CSC 2541, Small exercise \#4, due in class February 28, worth 5% of the mark

Consider a Bayesian linear basis function model for the response associated with a single input, x, in which the basis functions are $\phi_{0}(x)=1$ and $\phi_{j}(x)=\gamma \exp \left(-\left(x-\mu_{j}\right)^{2} /\left(2 s^{2}\right)\right)$, for $j=1,2,3, \ldots$ Let the prior for β_{0} be $N\left(0, \omega_{0}^{2}\right)$, and let the prior for all the β_{j} for $j=1, \ldots, M-1$ be $N\left(0, \omega_{j}^{2}\right)$. (All these β_{j} are independent in the prior.)

Suppose that for a particular M, we independently draw μ_{j} for $j=1, \ldots, M-1$ from the uniform distribution on the interval $(-\sqrt{M} / 2, \sqrt{M} / 2)$, and that we set all ω_{j}^{2} for $j>0$ to $1 / \sqrt{M}$.

Find the limit of the covariance function that this setup defines as M goes to infinity. In other words, the limit, for any x and x^{\prime}, of

$$
K\left(x, x^{\prime}\right)=\sum_{j=0}^{M-1} \omega_{j}^{2} \phi_{j}(x) \phi_{j}\left(x^{\prime}\right)
$$

