written a loop:

> v <- u

> for (i in 1:length(v)) v[i] <- v[i] + 1

> v

[1] 4 6 2 10

But v <- u + 1 is easier to write, easier to read, and also faster in R.

This isn’t magic, though — there still is a loop hidden within the implementation

of R, and in some other languages writing a loop yourself would be just as fast.

R has many other facilities for doing operations on vectors, matrices, or lists

without having to write a loop, which often are also faster.

Replacing Loops with “apply” Functions

Functions in the “apply” family take as arguments both a data structure and a

function to apply to parts of the data structure — an example of “functional

programming”, using functions to construct more complex operations.

The lapply and sapply functions can operate on a list, returning a list or vector

of results of applying a given function to each element of the list:

> L <- list ("abc", 123, TRUE)

> lapply(L,is.numeric) # Returns a list

[[1]]

[1] FALSE

[[2]]

[1] TRUE

[[3]]

[1] FALSE

> sapply(L,is.numeric) # Tries to convert list to vector

[1] FALSE TRUE FALSE

More Arithmetic on Vectors and Matrices

As we saw before, all the basic arithmetic operations can be done on vectors, or

on a vector and a scalar (or on matrices, or on a matrix and a scalar):

> u <- c(3,5,1,9)

> v <- c(10,100,1000,10000)

> u * v

[1] 30 500 1000 90000

All the usual mathematical functions also can be applied to vectors or matrices:

> v <- c(10,100,1000,10000)

> log10(v)

[1] 1 2 3 4

> M <- matrix(1:9,nrow=3,ncol=3)

> sqrt(M)

[,1] [,2] [,3]

[1,] 1.000000 2.000000 2.645751

[2,] 1.414214 2.236068 2.828427

[3,] 1.732051 2.449490 3.000000

Vector Comparisons and Other Functions Giving Logical Values

The comparison operators (<, >, <=, >=, ==, !=) also work with vectors (and

matrices), producing a vector (or matrix) of TRUE, FALSE, or NA values:

> u <- c(3,5,1,9,NA,3)

> u < 4

[1] TRUE FALSE TRUE FALSE NA TRUE

Many functions that produce logical values also operate on vectors (and matrices):

> is.na(u)

[1] FALSE FALSE FALSE FALSE TRUE FALSE

But some functions produce a single logical value that pertains to the entire

vector, not many values, for each individual element:

> v <- c("fred","mary","bert")

> is.numeric(v)

[1] FALSE

> is.character(v)

[1] TRUE

Logical Operators

There are operators that operate on logical values, returning logical values. For

scalar operands, they are defined as follows:

! Logical “not”: TRUE if its operand is FALSE, FALSE if its operand is TRUE.

& Logical “and”: TRUE only if both operands are TRUE.

| Logical “or”: TRUE if either operand is TRUE.

These can be applied to logical vectors, with the operations done on each element

in turn:

> a <- c (TRUE, TRUE, FALSE, FALSE)

> b <- c (TRUE, FALSE, TRUE, FALSE)

> a & b

[1] TRUE FALSE FALSE FALSE

> a | b

[1] TRUE TRUE TRUE FALSE

> !a

[1] FALSE FALSE TRUE TRUE

The Short-Circuit Logical Operators

The logical operators are useful in if and while conditions. Also, because we

want only a single logical value for such a condition, we can use “short-circuit”

versions of the “and” and “or” operators, written as && and ||, which don’t

evaluate their second operand if it’s not needed to determine the result.

An example:

if (percent < 0 || percent > 100)

stop("percent must be between 0 and 100")

The stop happens if either percent is less than 0 or percent is greater than 100.

We could use | rather than ||, but if we use ||, R doesn’t bother to check

whether percent is greater than 100 if it already knows percent is less than 0.

Using short-circuit operators can be faster, and also can avoid some spurious

errors, as below:

if (length(x) == 1 && x > 0) cat("x is OK!\n")

If we use & rather than && above, we get an error if length(x) is 0, and a warning

if length(x) is greater than 1. These are avoided with &&.

Operations on Numeric Vectors that Produce One Number

R has several functions that take a numeric vector or matrix as their argument,

and return a single number as their value, including:

sum finds the sum of all elements.

prod finds the product of all elements.

mean finds the mean (average) of all elements.

For example:

> u <- c(3,5,1,9)

> sum(u)

[1] 18

This does pretty much the same thing as the following loop:

> s <- 0

> for (x in u) s <- s + x

> s

[1] 18

However, sum(u) is faster, and in some cases more accurate.

Operations on Logical Vectors that Produce One Logical Value

R also has two functions that take a logical vector as their argument, and return

a single logical value:

any Return TRUE if any elements are TRUE

all Return TRUE if all elements are TRUE

Looked at another way, any finds the “or” of all elements in its argument, and

all finds the “and” of all elements.

Here’s an example of the use of these functions:

check_age <- function (df) {

if (any(is.na(df$age)))

stop("Age is missing for some people")

if (!all (df$age >= 0 & df$age < 150))

stop("Age is invalid for some people")

}

Can you think of a way to replace the second if condition with one that uses any

rather than all?

Indexing Vectors and Matrices with Numeric Vectors

As mentioned before, you can get a subset of vector elements by indexing it with

a vector of indexes.

> v <- c(66,33,99,10,12)

> v[c(3,1,2,1)]

[1] 99 66 33 66

> v[2:4]

[1] 33 99 10

Note: v[[2:4]] does not do the same thing — [[gets a single element from a

vector or list. Since R treats a single number the same as a vector of length one,

v[2] and v[[2]] do (almost) the same thing when v is a numeric vector.

You can also index with a vector of negative numbers. This gets you all elements

except those whose indexes are in the index vector (negated):

> v[-3]

[1] 66 33 10 12

> v[c(-1,-length(v))]

[1] 33 99 10

Vector indexes can also be used as matrix row/column indexes (eg, M[1:10,-2]).

Re-Ordering a Vector, Matrix, or Data Frame

We can change the order of elements in a matrix, or of rows in a matrix or data

frame, using an index that is a permutation of the possible indexes.

One use is to change the order to be increasing in some variable. The order

function produces the permutation needed to do this. For example:

> heights_and_weights

name height weight

1 Fred 62 144

2 Mary 60 131

3 Joe 71 182

> by_weight <- order (heights_and_weights$weight)

> by_weight

[1] 2 1 3

> new <- heights_and_weights [by_weight,]

> new

name height weight

2 Mary 60 131

1 Fred 62 144

3 Joe 71 182

Indexing Vectors and Matrices with Logical Vectors

You can also get a subset of vector elements using a logical vector as an index.

Normally, the logical vector is the same length as the vector it indexes. The

elements selected are those for which the corresponding index element is TRUE.

> v <- c(66,33,99,10,12)

> v[c(TRUE,FALSE,FALSE,TRUE,FALSE)]

[1] 66 10

> v[v<40]

[1] 33 10 12

Logical vectors can also be used to index rows or columns of a matrix:

> M <- matrix(1:6,nrow=2,ncol=3)

> M

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> M[,c(TRUE,FALSE,TRUE)]

[,1] [,2]

[1,] 1 5

[2,] 2 6

Selecting a Subset of Rows in a Data Frame

Another use of logical indexes is in selecting a subset of rows in a data frame for

which the variables have certain values.

For example, here we select only people with weight greater than 140:

> heights_and_weights

name height weight

1 Fred 62 144

2 Mary 60 131

3 Joe 71 182

> heights_and_weights [heights_and_weights$weight > 140,]

name height weight

1 Fred 62 144

3 Joe 71 182

And here we get only people with weight greater than 140 and height less than 70:

> heights_and_weights [heights_and_weights$weight > 140

+ & heights_and_weights$height < 70,]

name height weight

1 Fred 62 144

Using Vector Indexes to Replace Elements in a Vector

Numeric and logical vectors can be used as indexes when we replace elements in a

vector rather than get them out.

For example:

> v <- c(66,33,99,10,12)

> v[c(2,4,1)] <- c(100,200,300)

> v

[1] 300 100 99 200 12

> v[c(TRUE,FALSE,FALSE,FALSE,TRUE)] <- c(800,900)

> v

[1] 800 100 99 200 900

Using Vector Indexes to Replace Elements in a Matrix

Vector indexes can be used to replace matrix elements too:

> M

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

> A

[,1] [,2]

[1,] 10 30

[2,] 20 40

> M[2:3,c(TRUE,FALSE,TRUE)] <- A

> M

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 10 5 30

[3,] 20 6 40

Some Design Flaws in R

R is a very useful language, but like all programming languages, it’s not perfect.

Indeed, some of R’s features are poorly designed, making it too easy to write code

that doesn’t always work.

I’ll talk about two of these here:

• You can’t get an empty vector when making a sequence with an expression

like i:j.

• R will sometimes convert matrices to plain vectors when you don’t want it to.

The Problem of Reversing Sequences

The : operator will produce either an increasing sequence or a decreasing

sequence, depending on whether the first operand is less or greater than the

second:

> 1:10

[1] 1 2 3 4 5 6 7 8 9 10

> 10:1

[1] 10 9 8 7 6 5 4 3 2 1

This may seem convenient, but it’s a bad idea. When you use : in a program, you

need to be sure which sort of sequence you’re going to get!

An Illustration of Why Reversing Sequences are Bad

Here’s a function that is supposed to return a modified square matrix in which all

the elements above the diagonal have been set to one:

ones_above_diagonal <- function (M) {

n <- nrow(M)

for (i in 1:n)

for (j in (i+1):n)

M[i,j] <- 1

M

}

Here’s what happens when we try to use it:

> ones_above_diagonal(matrix(0,nrow=4,ncol=4))

Error in M[i, j] <- 1 : subscript out of bounds

(The exact error message depends on the version of R used.)

Why the error? We need to get a zero-length sequence from (i+1):n when i

equals n. But instead we get a sequence of length two, containing n+1 and n.

How could we fix it?

The Problem of Dropped Dimensions

When you index a matrix with a single row or column index, R converts the

result to a vector, rather than keep it as a matrix.

Sometimes this is what you want:

> M <- matrix(1:6,nrow=2,ncol=3)

> M[1,2]

[1] 3

> M[1,2:ncol(M)]

[1] 3 5

But sometimes not:

> A <- M[,2:ncol(M)]

> A[1,1]

[1] 3

> B <- M[2:nrow(M),]

> B[1,1]

Error in B[1, 1] : incorrect number of dimensions

Stopping R From Dropping Dimensions

You can tell R to not drop dimensions from a matrix with the drop=FALSE option:

> M <- matrix(1:6,nrow=2,ncol=3)

> M[,2:ncol(M)]

[,1] [,2]

[1,] 3 5

[2,] 4 6

> M[2:nrow(M),]

[1] 2 4 6

> M[,2:ncol(M),drop=FALSE]

[,1] [,2]

[1,] 3 5

[2,] 4 6

> M[2:nrow(M),,drop=FALSE]

[,1] [,2] [,3]

[1,] 2 4 6

But adding drop=FALSE all the time makes everything longer and messier. So it’s

tempting not to. But then you may get unexpected bugs once in a while. . .

