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Problem: Density Estimation

We have observed data, y1, . . . , yn, drawn independently from some unknown

distribution, whose density we wish to estimate. The observations yi may be

multidimensional.

Possible approaches:

• Use a simple parametric model — eg, multivariate normal.

• Use a non-model-based method — eg, kernel density estimation.

• Use a flexible model for the density — eg, log-spline density model, mixtures.

Problems:

• Densities must be non-negative, and integrate to one.

• For high dimensional data, strong prior assumptions are needed to get good

results with a reasonable amount of data.



Problem: Latent Class Analysis

We have multivariate data from a population we think consists of several

sub-populations. For example:

• Teachers with different instructional styles.

• Different species of iris.

We don’t know which data points came from which sub-populations, or even how

many sub-populations there are.

We think that some of the dependencies among the variables are explained by

membership in these sub-populations.

We wish to reconstruct the sub-populations (“latent classes”) from the

dependencies in the observed data.



Mixtures of Simple Distributions

Mixtures of simple distributions are suitable models for both density estimation

and latent class analysis. The density of y has the form:

K
∑

c=1

ρc f(y|φc)

The ρc are the mixing proportions. The φc parameterize the simple component

densities (in which, for example, the components making up a multidimensional

y might be independent).

Some advantages:

• Mixture models produce valid densities.

• With enough components, a mixture can approximate any distribution well.

• Mixtures of simple components are restricted enough to work in many

dimensions.

• The mixture components can be interpreted as representing latent classes.



Bayesian Mixture Models

A Bayesian mixture models requires a prior for the mixing proportions, ρc, and

component parameters, φc.

We can use a symmetric Dirichlet prior for the ρc, with density

Γ(α)

Γ(α/K)K

K
∏

c=1

ρ(α/K)−1
c (ρc ≥ 0,

∑

c
ρc = 1)

When α is large, the ρc tend to be nearly equal; when α is close to zero, a few of

the ρc are much bigger than the others.

We will make the φc be independent under the prior, all with the same

distribution, G0.

There may be higher levels to the model (eg, a prior for α), but let’s ignore that

possibility for now.



The Model Using Class Indicators

We can express the mixture model using latent variables, ci, that identify the

mixture component (latent class) of each yi:

yi | ci, φ ∼ F (φci
)

ci | ρ1, . . . , ρK ∼ Discrete (ρ1, . . . , ρK)

φc ∼ G0

ρ1, . . . , ρK ∼ Dirichlet (α/K, . . . , α/K)

The class indicators will have values 1, . . . , K.

The model is not “identifiable”, since relabelling the classes changes nothing,

but this causes no problems — all that really matters is how the class indicators

partition the data set (ie, for each i and j, whether ci = cj or not).



The Prior After Integrating Out the Mixing Proportions

The mixing proportions (ρc) can be eliminated by integrating with respect to

their Dirichlet prior. The resulting successive conditional probabilities follow the

well-known “law of succession”:

P (ci = c | c1, . . . , ci−1) =
ni,c + α/K

i − 1 + α

where ni,c is the number of cj for j < i that are equal to c.

We could generate from the prior distribution for the ci and yi as follows:

• Generate c1, c2, . . . , cn using the above probabilities (note that

P (c1 = c) = 1/K).

• Generate φc for c = 1, . . . , K from G0.

• Generate each yi from F (φci
), independently.



Exchangeability

Consider a Bayesian model for data items y1, . . . , yn that, given values for the

parameters of the model, are independent and identically distributed.

In the unconditional distribution of y1, . . . , yn, the data items are not

independent. However, integrating over the parameters of the model shows that

the unconditonal distribution of the data items is exchangeable — for any

permutation π of 1, . . . , n,

P (Y1 = y1, . . . , Yn = yn) = P (Y1 = yπ(1), . . . , Yn = yπ(n))

The converse is also true: de Finetti’s representation theorem says that if the

distribution of y1, . . . , yn is exchangeable for all n, it must be expressible as

P (y1, . . . , yn) =

∫

P (θ)
n

∏

i=1

P (yi|θ) dθ

For some parameter θ (perhaps infinite-dimensional), some prior P (θ), and some

data distribution P (yi|θ), which is the same for all i.



Using Exchangeability for Mixture Models

Due to exchangeability, we can imagine that any particular yi (along with the

corresponding ci) is the last data item.

In particular, from the “law of succession” when probabilities have a Dirichlet

prior, we obtain

P (ci = c | c−i) =
n−i,c + α/K

n − 1 + α

where c−i represents all cj for j 6= i, and n−i,c is the number of cj for j 6= i that

are equal to c.

I will call this the “conditional prior” for ci.



Gibbs Sampling

We can apply Gibbs sampling to the posterior distribution of this model.

The yi are known. The state of the Markov chain consists of ci for i = 1, . . . , n

and φc for c = 1, . . . , K (recall we integrated away the ρi).

We start from some initial state (eg, with all ci = 1) and then alternately draw

each φc and each ci from their conditional distributions:

• φc | c1, . . . , cn, y1, . . . , yn

The conditional distribution for the parameters of one of the component

distributions, given the values yi for which ci = c. (This will be tractable if

the prior for φc is conjugate to the distributional form of the mixture

component.)

• ci | c−i, φ1, . . . , φK , yi

The conditional distribution for one ci, given the other cj for j 6= i, the

parameters of all the mixture components, and the observed value of this

data item, yi.



Gibbs Sampling Updates for the Class Indicators

To pick a new value for ci during Gibbs sampling, we need to sample from the

distribution ci | c−i, φ1, . . . , φK , yi.

This distribution comes from the conditional prior, ci | c−i, and the likelihood,

f(yi, φc):

P (ci = c | c−i, φ1, . . . , φK , yi) =
1

Z

n−i,c + α/K

n − 1 + α
f(yi, φc)

where Z is the required normalizing constant.

It’s easy to sample from this distribution, by explicitly computing the

probabilities for all K possible value of ci.



How Many Components?

How many components (K) should we include in our model?

If we set K too small, we won’t be able to model the density well. And if we’re

looking for latent classes, we’ll miss some.

If we use a large K, the model will overfit if we set parameters by maximum

likelihood. With some priors, a Bayesian model with large K may underfit.

A large amount of research has been done on choosing K, by Bayesian and

non-Bayesian methods.

But does choosing K actually make sense?

Is there a better way?



Letting the Number of Components Go to Infinity

For density estimation, there is often reason to think that approximating the real

distribution arbitrarily well is only possible as K goes to infinity.

For latent class analysis, there is often reason to think the real number of latent

classes is effectively infinite.

If that’s what we believe, why not let K be infinite? What happens?

The limiting form of the “law of succession” is

P (ci = c | c1, . . . , ci−1) =
ni,c + α/K

i − 1 + α
→

ni,c

i − 1 + α

P (ci 6= cj for all j < i | c1, . . . , ci−1) →
α

i − 1 + α

So even with infinite K, behaviour is reasonable: The probability of the next

data item being associated with a new mixture component is neither 0 nor 1.



The Prior for Mixing Proportions as K Increases

Three random values from priors for ρ1, . . . , ρK :
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The Prior for Mixing Proportions as α Varies

Three random values from priors for ρ1, . . . , ρK :
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α = 1, K = 150 :
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The Dirichlet Process View

Let θi = φci
be the parameters of the distribution from which yi was drawn.

When K → ∞, the “law of succession” for the ci together with the prior (G0) for

the φc lead to conditional distributions for the θi as follows:

θi | θ1, . . . , θi−1

∼
1

i−1+α

∑

j<i

δ(θj) +
α

i−1+α
G0

This is the “Polya urn” representation of the Dirichlet process, D(G0, α) — which

is a distribution over distributions. We can write the model with infinite K as

yi | θi ∼ F (θi)

θi | G ∼ G

G ∼ D(G0, α)

The name “Dirichlet process mixture model” comes from this view, in which the

mixing distribution G has a Dirichlet process as its prior.



Data From a Dirichlet Process Mixture

Data sets of increasing size from a Dirichlet process mixture model with 2D

Gaussian distributions for each cluster, with α = 1:
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Can We Do Gibbs Sampling With an

Infinite Number of Components?

What becomes of our Gibbs sampling algorithm as K → ∞?

Sampling from φc | c1, . . . , cn, y1, . . . , yn continues as before, for c ∈ {c1, . . . , cn}.

For all other c, the result would be a draw from the prior, G0. We imagine this

having happened, but we don’t actually do the infinite amount of work it would

require.

To sample from ci | c−i, φ, yi, we can start by explicitly computing

n−i,c

n − 1 + α
f(yi, φc)

for c ∈ c−i. There are also an infinite number of other possible values for ci. To

do Gibbs sampling, we need to handle them with a finite amount of work.



Gibbs Sampling for Infinite Mixture Models

with Conjugate Priors

Consider Gibbs sampling for ci when K is very large, but finite.

At most n of the classes will be associated with data items (at most n−1 with

data items other than the ith). The probability of setting ci to such a c is

proportional to
n−i,c + α/K

n − 1 + α
f(yi, φc)

For any value of c not in c−i, the product of the conditional prior and the

likelihood will be
α/K

n − 1 + α
f(yi, φc)

where the φc are drawn from the prior, G0. As K → ∞, the total probability of

setting ci to any c not in c−i is proportional to

α

n − 1 + α

∫

f(yi, φ) dG0(φ)



More on Gibbs Sampling for Infinite Mixture Models

with Conjugate Priors

If G0 is a conjugate prior for F , we can evaluate
∫

f(yi, φ) dG0(φ) analytically.

We can then figure out the correct probability for setting ci to be any of the other

cj , or any of the infinity number of c that are not currently in use. Specifically:

P (ci = cj | c−i, φ, yi) =
1

Z

n−i,cj

n − 1 + α
f(yi, φcj

), for j ∈ c−i

P (ci 6= cj for all j ∈ c−i | c−i, φ, yi) =
1

Z

α

n − 1 + α

∫

f(yi, φ) dG0(φ)

where Z is the appropriate normalizing constant, the same for both equations.

If we choose a previously unused c for ci, we also explicitly choose a value for φc,

from the posterior for φ given the prior G0 and the single data point yi.

When a previously used c is no longer used, we stop representing it explicitly,

forgetting the corresponding φc. (If we kept it around, it would never be used

again, since for such a c, n−i,c will always be zero.)



The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm generalizes the Metropolis algorithm to allow

for non-symmetric proposal distributions.

When sampling from π(x), a transition from state x to state x′ goes as follows:

1) A “candidate”, x∗, is proposed according to some probabilities S(x, x∗), not

necessarily symmetric.

2) This candidate, x∗, is accepted as the next state with probability

min
[

1,
π(x∗)S(x∗, x)

π(x)S(x, x∗)

]

If x∗ is accepted, then x′ = x∗. If x∗ is instead rejected, then x′ = x.

One can easily show that transitions defined in this way satisfy detailed balance,

and hence leave π invariant.



A Metropolis-Hastings Algorithm for Infinite Mixture

Models with Non-Conjugate Priors

We can update ci using a M-H proposal from the conditional prior, which for

finite K is

P (ci = c∗ | c−i) =
n−i,c∗ + α/K

n − 1 + α
= S(c, c∗)

We need to accept or reject so as to leave invariant the conditional distribution

for ci:
π(c) = P (ci = c | c−i, φ1, . . . , φK , yi)

=
1

Z

n−i,c + α/K

n − 1 + α
f(yi, φc)

The required acceptance probability for changing ci from c to c∗ is

min

[

1,
π(c∗)S(c∗, c)

π(c)S(c, c∗)

]

= min

[

1,
f(yi, φc∗)

f(yi, φc)

]

When K → ∞, we can still sample from the conditional prior. If we pick a c∗

that is a currently unused, we pick a value of φc∗ to go with it from G0. The

acceptance probability is then easily computed.


