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Monte Carlo Methods

A very general approach to Bayesian computation — applicable even to very

high-dimensional problems — is to obtain a sample of points from the posterior

distribution, and use it to make Monte Carlo estimates.

A single sample point will contain values for all the unknown parameters,

hyperparameters, latent variables, missing data values, etc. — everything not

known, except what we don’t care about or have integrated away analytically.

We use this sample to approximate expected values by averages over the sample

points. For example, from K values, θ(1), . . . θ(K), for a parameter, sampled from

P (θ | data), we can approximate the predictive probability that Y = 1 by

P (Y = 1 | data) =

∫
P (Y = 1 | θ) P (θ | data) dθ

≈
1

K

K∑

k=1

P (Y = 1 | θ(k))

If the θ(k) values are independent, the approximation converges to the true value

as K → ∞, by the Law of Large Numbers.



Monte Carlo with Independent Points

Monte Carlo is simplest when we can directly sample K independent points from

the distribution of interest.

Let’s denote the probability/density function of interest as π(x), and suppose

that we are interested in the expectation of some function a(x). Note that x is

typically high dimensional.

The Monte Carlo estimate based on K sample points, x(1), . . . , x(K), will be

a =
1

K

K∑

k=1

a(x(k))

If the variance of a(x) is finite, we can get an indication of the accuracy of this

estimate from its standard error — an estimate of the standard deviation of a in

imaginary repetitions of the estimation procedure. This standard error is

S.E. ā =
√

s2
a/K

where s2
a is the sample variance of a:

s2
a =

1

K−1

K∑

k=1

(
a(x(k)) − a

)2



Application: General Expectations for Conjugate Models

Efficient direct sampling of independent points from the posterior is usually

possible only for models with conjugate priors. Typically, posterior means of

parameters can be found analytically for such models, so Monte Carlo isn’t

necessary.

However, even for a conjugate model, the expectation of some complicated

function of the parameters may be an integral that isn’t analytically tractable.

But a Monte Carlo estimate based on independent points can be found as long

as the posterior can be efficiently sampled.

This is what really makes conjugate models tractable, even when the dimension

of the parameter space is high.



Importance Sampling

When there is no efficient way to sample independently from π(x) we can instead

sample independently from some “similar” distribution, π∗(x), and estimate the

expectation of a(x) by

âIS =

K∑

k=1

a(x(k))
π(x(k))

π∗(x(k))

K∑

k=1

π(x(k))

π∗(x(k))

Note that we don’t need the normalizing constants for π or π∗, since they will

cancel in the ratio above.

As long as π∗(x) > 0 for all x where π(x) > 0, this converges to the expectation

of a(x) under π as K → ∞. We can see this since

1

K

K∑

k=1

π(x(k))

π∗(x(k))
→ Eπ∗

[ π(x)

π∗(x)

]
=

∫ [ π(x)

π∗(x)

]
π∗(x) dx = 1

1

K

K∑

k=1

a(x(k))
π(x(k))

π∗(x(k))
→ Eπ∗

[
a(x)

π(x)

π∗(x)

]
= Eπ[a(x)]



Accuracy of Importance Sampling

Here’s the importance sampling estimate again:

âIS =

K∑

k=1

a(x(k))
π(x(k))

π∗(x(k))

K∑

k=1

π(x(k))

π∗(x(k))

If we know the normalizing constants for π or π∗, we could omit the denominator,

since it converges to one. But that estimator is less accurate, so we shouldn’t.

We can get a standard error for âIS by taking the square root of an estimate of

its variance:

Var(âIS) ≈

K∑

k=1

( π(x(k))

π∗(x(k))
(a(x(k)) − âIS)

)2

[
K∑

k=1

π(x(k))

π∗(x(k))

]2

This is discussed in my paper on “Annealed Importance Sampling”.



Usefulness of Importance Sampling

The usefulness of importance sampling depends crucially on whether a good π∗

can be found, that can be efficiently sampled, and leads to âIS being accurate.

Accuracy will be poor if π∗(x) is very small in a region with non-negligible

probability under π — then few points will be sampled from a region that

actually is important to estimating Eπ(a(x)).

Worse, it’s possible that no points will be sampled from this region — then the

estimate will be inaccurate, but the standard error obtained may not indicate

that it is inaccurate.

But you can’t just make π∗ be very broad — then most points sampled will be

wasted, with π(x) being very small.

Direct use of importance sampling for Bayesian inference is usually practical only

in moderate dimensions (eg, 10), and then only after significant fiddling to get a

good π∗ (eg, some heavy-tailed distribution located at the posterior mode).



Obtaining a Sample by Simulating a Markov Chain

When the posterior distribution is too complex to sample from directly, we can

instead simulate a Markov chain that will converge (asymptotically) to the

posterior distribution.

States from the latter portion of this Markov chain will come (asymptotically)

from the posterior distribution, but they will be dependent.

We can still use these states to make Monte Carlo estimates, but we need to

adjust the standard error to account for the dependence.

Finding such a Markov chain sounds hard, but fortunately there are general

schemes that make this possible even for difficult problems. This Markov chain

Monte Carlo (MCMC) approach is therefore very general. MCMC can also be

very slow in some circumstances, but despite this, it is often the only viable

approach to Bayesian inference using complex models.



An Example of Markov Chain Sampling

Here is a Markov chain run for a Gaussian process classification model, showing

the four hyperparameters controlling the relevance of the four input variables:
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The chain starts in a state that isn’t typical of the posterior distribution, but by

about iteration 100, the distribution seems to have stabilized. We would use

iterations from there on to make predictions.

Note the high autocorrelation for the two hyperparameters with low values.

Fortunately, the exact degree of irrelevance of largely irrelevant inputs isn’t crucial.



Fundamental Requirements for Markov Chain Monte Carlo

Suppose we want to sample from a distribution π(x) by simulating a Markov

chain — eg, π could be the posterior, x the parameter vector. For notational

simplicity, we’ll assume here that x is discrete, but everything generalizes.

We need to find transition probabilities, T (x, x′), for the chain to move from

state x to state x′ that will lead to convergence to π.

A fundamental requirement for this is that the transitions leave π invariant :

π(x′) =
∑

x

π(x) T (x, x′), for all x′

This says that if we ever reached the distribution π at some time in the

simulation, the distribution for the next state would also be π.

We also need the chain to be ergodic — roughly speaking, it shouldn’t get

trapped in one part of the state space.

These two conditions are enough to guarantee that Monte Carlo estimates based

on states from the chain converge to the correct expectations with respect to π.



Proving Invariance From Detailed Balance

Our first challenge is to find transition probabilities that leave π invariant.

One way is to show that the transitions satisfy a stronger condition known as

detailed balance:

π(x) T (x, x′) = π(x′) T (x′, x), for all x and x′

If this is true, the chain is also said to be reversible with respect to π.

It’s easy to prove that detailed balance implies invariance:

∑

x

π(x) T (x, x′) =
∑

x

π(x′) T (x′, x)

= π(x′)
∑

x

T (x′, x) = π(x′)

The converse is not true: nonreversible chains that leave π invariant are possible

(and many are useful).



Combining Transitions

If the transitions T0(x, x′) and T1(x, x′) both leave π invariant, then so does any

mixture of the two, define for some α ∈ [0, 1] by

Tα(x, x′) = (1 − α)T0(x, x′) + αT1(x, x′)

The transition defined by first applying T0 and then applying T1 will also leave

π invariant. If we view transition probabilities as a matrix, this combined

transition matrix is just T0T1.

Two applications:

– We can combine several transitions each of which changes only part of the

state (leaving the rest unchanged). As long as each part is changed by at

least one of these transitions, the combined transition may be ergodic.

– We can combine several types of transitions in the hopes that at least one of

them will work well. It may be that we need one type in one part of the

state space, another type in another part.



The Metropolis Algorithm

The original MCMC method, applied to a statistical physics problem by

Metropolis, et al. in 1953, is still widely used, because it is very widely applicable.

A Metropolis algorithm does a transition from state x to state x′ as follows:

1) A “candidate”, x∗, is proposed according to some probabilities S(x, x∗),

satisfying the symmetry condition, S(x, x∗) = S(x∗, x).

2) This candidate, x∗, is accepted as the next state with probability

min
[
1, π(x∗)/π(x)

]

If x∗ is accepted, then x′ = x∗. If x∗ is instead rejected, then x′ = x.

Transitions defined in this way leave π invariant, since they satisfy detailed

balance — for any x and x′ with x 6= x′:

π(x) T (x, x′) = π(x) S(x, x′) min
[
1, π(x′)/π(x)

]

= S(x, x′) min
[
π(x), π(x′)

]

= π(x′) S(x′, x) min
[
1, π(x)/π(x′)

]
= π(x′) T (x′, x)



More on the Metropolis Algorithm

Since π enters only in the ratio π(x∗)/π(x), it’s enough to be able to evaluate

some function proportional to π(x) — the normalizing constant cancels.

Each Metropolis update (after the first) requires only one evaluation of π, if the

value of π(x) was saved from the previous update.

The choice of proposal distribution, S, is important, since it determines whether

the chain is ergodic, and if so, whether it converges rapidly, and moves around

the distribution rapidly after convergence.

Random walk proposals are usually used, with the distribution of x∗ being

centred at the current state.



Two Types of Metropolis Algorithms

Multivariate Metropolis: Proposals change all components of x.

Single-variable Metropolis: Proposals change only one component of x. Updates

for each component are applied in sequence (or for each update a component is

chosen at random).

Single-variable updates are especially attractive when incremental computations

allow π(x′) to be quickly found if π(x) was previously computed, and x′ differs

from x in only one component. Then a sequence of updates for all components

may be almost as fast as a single update of all components at once.

Proposals that change just a few components of x are also possible, of course,

and may sometimes benefit from incremental computation.



Example: Logistic Regression

I’ll demonstrate multivariate Metropolis on the posterior distribution for a

logistic regression model of n independent observations, (xi, yi), with xi ∈ R2

and yi ∈ {0, 1}:

P (yi = 1 |xi, β0, β1, β2) = [1 + exp(−β0 − β1x1 − β2x2)]
−1

with independent priors for the parameters as follows:

β0 ∼ N(0, 102)

β1 ∼ N(0, 1)

β2 ∼ N(0, 1)

This model does not have a conjugate prior, nor are there any low-dimensional

sufficient statistics. (You need to look at all the observations to compute the

likelihood.)

Otherwise, it’s pretty easy though. The posterior is unimodal.

We’ll use Metropolis to sample from the posterior distribution given 200

observations.



Data for the Logistic Regression Example
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Metropolis for the Logistic Regression Example

I samped from the posterior distribution using a Metropolis algorithm with

proposal distribution in which the proposed β0, β1, and β2 are independently

drawn from normal distributions with means equal to their current values and

standard deviations of 0.3.

I did 3000 iterations. Trace plots are shown on the next slide.

The rejection rate for proposals was 71%

I discarded iterations before 100 as “burn in” — perhaps not from the right

distribution because the chain might not have (almost) converged yet.

For the later plots, I took every 50th iteration from 100 on, so that there would

be no duplicates from rejections (and so that the plot doesn’t have too many

points/lines). Such “thinning” is not necessary when computing numerical

estimates of expectations (though it might sometimes be necessary to save

memory).



Trace Plots of Metropolis for Logistic Regression Example
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Scatterplots of Posterior for Logistic Regression Example

beta0

0.6 0.8 1.0 1.2 1.4

−
0.

2
0.

0
0.

2
0.

4

0.
6

0.
8

1.
0

1.
2

1.
4

beta1

−0.2 0.0 0.2 0.4 0.8 1.2 1.6

0.
8

1.
2

1.
6

beta2



Posterior of Separators for Logistic Regression Example
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